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Abstract: This article is a critical review on layered hybrid 
organic-inorganic functional structures. We specially 
discuss a series of results concerning the design of mag-
netic and multiproperty systems derived from hybridiza-
tion of layered transition metal hydroxides. A series of 
hybrid materials showing original magnetic properties 
are reviewed, which were prepared by functionalization 
of layered simple hydroxides (LSH) of the general formula 
M2(OH)3A (M = Co, Cu, Ni, Zn, … and A = NO3

-, OAc-, alkyl-
carboxylates, peptides, metal complexes…). To make the 
point on this vast family of hybrid compounds, we present 
first the work investigating the mechanism of interaction 
and the structural factors influencing the magnetic prop-
erties of hybrid materials based on LSH. Then, we detail 
how even more complex anions can be immobilized and 
grafted into the interlamellar space giving rise to new func-
tionalities. These systems are very good models for under-
standing the correlations between the structure of hybrid 
systems and the physical properties brought by the inor-
ganic host and by the molecular moieties grafted onto the 
inorganic metal network. The interface between the organic 
and inorganic components, i.e. chemical bonding, charge 
density, or local pressure, is essential for the control of the 
properties of multifunctional hybrid systems. Some con-
clusions are drawn on the future of this approach, useful 
for developing new two-dimensional functional systems.

Keywords: hybrid interfaces; layered materials; magnet-
ism; multifunctional nanostructures; synergy.

1  Introduction
Today, there is a great interest for the rational design of 
new materials with increasingly varied applications from 
electronics, catalysis, to biology, and healthcare. The 
development of new multiproperty devices led to explore 
new tracks for designing materials combining very differ-
ent functional blocks within the same phase. One speaks, 
for instance, of the generalization to hybrid materials of 
the Lego-like chemistry [1], which was first proposed for 
the dispersion of inorganic nano-objects (oxo-clusters, 
oligosilsesquioxanes, …) in polymer matrices [2–5] or for 
the design of metal organic frameworks [6], and which 
might be extended to crystal chemistry of oxides [7]. The 
definition and the association of various functional bricks 
call on the expertise of solid state chemists, molecular 
chemists, biochemists, … and also physicists and mate-
rials engineers. This is particularly clear in the field of 
multifunctional hybrid materials. Indeed, today we are 
witnessing an increasing activity in the controlled synthe-
sis of hybrid materials, [1, 8–11] combining concepts from 
several disciplines to obtain new materials with specific 
chemical [12–20], physical [12, 13, 16, 21, 22], or biological 
properties [23–25]. In particular, the insertion of organic 
or organometallic species in lamellar compounds gives 
rise to functional organic/inorganic [26–36], inorganic/
inorganic [37–42], or bioorganic/inorganic [43–46] struc-
tures organized at the nanoscale. Thanks to the multi-
scale organization of their components and synergistic 
effects, such structures may have novel properties and 
behave as “multimaterial”, that is to say, a unique mate-
rial simultaneously answering several specifications. The 
lamellar compounds, in which the properties of each 
subnetwork and their interaction can be modulated by 
the topology and the chemical bond between constitu-
ents can present remarkable combinations of proper-
ties such as magneto-optics [47–52], or magnetism and 
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superconductivity [51, 53]. Chemistry plays an important 
role in improving the interactions between organic and 
inorganic networks. It is also essential to control the 
structural characteristics and the physical mechanisms 
influencing the properties of such new hierarchical nano-
structures [1, 8, 9, 54, 55].

In many of the lamellar systems explored in the litera-
ture, such as bimetallic trioxalatometalates A[MIIMIII(ox)3] 
[50–53, 56–59], hexathiohypodiphosphate MPS3 [47–49, 60, 
61], or layered double hydroxides (LDH) [MII

(1-x)MIII
x(OH)2]

[An-
(x/n)(H2O)] [29, 37, 45, 62–71], the bond between organic 

species and inorganic network is weak (electrostatic 
interactions, hydrogen bonds). Therefore, interactions 
between properties are low, and little synergy is obtained 
between electronic properties. We and others have chosen 
to develop a similar approach, but favoring more synergy, 
by hybridization of layered simple hydroxides (LSH)  
Mx(OH)2x-yn(Xn-)y (divalent cation M(II) = Co, Cu, Ni, Mn, 
Zn, and anion Xn- = carboxylate, sulfate, or sulfonate) [72]. 
These lamellar anion exchangeable hydroxides are adapted 
to promote a strong bond between the components, as the 
anions are bound to the transition metal forming the struc-
ture of the crystal lattice. We discuss hereafter the results 
on the synthesis of these hybrid systems, their flexibility 
and their properties to make a point on this approach 
toward hybrid multifunctional materials.

Basically, the structures of LSH, with the general 
formula M2(OH)3X (M(II) = Co, Cu, Ni, Mn, Zn and X- = NO3

-, 

CH3CO2
-, Cl-), derive from that of Botallackite, as shown in 

Figure 1 for the copper hydroxyacetate [72, 73]. It consists 
of a quasi-planar triangular array of octahedral metal(II) 
ions separated by anions coordinating the metal atoms 
and water molecules [73, 74]. Small variations may occur 
[75], essentially because of the necessary adaptation of the 
molecular area of each divalent metal to the molecular area 
of the grafted anions. In the case of cobalt or zinc LSHs, the 
structure of the inorganic layer may exhibit a triple deck 
arrangement similar to that of the Zn5(OH)8(NO3)2·2H2O 
or Co7(OH)12(C2H4S2O6)(H2O)2 analogs [76, 77]. It is formed 
of a monolayer of octahedral M(II) hydroxide, with metal 
vacancies that are counterbalanced by tetrahedral Co(II) or 
Zn(II) sites on both sides of the octahedral monolayer (see 
Figure 1). In this kind of structure, it is generally assumed 
that each non-hydroxyl anion (carboxylate, sulfate, sul-
fonate) is linked to one metal ion in a tetrahedral envi-
ronment [77–80]. Therefore, the number of coordinating 
groups corresponds to the number of tetrahedral Co(II) or 
Zn(II) ions. The presence of short metal-metal distances 
(ca. 0.3 nm), brought about by the μ3 coordination mode 
of the OH- moieties within the hydroxide layers, results 
in an extended metal framework. For example, effective 
magnetic interactions may occur by exchange coupling 
along the metal-oxygen-metal pathways, leading to a fer-
romagnetic, antiferromagnetic, or ferrimagnetic 2D behav-
ior. Moreover, the structure and, hence, the properties of 
these layered transition metal hydroxides is influenced by 
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Figure 1: Structure of the acetate hydroxides Cu2(OH)3(OAc)·H2O (left) [73, 74] and Co2(OH)3(OAc)·H2O (right) [79, 80, 81]. In the latter case, 
hydrogen atoms are not represented in the model.
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anionic function like n-alkylcarboxylates, sulfonates, or 
sulfates. Mixing the starting compound into a solution 
of the anion to graft at appropriate temperature, concen-
tration, and pH, the acetate anions are totally exchanged 
after a few hours. The new products give powder X-Ray 
diffraction patterns with intense 00l reflections, char-
acteristic of layered structures. The other reflections, hkl 
with h or k≠0, are much weaker and exhibit usual asym-
metrical enlargement for disordered pillared compounds.

The interleaved species can be used as a pillar or as a 
connector between the magnetic layers for monitoring the 
interlayer interactions as a function of the size and elec-
tronic characteristic of the exchanged anion [72, 75, 78, 79, 
82–89].

New hybrid materials with original magnetic proper-
ties were prepared by anion exchange reaction from pre-
formed lamellar compounds, essentially M2(OH)3A (M = Co, 
Cu), in which the anion A to be substituted is NO3

- or OAc- 
[78, 81, 90–96]. As illustrated by Scheme 1, the grafting of 
many types of ligands changes the electron density or the 
distance between the magnetic layers and, thus, influences 
the magnetic coupling between layers. We can also produce 
multilayers alternating organic (radicals) and inorganic 
(hydroxides) magnetic layers. Finally, we looked at the con-
nection between layers via π electron molecules and reali-
zation of bifunctional systems by grafting of photosensitive 
molecules. These hydroxide-based compounds are charac-
terized by the nature of the links between subnetworks. The 
organic anion A is linked to the transition metal sheet and 
plays an important role on the magnetic properties leading 
to a variety of ferro- or ferrimagnetic hybrids systems.

the functionalization of the layers. Three reaction methods 
were explored to synthesize the layered transition metal 
hydroxide hybrids, which are summarized in Figure 2.

The first one consists in reacting directly transition 
metal salts in aqueous solution with an alkaline agent, pre-
cipitating the hydroxide phase. It is well adapted and widely 
used in the case of small anions like chloride, nitrate, or 
acetate leading to nice crystalline powders, which allows 
often the determination of their crystal structure.

For larger or more complex anions to be grafted 
onto hydroxide layers, it is often necessary to proceed in 
hydrothermal conditions in Teflon-walled autoclaves in 
the range 100–250°C, similar to the synthesis of metal 
organic frameworks (MOF). Remarkable results were 
obtained in hydroxo compounds build from terephthalate 
or thiophene-carboxylate anions (see below). The crystal 
structure could be investigated by using single crystal or 
powder X-Ray diffraction, showing great versatility and 
interesting relations between 1D, 2D, and 3D parent struc-
tures. In addition to their peculiar properties, all these 
compounds, whose structure is known, constitute struc-
tural models that can be used for comparison with less 
crystalline parent derivatives.

Finally, the X- anion located in the interlayer space 
may be substituted by a large variety of organic molecules 
or molecular metal complexes via anionic exchange reac-
tions. New layered M(II) derivatives are usually obtained 
from the metal hydroxyacetate, M2(OH)3(CH3COO)·xH2O 
(M = Cu, Co), substituting acetate moieties by various 
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Figure 2: Summary of the main types of reaction routes used for 
synthesizing hybrid transition metal hydroxides. Direct reaction of a 
metal salt in aqueous solution with an alkaline base leads to metal 
hydroxide by precipitation. Direct reaction can be carried out under 
hydrothermal conditions. Another route consists in starting from a 
pre-formed layered hydroxide, which is further hybridized by anion 
exchange reaction.
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Scheme 1: Schematic summary of our approach for the realization 
of magnetic and bifunctional lamellar hybrid materials based on 
simple hydroxides of transition metals [35, 72].
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2  �Structure-property relationship 
and magnetic interaction mecha-
nisms in layered hybrid systems

2.1  Influence of the interplane distance

Various hybrid lamellar compounds grafted with n-alkyl 
chains were synthesized having the general formula 
M2(OH)4-xAn-

x/n, mH2O (M = Co(II), Cu(II), An- = CnH2n+1SO4
-, 

CnH2n+1COO-, OOC(CH2)nCOO2-), where the An- anions act 
as spacers between brucite-type layers. The copper com-
pounds are synthesized by anionic exchange in the copper 
hydroxyacetate Cu2(OH)3(CH3COO), H2O. The acetate ions 
were, thus, replaced by the long-alkyl chain anions by 
dispersing the starting material in an aqueous solution of 
the corresponding sodium salt. Cobalt salts were obtained 
similarly starting from the hydroxynitrate Co2(OH)3(NO3).

This substitution induces a change in the coordi-
nation sphere of the metal influencing the magnetic 
exchange interaction in the planes (ferromagnetic or anti-
ferromagnetic). It also allows a significant modulation 
of the distance interplane (between 4.6 Å and 40 Å) and, 
consequently, the coupling between magnetic planes.

Structural studies have shown that the interlayer 
distance, d, is linearly related to the number of carbon 
atoms n (Figure 3), and its variation is characteristic 
of the arrangement of the alkyl chain. For copper(II) 
compounds with n-alkyl carboxylate anions, the alkyl 
chains form a bilayer with a tilt angle of 30° (Figure 4), 
whereas for n-alkyl sulfates anions for instance, the 
chains are stacked in monolayer, orthogonal to the 
sheets (Figure 4).

From the structural point of view, the results are 
very similar for the cobalt or copper salts. For the latter, 
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Figure 4: Examples of alkyl chain arrangement after exchange 
reaction in copper(II) or cobalt(II) basic salts (see text). Distances di 
and the tilt angle θ are directly related to the characteristic distance 
of the layer stacking (basal spacing) as deduced from powder X-ray 
diffraction patterns. Adapted with permission from [81]. Copyright 
1999 Royal Society of Chemistry.
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Figure 3: Variation of the interplanar distance (d001) for copper 
hydroxycarboxylates in the α or β form (see text).
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Figure 5: Temperature variation of the χT product for copper 
compounds exchanged with n-alkyl-carboxylates of different carbon 
chain lengths. ) n = 1, acetate (metamagnetic), ) n = 7, α (antifer-
romagnetic), ) n = 7, β (ferrimagnetic). Insert shows the magnetiza-
tion vs. field curve at 4 K of the β phase. Adapted with permission 
from [81]. Copyright 1999 Royal Society of Chemistry.

however, depending on the exchange reaction time with 
carboxylates, two series of compounds (denoted α and β) 
were isolated, which correspond to two interplanar spac-
ings for the same aliphatic chain (Figure 3).

These two series are differentiated by the distance 
between the terminal methyl group and by the thickness 
of the inorganic layer [Cu2(OH)3]+. The compounds of the 
α series present an antiferromagnetic behavior over the 
entire temperature range between room temperature and 
4.2 K. In contrast, the β compounds are characterized by 
the existence of a 3D ferromagnetic order at low tempera-
ture (Figure 5). This difference in behavior is explained by 
the modification of the Cu-O-Cu bond angles, related to 
the arrangement of the carboxylate groups coordinating 
the metal, which leads to a drastic change in the magnetic 
behavior [78, 93].
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covalent bonding to the nickel ions. All compounds have 
similar structures and can be described as α-Ni(OH)2 type 
nickel hydroxides (Figure 6).

These compounds are ferromagnetic in keeping 
with recent reports on α-Ni(OH)2 analogs [105, 106]. This 
behavior has been discussed on the basis of the Drillon-
Panissod model for the magnetic layers interacting via 
dipolar interactions [100] and taking into account the 
structural features determined by XANES and XRD, as 
well as the intrinsic properties of the halide ions. Despite 
the low interlamellar distance, the hydroxy-halides, like 
other α-Ni(OH)2 analogs [105–107], present a 3D ferromag-
netic order, unlike hydroxides of the β-M(OH)2 form [108]. 
The fact that TC varies with anions could be explained by 
the nature and the structural arrangement of the anions 
inserted between the magnetic layers and considering a 
competition between the through-space dipolar interac-
tion and through-anion interaction. We shall return to this 
type of competition further for other examples, especially 
compounds involving conjugated bridges.

2.2  Magnetic metal-radical multilayers

Imino nitroxide radicals (meta and para forms) have also 
been grafted by anion exchange reaction on inorganic sheets 
made of cobalt(II) hydroxide (Figure  7), giving the new 
hybrid ferromagnetic compounds Co2(OH)3,5(IMB)0,5·2H2O 
(IMB = imino-nitroxide benzoate anion) [91, 95]. In these 
systems, the cobalt(II)-based sheets are separated by 
radical anion, and the two sub-entities are strongly linked 
by ionocovalent bonds. The distance between the ferri-
magnetic cobalt(II) layers becomes  > 20 Å.

The study of the cobalt(II) compounds also high-
lighted new layered architectures with cobalt atoms in 
octahedral and tetrahedral sites [78]. Then, the behavior 
of the planes is ferro- or ferrimagnetic. At low tempera-
tures, the long-chain systems exhibit a 3D ferromagnetic 
long-range order.

The correlations between structure and properties of 
these series of lamellar magnetic compounds made pos-
sible the setting of some general rules [72, 81, 87, 90, 97]. 
Thus, when the anion is a simple spacer (aliphatic chain), 
and ferromagnetic interactions dominate in the sheets, 
the situation depends on the distance, d, between layers. 
For small gaps ( < 10 Å), a 3D antiferromagnetic order is 
established at low temperature, by an exchange-coupling 
mechanism (orbital overlap, hydrogen bonding). In con-
trast, large spacings favor the development of a sponta-
neous magnetization even for d≈40 Å, which is explained 
by a dipole interaction mechanism between the giant 
moments developing in the sheets at low temperature. 
The magnetic behavior of these series of compounds was 
analyzed by a scaling law model approach in the frame-
work of the theory of phase transitions [98, 99]. A high-
temperature a 2D regime followed by a transition to a 3D 
regime was well identified. This validates the semi-clas-
sical model proposed by P. Panissod and M. Drillon, and 
application to our compounds described the special action 
of dipole interactions in stabilizing ferromagnetic order at 
a large distance [100]. This model is widely used today to 
explain the long-range coupling in 2D and 1D structures 
involving distant magnetic entities [40, 101–103].

It should, however, be pointed out here that the criti-
cal distance of 10 Å established for these series of hydrox-
ides and the F or AF character of the 3D magnetic order 
may depend on the nature of the species present in the 
interlayer space. This was shown, for example, by a recent 
analysis of the magnetic behavior of layered nickel hydrox-
ides, including halogen ions in the interlayer space [104]. 
A series of hydroxy-nickel(II) halides LHS-Ni-X (X = Cl, Br, 
I) was prepared by the anion exchange reaction starting 
from the nickel hydroxyacetate obtained by hydrolysis in 
polyol reaction medium. These compounds, characterized 
by FTIR spectroscopy and X-ray diffraction (XRD), have a 
brucite-type structure with turbostratic disorder. Their 
interlamellar distance varies linearly with the radius of 
the halide ions between 7.9 and 8.7 Å, while the distance 
of the starting hydroxyacetate is 10.53 Å. In contrast with 
the replacement of acetate anions or hydroxyl groups in 
brucite structures, as in the hydroxy carboxylates, sul-
fates, or sulfonates described above, the EXAFS and XRD 
studies showed that the halide ions are intercalated in 
the interlamellar space with water molecules, without 

Figure 6: Structural model proposed for the halide-hydroxy series 
of nickel(II). The yellow and blue spheres hold for halogen and 
water molecules, respectively. Adapted with permission from [104]. 
Copyright 2014 American Chemical Society.
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Both radical compounds, Co-rad1 and Co-rad2, show 
a 3D ferromagnetic order with Curie temperatures of 6.0 K 
and 7.2 K for the radical in para or meta position, respec-
tively (Figure 7). Compounds equivalent to Co-rad1 and 
Co-rad2 were obtained by grafting the nonmagnetic pre-
cursor of the radical anion (hydroxyl radical precursors, 
prec1H and prec2H in Figure 7). Their investigation shows 
that the transition temperature is strongly correlated with 
the nature of the organic species as TC increases by 8  K 
in the case of the precursor (Figure 8B). By comparison 
with the exchange product with the non-radical molecule, 
and after EPR analysis, the behavior of the metal-radical 
hybrid compounds has been linked to strong interactions 
between 3d and π electrons [91].

These results reflect the existence of a genuine 
exchange interaction between sub-networks, i.e. the metal 
one and the radical one, through bridging anions. The study 
by EPR shows that this interaction is antiferromagnetic 

COOH

CHO

(ii)

COOH

N
N

OH

(iii)

N
N

O

COOH

.

H2O

NaOH
Co2(NO3)2,6H2O

Co2(OH)3(NO3)

Co2(OH)3.5(A)0.5,2H2O

A = prec1, rad1, rad2

p-IMBA (rad1H)
m-IMBA (rad2H)

para = prec1H
meta = prec2H

Anion
exchange

Figure 7: Grafting benzoate nitroxide radicals by anion exchange 
in cobalt(II) hydroxy nitrate and structural model. Adapted with 
permission from [91]. Copyright 1998 Wiley.

120A B

1.0
2

1

0

-1

-2

-6 -4 -2 0 2 4 6

Filed (kOe)

0.5

0
0 10 20 30 40 50 60

20

15

10

0

5

100

80

60

χT
 (

cm
3 .K

.m
ol

-1
)

M
/M

0 M
 (

N
 µ

B
)

χ 
(c

m
3  m

ol
-1

) χ′

χ″

40

20

0

10 100

Temperature (K) Temperature (K)

Temperature (K)

Co-rad2

Co-rad1

Co-rad1
Co-rad2

Co-rad2

Co-prec1

1.8 K

Co-rad1

Co-NO3

2 7 12 17 22

Figure 8: Substitution with benzoate radical anion (A) comparison of the magnetic susceptibility of the starting cobalt hydroxynitrate 
(metamagnetic) and exchanged products Co-rad1 and Co-rad2 (ferromagnetic) with the variation of the alternative susceptibility of Co-rad1 
in insert; (B) TC changes related to the presence or absence of the radical. Adapted with permission from [91]. Copyright 1998 Wiley.

and is opposed to the ferromagnetic coupling of dipolar 
origin between cobalt(II) layers. This was among the first 
examples of metal-radical multilayer systems with coupled 
magnetic properties.

2.3  �Connection between spin layers – 
influence of π electrons

To better control the coupling between the spin layers 
formed by the hydroxide sheets, we then proceeded to 
use bifunctional bridging molecules to establish a real 
connection between the inorganic sheets. Exchange reac-
tions were conducted with alkane-α,ω-dioate anions, 
(CH2)n(CO)2

2-, n = 1 to 8 [109]. The inter-sheet distance 
shows a linear variation dependent on the parity of n. The 
results for the full copper series give an inclination angle 
of 25.7° of the aliphatic chains for n even and 42.9° for odd 
n. This was explained by the difference of mutual orienta-
tion of the carboxylate end groups. Actually, the crystallo-
graphic structure of these compounds, obtained as poorly 
crystallized powder, could not be resolved. Nevertheless, 
an EPR study (electron paramagnetic resonance spectros-
copy) performed at high field (LCMI, Grenoble, France) 
has established a great similarity of the local structure of 
this series of compounds with that of the hydroxy Cu(II) 
terephthalate, isotype to its Co(II) counterpart described 
below [110, 111].

The magnetic behavior is closely related to the dimen-
sion of the spacers and to the nature of the bonds along 
the carbon chain. An outstanding result was obtained in 
the case of six carbon atom bridges (n = 4), namely, adipate 
anion (40) with saturated bonds, trans-hexene dioate anion 
(41) with an unsaturated bond, and the muconate anion 
(42), conjugated with two double C = C bonds. In all three 
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2.4  �The hydroxyterephthalates: 
hydrothermal synthesis, magnetic 
structure, giant coercivity, and 
dimensionality

Despite significant achievements, the major disadvantage 
of anion exchange reactions is they often lead to poorly 
crystallized systems. Lack of knowledge of the detailed 
structure of the inorganic layers substantially limits the 
structure-property relationship. That is why the synthe-
sis of these hybrid compounds was developed using the 
hydrothermal reaction of a metal salt (nitrate) with the 
desired carboxylic acid and a base (sodium or potas-
sium hydroxide) in aqueous solution. The syntheses were 
carried out in Teflon-lined autoclaves under autogenous 
pressure in the temperature range 100–200°C.

A striking result was obtained in the case of cobalt(II) 
hydroxyterephthalate, Co2(OH)2(C8H4O4), which was syn-
thesized in the form of well-crystallized powder and whose 
structure was solved ab initio by powder diffraction X-ray, 
by Masciocchi et al. (Figure 10) [86]. The magnetic structure 
under field could be solved on a deuterated sample [116]. 
This compound can be described as the stack of layers of 
cobalt(II) ions in compressed octahedral sites formed by 
the oxygen atoms of the hydroxyl and carboxylate groups 
and forming a triangular network.

The short axes of the octahedral sites form a strong angle 
between cobalt(II) neighbors. The layers are connected by 

cases, the interplane distance is similar (d = 10.34±0.12 Å). 
The magnetic behavior is shown in Figure 9. The three 
compounds are remarkably alike at high temperature 
indicating a similar ferromagnetic behavior of the inor-
ganic layers, corresponding to an exchange interaction of 
27 K. The latter was deduced from the fit of the experimen-
tal data with a high temperature series expansion model 
for S = 1/2 Heisenberg planar triangular systems [112]. At 
low temperatures, the compound 40 exhibits an antiferro-
magnetic (AF) order between layers and a metamagnetic 
transition below TN. The compound 41, on the other hand, 
is characterized by a 3D ferromagnetic order below 12.8 K 
and the conjugated compound 42 orders antiferromagneti-
cally as in the first case.

This changing magnetic behavior was attributed to 
π electrons from bridging anion and providing magnetic 
coupling with polarization effect [109]. NMR measure-
ments showed that 13C spin density along the carbon 
chain is zero in the case of adipate (40) and significant in 
other cases. These results show that it is possible to change 
the coupling between magnetic layers using bridging 
anions having only partial electron delocalization within 
their π system and that conjugation can have a strong 
influence [98, 113]. This assertion was further supported 
by Kojima et al., who succeeded in grafting diarylethene 
(DAE) di-sulfonates molecules in the interlayer space of 
cobalt hydroxide [89, 114, 115]. Actually, the hybrid com-
pounds obtained with the open form (un-conjugated) or 
the closed form (fully conjugated) of DAE exhibit ordering 
temperatures of 9 K and 20 K, respectively.
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Figure 9: Magnetic behavior of the copper(II) compounds with 
bridging dicarboxylate anions with n = 4 alkane chains: ( ) meta-
magnetic compound 40, ( ) ferromagnetic compound 41, (Δ) meta-
magnetic compound 42. The magnetization at 4 K of 41 is given in the 
insert. The solid line corresponds to the fit to the S = ½ Heisenberg 
model described in the text.
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Figure 10: Crystallographic structure of Co2(OH)2(C8H4O4) along c 
(left) and b (right) axis. At right also, the antiferromagnetic structure 
below 48 K, on the basis of a collinear arrangement. Ordered 
moments held by the two non-equivalent Co(II) are different. A small 
canting between moments, at the origin of the low ferromagnetism, 
is not taken into account. Adapted with permission from [116]. 
Copyright 2003 Elsevier.



564      P. Rabu et al.: Hybrid multifunctional superstructures by design

terephthalate anions and separated by a distance of about 
10 Å. The observed magnetic behavior is relatively complex. 
Interactions are antiferromagnetic between Co(II) ions in 
the layers, but the moments carried by the inequivalent 
cobalt atoms are different. This leads to ferrimagnetism and 
divergence of the χT product at low temperatures (Figure 11).

Ferrimagnetic layers are coupled antiferromagneti-
cally through the organic anions with an ordering tem-
perature TN = 48 K. The magnetization curves below TN are 
characteristic of a metamagnetic compound. However, 
below 44 K, a ferromagnetic order appears, characterized 
by the occurrence of a peak in the imaginary part of the ac 
susceptibility and low remanent magnetization. Despite 
the opening of the cycle, the magnetization keeps the S 
shape characteristic of metamagnetic systems. This was 
explained by the existence of a canting between moments 
in adjacent ferrimagnetic layers. The S shape fades away 
to the low temperatures. The situation is summarized in 
the phase diagram shown in Figure 12A. At low tempera-
tures, under strong field, a highly canted phase is stabi-
lized, and the hysteresis loop (Figure 11) shows a giant 
coercive field of nearly 6T.

The study by neutron diffraction of Co2(OH)2(C8H4O4) 
in a magnetic field indicates that the ground state of the 
system at low temperatures is the weakly canted struc-
ture (WCA), while the strong canting phase (SCA) is met-
astable and appears only under a magnetic field. These 
results highlight the effects of a large anisotropy related 
to the structure and to the Co(II) ions. The complex phase 
diagram is the result of a competition between anisotropy 
fields and AF exchange coupling (Figure 12).

The analogous copper(II) compound has a ferro-
magnetic behavior over the entire temperature range. 
Copper(II) ions are weakly anisotropic, and very low coer-
civity was observed [110, 117].

Nickel terephthalates exhibit high structural diversity. 
However, it should be noted that the anhydrous nickel 
analog of the previous cobalt or copper compounds could 
never be obtained by direct reaction. A series of nickel com-
pounds was obtained by François et al. by dehydration of 
the hybrid compound [Ni3(OH)2(tp)2(H2O)4] (1) [118], whose 
structure is isotype to that of cobalt or nickel thiophene 
dicarboxylates described elsewhere [119, 120]. Heating 
this compound led to sequential departure of coordinated 
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water molecules to yield [Ni3(OH)2(tp)2(H2O)2] (2) at T1 = 433 K 
and then the anhydrous compound [Ni2(OH)2(tp)] (3) at 
T2 = 483 K. These two successive structural transformations 
have been fully characterized by X-ray powder diffraction 
coupled to modeling using a DFT approach (DFT for density 
functional theory). The crystal structure of the two new 
compounds was determined. Thus, at T1 = 433 K, the infinite 
chains of nickel atoms linked by oxo bridges built from the 
[Ni3(μ3-OH)2]4+ units in 1 collapse and form infinite porous 
layers in 2. The second transformation at T2 = 483  K leads 
to the expected anhydrous compound 3, which is isostruc-
tural with Co2(OH)2(tp) presented above (Figure 13).

These irreversible changes directly affect the mag-
netic behavior of each phase. Thus, 1 is antiferromagnetic 
with the order at TN = 4.11 K and exhibits a metamagnetic 
behavior with a threshold field Hc about 0.6 T at 2 K. 
Compound 2 has a canted antiferromagnetic state below 
TN = 3.19 K, and 3 is ferromagnetic below TC = 4.5 K. In addi-
tion, the magnetic exchange couplings were evaluated 
in compound 1 on the basis of an S = 1 Heisenberg chain 
model consisting of the interconnection of dimers Ni1-Ni1 
connected by Ni2 center forming butterfly motifs [120]. The 
numerical resolution of the corresponding spin Hamilto-
nian has allowed a very good fit of the experimental data 
(Ni1-Ni1 interaction, J1/kB = +26.6 K and Ni1-Ni2 interaction, 
J2/kB = –2.8 K, with g = 2.1). Similarly, the behavior of the 
compound 3 with dense sheets was analyzed by a scaling 
law approach. Intra-layer interaction was evaluated by 
parameterization of the magnetic susceptibility with high-
temperature series expansions in the approximation of a 
planar triangular system (g = 2.18 and J/kB = -1.48 K). The 

analysis of the correlation length suggests the contribu-
tion of interactions between planes to the magnetic order. 
These interactions occur through the ligands, associated 
to the spin polarization of the π system along the tereph-
thalates bridges [87, 121, 122].

2.5  �Flexible and adaptive magnetic lamellar 
structures

As stated earlier, most copper lamellar derivatives were 
obtained by the exchange reaction from the hydroxy-
acetate, Cu2(OH)3(CH3COO)·H2O, by the substitution of 
the acetate anions by n-alkyl carboxylates, sulfonates, 
or sulfates. As the magnetic properties of the hybrids 
obtained by anion exchange were particularly investi-
gated, it seemed important to conduct a detailed magnetic 
study on the starting hydroxyacetate, which has a rather 
complex structure and an intermediate behavior between 
antiferromagnetism and ferromagnetism [123].

The pressure dependence of the magnetic behavior 
of the copper hydroxyacetate is summarized in Figure 14. 
At ambient pressure, the compound is antiferromagnetic, 
the ferromagnetic layers being antiferromagnetically 
coupled. The weak antiferromagnetic coupling results in 
a metamagnetic system below TN. Under a pressure of 1.2 
GPa, a transition to a metastable ferromagnetic state was 
observed. This transition is reversible and has been corre-
lated with a reversible distortion of the inorganic network. 
A study of the structure (lattice parameters and Cu-O-Cu 
angles) was conducted by X-ray powder diffraction as a 
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function of external pressure. It was deduced that the 
pressure significantly alter the relative values of the mag-
netic interactions within the layers, predominantly anti-
ferromagnetic, and in competition. This experimental 
result provides information on the mechanisms responsi-
ble for the magnetic behavior observed in these lamellar 
systems and more generally in complex systems with com-
peting interactions, whose fundamental magnetic state is 
difficult to predict a priori. Also, one understands better 
how the insertion grafting may influence the magnetism. 
The flexibility of these organic-inorganic hybrid systems is 
remarkable, and the AF/F transition induced by the pres-
sure is original. Further study validated also the use of 
DFT modeling to calculate the structural, electronic, and 
magnetic properties of relatively large systems (in terms of 
number of atoms) and having atoms with open shell struc-
ture, as proposed by Massobrio et coll [124–127].

3  �Toward an engineering of 
complex multifunctional hybrid 
materials

3.1  �Magnetic and photo active hybrid 
materials: the synergy issue

3.1.1  �Magnetic hybrid materials comprising photo 
luminescent organic molecules

The basic idea is to create new compounds combining 
different functionalities provided by each sub-entity, the 

inorganic one (magnetism) and the organic one (lumi-
nescence, nonlinear optics, photo-induced effect …). In 
a way, this relatively simple idea consists in synthesiz-
ing, by chemical routes, systems similar to metal or oxide 
multilayer-based nanostructures that were produced oth-
erwise by using physical techniques such as sputtering or 
pulse laser deposition, for instance [128–133].

As for luminescence, simple candidate molecules to 
be used to functionalize layered magnetic hydroxides are 
conjugated systems, like (poly)thiophene carboxylate, 
[134, 135] or oligophenylenevinylene (OPV) [136, 137]. The 
latter is well known for a high yield of luminescence with 
relatively short life time of the excited state. For instance, 
OPV molecules functionalized with four carboxylate 
“arms” were grafted on Ni(II)-based layered hydroxide 
layers (Figure 15). The hybrid compound is a ferromagnet. 
A striking feature is that the maximum of luminescence of 
the compound, arising from the OPV moieties, is shifted 
at the magnetic ordering temperature, TC = 11 K. Moreover, 
this shift was more pronounced when approaching a per-
manent magnet (ca. 100 Oe) near the sample. This shows 
the possible influence of the magnetic order on the lumi-
nescence [34]. These results allow considering multifunc-
tional systems with synergy between properties.

Other functional organic molecules have been 
studied. Thus, oligothiophene dicarboxylates were used 
as connectors between magnetic layers. Oligothiophenes 
are indeed of a major interest by their electronic proper-
ties (luminescence and conduction) and excellent chemi-
cal stability. First, we have succeeded in synthesizing a 
wide variety of lamellar compounds with monothiophen-
ecarboxylates and in developing the most effective experi-
mental protocols (Figure 16) [83, 138].
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detected in these materials despite the presence of oli-
gothiophenes. Attempts to oxidize it in-situ with iodide 
were unsuccessful.

Oligothiophenedicarboxylates (Figure 17) were 
inserted between the layers of hydroxides of copper, 
nickel, and cobalt.

Different synthesis methods have been explored 
to the insertion of these oligothiophenes, i) by anion 
exchange from a preformed hydroxyacetate or hydrox-
ynitrate lamellar structure, in which acetate or nitrate 
ions are exchanged by the desired functional anions [83],  
ii) hydrothermal synthesis using transition metal salts 
and the given carboxylic acid [139]. Thus, many hybrid 
multilayer compounds based on Cu(II), Ni(II), and Co(II) 
could be prepared by inserting oligothiophene comprising 
one to four thiophene rings (Figure 18).

Control of the synthesis led to the lamellar com-
pounds M-Tn (M = Cu, Ni, Co, n = 1–4) in which the metals 
are all in octahedral site, as in the brucite-type hydrox-
ides, β-M(OH)2. All these compounds have a wide range 
of magnetic behavior, i.e. ferromagnetism (F), antifer-
romagnetism (AF), AF canted, metamagnetic transition 
ferrimagnetism, field-induced ferromagnetism, giant 
coercive fields (3–6 T) [139]. All ligands are fluorescent. 
In the hybrid, we find the characteristic absorption 
bands of π–π* transitions, but there is a quenching of 
luminescence explained by the proximity of paramag-
netic centers, contrary to what is observed in OPV-based 
systems [34]. Moreover, no electron delocalization was 
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Figure 18: Schematic representation of the compounds Cu-T2 (derived from the Brucite structure), Cu-T3 (derived from the structure of 
Cu2(OH)3NO3) and Ni-T3 or Co-T3 (derived from the Brucite structure). Water molecules are omitted.

Scheme 2: Synopsis of exchange reactions performed in lamellar hydroxides from functional molecules, as metal complexes or bio-
inspired molecules with optical properties.

3.1.2  �Hybrid materials including photoswitching 
molecules

More recently, works in the field aimed to explore the 
anion exchange reactions for the insertion of luminescent 
molecules with various anchoring functions (carboxylate, 
sulfonate, phosphate) and transition metal complexes 
that may present relatively long-lasting photoexcited 
state, as illustrated in Scheme 2 [140].

A first work concerned inserting stilbazolium dyes 
carboxylate and/or sulfonate as described in Figure 19.  
New hybrid systems have been obtained by anionic  

exchange reaction: the cobalt compounds, Co2(OH)3.57 
(MR)0.43, 1.88 H2O, Co2(OH)3.27(MO)0.73, 2.94 H2O, Co2(OH)3.45

(OrangeIV)0.55, 2.92 H2O and Co2(OH)3.46(MY10)0.27, 2.34 H2O 
starting from the cobalt hydroxyacetate Co2(OH)3(OAc), 
H2O, the copper compounds Cu2(OH)3.23(MR)0.77, 2.92 H2O, 
Cu2(OH)3.29(MO)0.71, 2.31 H2O, and Cu2(OH)3.39(OrangeIV)0.61, 
1.80 H2O starting in that case from pre-intercalated 
Cu2(OH)3(DS) (DS: dodecyl-sulfate). Concerning the latter, 
this pre-intercalation strategy of the lamellar structure, 
necessary to obtain pure intercalated phases, has been 
developed for the first time in this type of hydroxides. This 
opens interesting prospects for the insertion of molecules 
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difficult to insert due to their size or hydrophobicity, for 
example. Hybrid layered compounds have a ferrimag-
netic behavior. The cobalt derivatives order between 
6.9  K and 18 K. All of these compounds are fluorescent 
magnets [141]. It is worth noting here that, despite the 
presence of azo moieties, it was not possible to photoi-
somerize efficiently the dyes after intercalation. At least, 
no photomagnetic effect was observed in this series of 
compounds. This was likely explained by the fact that the 
azo dyes are coordinated to the metal layers. This coordi-
nation is thought to hinder the change of conformation 
of the molecules. Moreover, the photo-excited state might 
be quite difficult to stabilize. The group of Coronado 
reported recently on the insertion of azo dyes into layered 
double hydroxides (LDH). In that case, the dyes act as 
counter anions toward the metal(II)/metal(III) positively 

charge hydroxide layers. The dyes are not coordinated 
to the layers, and photomagnetic and thermomagnetic 
effects were observed [142, 143].

3.2  �Multilayer alternating hydroxide layers 
and transition metal complexes

A second component relates to the insertion grafting of 
transition metal complexes. One of the encountered dif-
ficulties (now overcome) is the possible low stability of 
the complexes during the anionic exchange reactions, 
with respect to the aqueous medium, or to transition 
metal in the hydroxide sheets. Besides the chemical chal-
lenge it represents, insertion grafting of transition metal 
complexes is promising. The observed properties are 
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diverse and a priori easily adjustable depending on the 
metal cation. The results illustrate the versatility of this 
approach for obtaining multifunctional materials with 
unique properties associated with the presence of two dis-
tinct subnetworks.

A first family was synthesized by insertion of Schiff base 
complexes (salen) comprising sulfonate group as anchor-
ing functions on magnetic inorganic layers (Figure 20) and 
involving different diamine bridges [140, 144, 145].

The insertion of such complexes generates specific diffi-
culties due to their possible hydrolysis during the exchange 
reaction [144]. This difficulty has been overcome by working 
from compounds pre-intercalated with dodecyl sulfate or 
dodecylsulfonate in a water-ethanol mixture (50:50 v/v). A 
major result concerns the insertion of chiral cysalen com-
plexes (Figure 20), which leads to chiral magnets, with 
the formula Co2(OH)3,32(Ni(SalenSO3))0,34·4,4 H2O. A transfer 
of chirality from the complex to the hybrid compound has 
been detected by optical circular dichroïsm [146].

Figure 21: The insertion grafting of Salen-type complexes within 
lamellar copper or cobalt hydroxides leads to a drastic change in 
the structure and composition of the inorganic layers due to pos-
sible dual exchange mechanism, i.e. anionic and cationic. Reprinted 
with permission from [145]. Copyright 2012 Wiley.

However, the insertion of di-sulfonate complexes of 
different transition metals presented additional difficulties 
[145]. Thus, two series of compounds were obtained from the 
complexes M(SalenSO3)Na2 (M = Cu2+, Ni2+, Co2+ and Zn2+) and 
copper and cobalt hydroxides pre-intercalated with alkyl 
chains Cu2(OH)3(DS) and Co2(OH)3(DS0) (SalenSO3Na2: N,N′-
bis(5-sulfonatosalicylidene)-1,2-diaminoethanedisodium, 
DS-: dodecylsulfate and DS0

-: dodecylsulfonate). The reac-
tion of M(SalenSO3)Na2 with the copper hydroxide led by 
anionic exchange to the compounds Cu2(OH)3.00(CuSale
nSO3)0.50·0.20 H2O and Cu2(OH)3.24(NiSalenSO3)0.38·2.6 H2O if 
M = Cu2+ or Ni2+. Similarly, reaction with the layered cobalt 
hydroxide gave the exchanged products Co2(OH)3.18(NiSale
nSO3)0.41·4.0 H2O and Co2(OH)3.44(CoSalenSO3)0.28·3.7 H2O if 
M = Ni2+ or Co2+. In other cases, the reaction of M(SalenSO3)
Na2 with copper hydroxide when M = Co2+ or Zn2+ and reac-
tion with the lamellar cobalt hydroxide when M = Cu2+ or 
Zn2+ induce a change in the host structure due to a concomi-
tant partial cation exchange between the salen complex 
and the inorganic layers (Figure 21) [145]. Mixed exchanged 
compounds were thus obtained, Cu1.16Co0.84(OH)3.28(Co(Salen
SO3))0.36, 6.4 H2O, Cu0.7Zn1.30(OH)3.20(ZnSalenSO3)0.40, 2.11 H2O, 
Co1.72Cu0.28(OH)3.28(CuSalenSO3)0.36, 3.20 H2O et Co0.80Zn1.20 
(OH)3.20(ZnSalenSO)0.40, 2.25 H2O (Figure 21).

This dual exchange mechanism (anionic/cationic) 
was characterized by XPS studies, in particular. The 
magnetic behaviors are strongly modified by the func-
tionalization of the sheets and partial cation exchange. 
The situation approaches the case of layered double 
hydroxides (LDH), in which the sheets may contain para-
magnetic divalent or trivalent cations. The nature of the 
cations and their distribution, related to the synthesis 
conditions and to the distribution of counter anions 
between the layers, greatly influence the magnetic 
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CuPcTS0@Co (red), CoPcTS0@Co (blue), and NiPcTS0@Co (green). Right: thermal variation of the X band EPR spectrum of CuPcTS0@Co. 
Adapted with permission from [101]. Copyright 2014 American Chemical Society.
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properties [147]. In the present case of LSH, however, all 
cations remain divalent.

The particular reactivity of salen sulfonate com-
plexes was explained by the inductive attractor effect of 
the sulfonates, which destabilizes the complex. This phe-
nomenon could be circumvented by the use of similar 
complexes but with carboxylate functions. In this case, 
hybrid compounds were obtained with Mn, Fe, Co, Ni, 
Cu, and Al complexes without cation exchange [148]. 
Furthermore, while the magnetic ordering temperatures 
do not vary with the metal complexed by the sulfonate 
ligands, metal was found to have a significant influence 
when complexed by carboxylate ligands. The carboxylate 
moieties transmit better the exchange interaction to the 
functionalized hydroxide layers. Varying the nature of the 
metal complex that is inserted opens thus interesting per-
spectives in modulating either magnetic or optical prop-
erties (luminescence or nonlinear optical chirality) of the 
hybrid compounds formed.

Another approach consisted in grafting robust 
macrocyclic complexes, namely, phthalocyanine tet-
rasulfonates MPc, M = Cu, Co, Ni (Figure 22) [101, 
140]. A detailed study of the synthesis process helped 
to better understand the exchange reactions with 
the identification of co-inserted phases. Again, 
the indirect pathway starting from the pre-interca-
lated structures Cu2(OH)3(DS) and Co2(OH)3(DS0)·H2O 

(DS = dodecyl-sulfate, DS0 = dodecyl-sulfonate) proved 
to be relevant for functionalizing hybrid compounds 
showing good crystallinity. The formula of the final prod-
ucts was M2(OH)4-4x(M′PcTS0)x·y H2O (with M = Co(II) or 
Cu(II), M′ = Co(II), Ni(II), or Cu(II), 0.1 < x < 0.2 and 2 < y < 3). 
The cobalt compounds, noted MPcTS0@Co, have a ferri-
magnetic behavior (Figure 22) with ordering temperatures 
of 5.8, 6.8, and 7.8  K for the compounds functionalized 
by the Co, Ni, and Cu phthalocyanine, respectively. The 
ordering temperature is changed with respect to that of 
the unsubstituted compound, TN = 19.5  K. Electron para-
magnetic resonance (EPR) spectroscopy was used to 
follow the shift of the EPR signal of the copper phthalo-
cyanine inserted into cobalt hydroxide, as a function of 
temperature. This shift reflects the evolution of the inter-
nal dipole field arising from the increase in the magnetic 
correlation length within the cobalt layers [101]. Thanks 
to a precise X-band and Q-band EPR study, the value of a 
purely dipolar internal field developing in between mag-
netic layered simple hydroxides was determined from the 
shift of g⊥ between 90 and 5  K: Bdipolar≈30  mT. A similar 
feature was also observed in the case of CuPcTS0 inserted 
into the ferromagnetic NiAl-LDH [149]. In that case, 
however, it is likely that the too low resolution of X-band 
EPR spectroscopy prevented the precise study of the evo-
lution of the parallel and perpendicular components of 
the transition. These results reinforce the validity of the 

x

z

y

z

Figure 23: Hydrogen bonding network in the ac plane (left) and perpendicular view to the helical pathway between water molecules and 
ammonia according to [010] (right). The hydrogen atoms are omitted. Reprinted with permission from [167]. Copyright 2008 American 
Chemical Society.
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interplanar dipole interaction model proposed by Drillon 
and Panissod [100].

In addition to magnetism or electronic aspects of these 
multilayer hybrid systems, additional properties can be 
explored to be brought by this functionalization, such as 
conductivity, luminescence, redox properties, or catalysis.

3.3  �Structuring and functionalization of 
solid

Let us look further at the nanostructuring of functional 
solids (platelet-like nanoparticles) by molecules having 
optical, electronic, or self-assembly properties. The 
main challenge is to help in the design by chemical 
pathways of new multifunctional nanomaterials provid-
ing opportunities, for example, in the field of sensors 
or imaging [46, 150–155]. Thus, inorganic, supramolecu-
lar, or biomimetic systems were inserted within lamel-
lar hydroxide-based hybrids [46, 153, 156–159]. Here, it 
is important to evaluate the effect of confinement on the 
structure or properties of the inserted compounds and 
their sensitivity to external stimuli. To generalize our 
approach to the integration of the most diverse systems 
in lamellar structures, new synthetic routes have been 
developed.

3.3.1  �Synthesis and grafting of peptides in the lamellar 
hydroxides

Biological or bio-related molecules can be used to con-
struct supramolecular assemblies or coordination net-
works [129, 160–164]. These include the “Metal Peptide 
Frameworks” (MPFs) [165–168], initially reported by 
Taubert et al. and Marsh et al. [165]. In MPFs, the metal 
ions are coordinated by the carboxylate functions of short 
peptides organized under the influence of supramolecu-
lar interactions (H-bonding, hydrophobic-hydrophobic) 
shown in Figure 23 [167].

Since the pioneering works, the porosity and con-
nectivity of the metal framework was improved by using 
short peptides [166, 168]. Yet, the metal centers are usually 
diluted in MPFs, and magnetic interactions are weak, 
especially in the case of oligopeptide-based frameworks 
as shown in Figure 23. We have, therefore, undertaken to 
stabilize a peptide assembly between the layers of tran-
sition metal hydroxides forming an expanded magnetic 
array. New hybrid materials were synthesized by grafting 
synthetic peptides in the interlayer space of Cu(II) and 
Co(II) simple lamellar hydroxides (LSH) [44]. Our results 
are summarized in Figure 24.

To recapitulate the main results, the interplane dis-
tance of the hybrids obtained depends on the length of 

Figure 24: Carboxylate grafted peptides in lamellar hydroxides; structure and physicochemical properties.
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the peptide chain; this dependency is specific for the com-
pounds with copper or cobalt, which suggests a metal-
dependent interaction of the peptides with the inorganic 
layers. When tyrosine is present in the oligopeptide, its 
fluorescence is quenched after grafting into the hybrid 
structure. Studies of the fluorescence as a function of 
pH indicate deprotonation of the tyrosine functions into 
tyrosinate at high pH. This deprotonation is accompanied 
by the appearance of fluorescence. The luminescence 
increases with the concentration of OH- ions. Thus, the 
hybrid acts as a stable chemical sensor in a basic medium. 
Moreover, the variation of the luminescence with pH 
indicates that the tyrosine functions located inside the 
interlayer space are accessible to the ions present in the 
solution. In addition, the presence of peptides influences 
the magnetic properties. Copper-based compounds have 
an antiferromagnetic behavior; those based on cobalt are 
ferrimagnetic.

3.3.2  �Development of new synthetic routes by post-
functionalization of hydroxides

The chemical and structural versatility of the layered 
simple hydroxides allows to envisage the insertion grafting 
of many types of functional molecules or metal complexes. 
Conceptually, several pathways have been opened such 
that the insertion grafting of transition metal complexes 
which is really promising for generating multifunctional-
ity. Many properties can be exploited such as conductivity, 
luminescence, chirality, magnetism, electroactivity cata-
lyst, etc. Moreover, these features can be easily modulated 
by modifying the host species. However, the insertion 
and grafting of diverse chemical species is not trivial. The 

above results have shown, in particular, that the stability 
of the inserted species toward that of the host matrix, in 
the appropriate reaction conditions, is a limiting factor 
for the anion exchange reactions. Therefore, it is neces-
sary to focus on developing new approaches. Particularly 
post-functionalization or in situ molecular synthesis is 
appealing. This approach consists in pre-grafting simple 
molecules providing reaction sites on which it is possible 
to build the entire molecule one wills to graft onto the 
inorganic host. This postsynthesis modification strategy 
has been developed for many metal organic frameworks, 
[169] or mesoporous silica [170]. To our knowledge, it has 
been little used for layered materials.

Recently, we were able to show the validity of the 
postsynthesis modification approach by synthesizing an 
organic molecule in situ, that is to say in the interlayer 
space of the hydroxide hosts [171]. To this end, we func-
tionalized the interlamellar space of a cobalt hydroxide 
with para-aminobenzoic acid. We tried to use the amine, a 
priori free in the interlamellar space, for reaction with ali-
phatic and aromatic aldehydes. However, to our surprise, 
the “classical” reaction conditions – reaction to reflux in 
dry methanol or ethanol or in dry toluene with a Dean-
Stark setup to drive the water formed and thus shift the 
equilibrium – do not allow the post-functionalization of 
the compound. Moreover, conventional heating in solvo-
thermal conditions led to a degradation of the compound. 
We then used less conventional heating methods. Hence, 
the microwave activation has led to the desired result, 
namely, the postsynthesis modification of the starting 
compound. The general outline of the strategy followed is 
given in Figure 25.

This approach represents a promising new strategy 
for the functionalization of lamellar structures.

Co2(OH)3(OAc)·H2O
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Figure 25: Scheme of the postsynthesis modification strategy in lamellar hydroxides (left) and specific examples obtained (right) [171].
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4  Conclusions
In recent years, a true engineering of multifunctional 
hybrid compounds was born, and the development of 
hybrid lamellar magnetic model compounds, by hydro-
thermal or anion exchange reaction, is an example. A 
significant part of this activity is the study of the mag-
netic behavior of transition metal compounds with a 
particular emphasis on the effects of anisotropy (spin-
orbit coupling, structural anisotropy), dimensionality, 
and the coupling between magnetic and optical prop-
erties (luminescence, chirality). In these current devel-
opments, it comes to suggest hybrid systems whose 
properties are controlled by the choice of suitable 
organic, organometallic, and inorganic bricks. Transi-
tion metal-layered hydroxides have been functionalized 
with photoactive or photoreactive molecules. This was 
possible due to the chemical and structural flexibility 
of hydroxides. A significant breakthrough was the inser-
tion of transition metal complexes. Besides the chemi-
cal challenge, which was pointed, this gives access to 
multilayer magnetic subnetworks with multiplet levels 
sensitive to internal magnetic field, to optical properties 
involving long-lasting excited states, and this allows an 
opening to other properties such as catalysis or elec-
trochemistry. Remarkable results are the change in the 
luminescence of OPV by magnetic ordering and the 
chirality transfer obtained with the chiral Schiff base 
complexes.

The most recent work has focused on the develop-
ment of anion exchange as a synthetic route. This way 
is relatively versatile, and we could get multifunctional 
compounds with organic or organometallic magnetic, 
fluorescent chiral, or bio-inspired anions. The coupling 
between properties is at the heart of our current con-
cerns. Results regarding the coupling between magnetic 
and optical properties, including fluorescence or chiral-
ity, were obtained. In the case of hydroxides function-
alized with oligopeptides, we studied the effect of the 
presence of redox and fluorescent groups as well as the 
nature of the pendant chains on the overall properties of 
the final hybrid material. Some rules may be enounced 
for the synergy occurs between magnetism and optical 
property. Pertinent parameters are the grafting mode, 
the luminescence efficiency, λabs/λem, and life time of the 
excited state. This approach to the bifunctional materials 
is advantageous as the grafting of photoactive molecules 
in a crystalline structure provides an organized array 
of molecules capable of creating a cooperative effect. 
Complex or organic molecules may play a structural role 

or act as an electronic coupler (conjugated systems), and 
the existence of an iono-covalent bond between subnet-
works promotes synergy between the properties of each 
entity.

We examined the adaptability of these systems to 
physical or chemical external factors. A study under pres-
sure demonstrated the existence of competing magnetic 
interactions within the metal(II) layers. The balance 
between interactions can be modulated by structural 
deformation inducing a drastic change in magnetic 
behavior. For the chemical aspect, the grafting of syn-
thetic oligopeptides in layered transition metal hydrox-
ides is particularly instructive. The resulting hybrid 
materials combine magnetism and fluorescence. This 
result opens the possibility of the use of our systems. 
Indeed, hydrophobic interactions in the supramolecular 
assemblies can modulate the properties, especially the 
magnetic properties, of layered systems. In addition, by 
grafting luminescent peptides as YVVL, pH sensors can 
be obtained. It is important to note here that the reactiv-
ity of tyrosine in confined interlayer space demonstrated 
the accessibility of the functions confined to external 
species present in solution. The field is not limited to 
transition metal hydroxides. Actually, layered lanthanide 
hydroxides are also appealing for providing magnetic 
layers with strong anisotropy effects [172, 173]. At present, 
new synthetic methods are being explored to expand the 
scope of the functionalization of lamellar structures or 
nanosheets. The goal is designing new complex adaptive 
systems. In particular, exfoliation and re-stacking pro-
cesses are very appealing to provide new layered devices 
with possible application in a wide range of domains as 
electronics, energy, coatings, photocatalysis, or envi-
ronment [24, 36, 39–42, 45, 151, 174–185]. In all cases, 
the hybrid interfaces between components is of crucial 
importance for the control of the properties. We hope 
that the knowledge gained with model materials such as 
hydroxides will help to progress faster in the realization 
of unprecedented devices.
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