Research highlight

Rajesh Kumar, Shashi Kant Shukla, Anand Pandey, Sanjeev Kumar Srivastava and Anupam Dikshit*

Copper oxide nanoparticles: an antidermatophytic agent for *Trichophyton* spp.

DOI 10.1515/ntrev-2015-0010 Received February 19, 2015; accepted April 10, 2015; previously published online August 22, 2015

Abstract: Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Keywords: antimicrobial agent; broth microdilution method; SEM; *Trichophyton*; XRD.

Sanjeev Kumar Srivastava: Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore-560012, India

1 Introduction

Nanoparticles (NPs) have been extensively studied over the last decade due to their characteristic physical, chemical, electronic, electrical, mechanical, magnetic, thermal, dielectric, optical and biological properties [1, 2]. Therefore, they may be considered as building blocks of the next generation of technology with applications in many industrial sectors. In particular, NPs are also receiving increasing attention in a large variety of applications in medical science [3, 4]. The oxides of transition metals are a group of important semiconductors, which have applications in magnetic storage media, solar energy transformation, electronics, gas sensors and catalysis [5-8]. Metal oxide NPs are of great interest because of their unique optical, electronic and magnetic properties. Apart from NPs of the other transition metal oxides, copper oxide (CuO) NPs are of special interest because of their efficiency as nanofluids in heat transfer application. For example, it has been reported that a 4% addition of CuO improves the thermal conductivity of water by 20% [9].

The prevalence of superficial dermatophytic infections have increased to an alarming level in the last few years; such that skin mycoses now affects more than 20% world's population [10]. Dermatophytes are a group of keratinophilic fungi that can infect keratinized tissues of humans and animals such as skin, hair and nails, causing dermatophytosis [11]. The predominant agent of dermatophytoses is Trichophyton followed by Epidermophyton and Microsporum. Within the genus Trichophyton, T. rubrum is the most dominant etiological agent accounting for more than 65% of infections followed by T. mentagrophytes, T. verrucosum and T. tonsurans [12]. It is difficult to control dermatophytes because they have developed resistance to many conventional antidermatophytic agents having an azole group. To overcome this resistance, numerous methods have been employed to control or prevent the growth of fungal cells by the involvement of synthetic as well as herbal antifungal agents [13, 14]. Recently, nanomaterials

^{*}Corresponding author: Anupam Dikshit, Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India, e-mail: anupambplau@rediffmail.com Rajesh Kumar, Shashi Kant Shukla and Anand Pandey: Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India

have attracted attention due to their unique physical and chemical properties which differ significantly from their conventional counterparts [15, 16]. Among them, metal and metal oxide nanomaterials are among the most highly produced nanomaterials; their available applications include catalysis, sensors, and environmental remediation and personal care products [17].

In the present investigation, the CuO NPs were synthesized using a chemical method and the product was structurally characterized with the aid of a scanning electron microscope and an X-ray diffractometer. Further, these NPs were tested against two predominant dermatophytic species, i.e. *T. mentagrophytes* and *T. rubrum* using the Clinical and Laboratory Standards Institute (CLSI) recommended broth microdilution antifungal susceptibility method [18].

2 Materials and methods

2.1 Synthesis of CuO NPs

The four-step preparation scheme for CuO NPs was carried out by modification of a method described by of Dang et al. [19], which starts with dissolving copper (II) sulfate pentahydrate (CuSO, ·5H, O, 0.01 M), salt, in deionized water to obtain a blue solution. Next, polyethylene glycol 6000, (PEG 6000, 0.02 M) was dissolved in water and added to the aqueous solution containing the copper salt while vigorously stirring. In this step, the solution changed from blue to white. In the third step, ascorbic acid (0.02 M) and sodium hydroxide (NaOH, 0.1 M) were dissolved in water and added to the synthesis solution. Color change occurred in the aqueous phase from white to yellow. Finally, a solution of sodium borohydride (NaBH $_{^{\Lambda}}$, 0.1 M) in deionized water was prepared and added to the solution under continuous rapid stirring. An instant color change occurred in the aqueous phase from yellow to blackish brown. The appearance of this dark color indicates the onset of the reduction

reaction. The source of electrons for the reaction was BH... The mixture was further stirred rapidly for around 10 min in ambient atmosphere, to allow the reaction to complete. Stable aqueous dispersions of CuO NPs (50 mg/ml) were used as stock solution by dispersing 50 mg/ml of CuO NPs in double distilled water through ultrasonication. All the chemicals utilized were of analytical grade and procured from Himedia, India.

2.2 Characterization studies

The average size of NPs was determined using photon correlation spectroscopy (Brookhaven Instruments, USA). The morphology of CuO NPs was characterized using scanning electron microscopy (SEM) (Zeiss Ultra SEM, Germany), operated at an accelerating voltage of 5 kV. For SEM, a small amount of synthesized NP powder was placed on a silicon grid and kept desiccating for 72 h, allowing the moisture to evaporate. Further, the crystalline nature of prepared CuO NPs was observed using a powder X-ray diffractometer (Rigaku-Smartlab X-ray Diffractometer, Japan) using CuKα radiation, at 40 keV in the two theta ranges of 10°-80°. In addition, to find out the impact of CuO NPs on the mycelium of dominant T. rubrum, SEM studies were also performed at the National Centre of Experimental Mineralogy and Petrology, University of Allahabad, Allahabad, India using an electron probe microanalyzer (JXA8100, JEOL, Japan).

2.3 Selection of test pathogens

Different symptoms generated by dermatophytes were seen in some patients (Figure 1); they are all caused by *Tri*chophyton, Microsporum and Epidermatophyton, but since Trichophyton genus is most prevalent regarding dermatophytoses, we selected it for further studies.

Two species of Trichophyton genus were selected for this study (Figure 2). Both of the species were procured

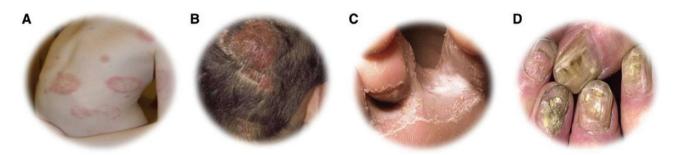


Figure 1: Different forms of dermatophytoses: (A) Tinea corporis, (B) Tinea capitis, (C) Tinea pedis, (D) Tinea unguium.

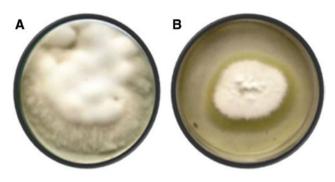


Figure 2: Cultures of dermatophytes on Sabouraud dextrose agar (SDA) medium: (A) Trichophyton mentagrophytes, (B) Trichophyton rubrum.

from the Microbial Type Culture Collection (MTCC), Chandigarh, India. Trichophyton rubrum (MTCC 296) and T. mentagrophytes (MTCC7687) were tested in vitro to evaluate the antidermatophytic activity of CuO NPs. These strains were recultured on Sabouraud dextrose agar medium, supplemented with 0.05% streptomycin, in Petri dishes and incubated at 30°C for 7 days. The isolates were again cultured in Petri dishes and incubated for another 5-7 days at 32°C.

2.4 Antidermatophytic susceptibility testing assav

A broth microdilution protocol was performed according to CLSI guidelines in flat bottom 96-well microtiter plates. Here, RPMI 1640 medium (with L-glutamine but without sodium bicarbonate, GIBCO BRL, Life Technologies, Woerden, The Netherlands) buffered to pH 7.0 with 0.165 M 3-N-morpholinopropanesulfonic acid (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was used as assay medium for viability of dermal pathogens. Seven-day-old cultures of each pathogen were collected with an inoculating needle and suspended in sterile saline containing 0.1% of Tween 80. After allowing heavier particles to settle down, cells (with spores) were transferred to 5 ml of RPMI1640, followed by preparation of final inoculum density.

The turbidity of the full growing fungal suspension was compared and matched with the turbidity of 0.5 McFarland units. The McFarland 0.5 standard corresponds approximately to a homogeneous suspension of 1.5×106 cells/ml. An amount of 100 µl of medium was transferred to each well, followed by 90 µl and 80 µl of medium in each well of Column 3 and Column 4, respectively. Then, 10 μl and 20 µl of CuO NPs suspension was added in each well of Column 3 and Column 4, respectively. Serial dilutions were performed from Column 4 to Column 11, to obtain the final NPs concentrations, which varied from 2.5 mg/ml (4th well) to 0.020 mg/ml (11th well). Fungal inoculum of 100 µl was added to each well except all wells of Column 2 and Column 3, making the final volume of 200 µl. NPs free well (Column 12) containing medium and inoculum served as a growth control. Column 1 which contained medium, inoculum and formaldehyde, served as a negative control. Column 2 served as medium control and Column 3 served as the drug control containing 200 µl medium and 190 µl medium with 10 µl of drug, respectively (Figure 3).

2.5 Quantification assay for growth of pathogens

After inoculation, the microtiter plates were kept in a wet chamber and incubated for growth of pathogens at 37°C inside a B.O.D. incubator. The optical density (OD_{530 nm}) was recorded spectrophotometrically periodically at 24 h, 48 h and 72 h (3 times). After the first 24 h of incubation inside the plate reader, incubation of the microtiter plates was continued under the same conditions in same incubator. The changes in ODs over concentration of NPs were used to generate growth inhibition curves at each concentration.

2.6 Determination of minimum inhibitory concentrations (MICs)

The minimum inhibitory concentrations (MICs) were determined visually and spectrophotometrically after the abovementioned incubation periods for each species according to the CLSI guidelines. For CuO NPs, the MIC was determined as the lowest NP concentration showing

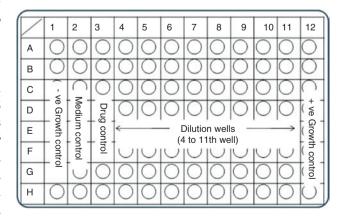


Figure 3: Ninety-six well microtiter plate with designed broth microdilution protocol.

absence of growth visually or 80% growth inhibition compared with the growth in the drug-free well. The 50% growth inhibition compared to the growth in the drug-free well was determined as IC_{50} .

3 Results and discussion

3.1 Characterization studies

The morphology of CuO NPs was examined under SEM (at 100 KX) (Figure 4A), and demonstrated that a bulk quantity of bunches of nanorods were present. These particles were closely packed with radiating structures in nanometric scale. The picture confirms the formation of NPs and substantiates approximate rod-shaped or flower-shaped NPs when aggregated in clusters. The X-ray diffraction (XRD) pattern of the powder was studied with the diffraction angle 20°-80° (Figure 4B). No other characteristic impurities peaks were present, which also confirmed that the product obtained was in the pure phase. When samples were compared, XRD spectra showed strong diffraction peaks at 35.9, 39.1 20 which corresponds to (002), (111) crystal planes and indexed crystalline structure of CuO NPs. However, the average particle size of CuO NPs was found to be 160 nm by a Zetasizer.

3.2 Antifungal susceptibility assay

The antifungal activity of NPs of CuO was quantitatively assessed by observing OD at 530 nm (OD_{530} , Figure 4) for determining the MICs as well as IC_{50} values after

incubation of 24 h, 48 h and 72 h, but since good growth inhibition was observed after 48 h, this was taken as standard in the present investigation (Figure 5). The colloidal suspension of CuO NPs showed broad spectrum antifungal activity. The CuO NPs generated very good values of antidermatophytic activity in the form of MICs (mg/ml) (Table 1) against both of the pathogens, i.e. T. mentagrophytes (MIC 1.78, IC₅₀ 0.65 mg/ml) T. rubrum, (MIC 2.19, IC₅₀ 1.08 mg/ml). Sertaconazole, used as synthetic standard, showed inhibitory effects on both tested dermatophytes (0.733 mg/ml, 0.867 mg/ml, against T. mentagrophytes and T. rubrum, respectively); however, due to a high incidence of disease reoccurrence and other side effects such as itching, burning, etc., this cannot be used as a permanent solution as compared to CuO NPs, which might be proven to be more acceptable topically and safe (Figure 6). A scanning electron micrograph exhibited morphological deformity, ultimately lysis in the mycelium of T. rubrum-treated (4 h) CuO NPs. By contrast, untreated T. rubrum mycelium was found to be normal with microconidia (Figure 7A and B). The study also suggests that the dermatophytic population was decreased with an increased treatment concentration. Based on these results, it can be concluded that these synthesized CuO NPs had significant antifungal actions on both of the species, which may be attributed to the greater abundance of amines and carboxyl groups on their cell surface and greater affinity of copper ions toward these groups [20]. CuO NPs show efficient action due to their extremely large surface area, which provides better contact with pathogens. Copper ions released subsequently may bind with DNA molecules and lead to disorder of the helical structure by cross-linking within and between the nucleic acid strands, resulting in the lysis of dermatophytic cells

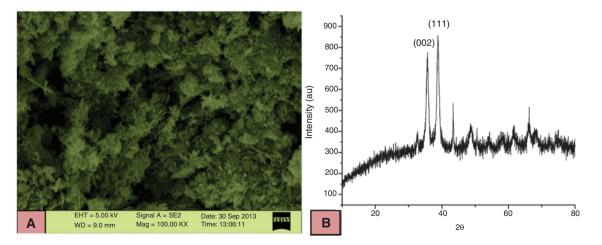


Figure 4: (A) Scanning electron microscopy (SEM) micrograph of CuO nanoparticles (NPs) at 100.00 KX; (B) X-ray diffraction pattern of CuO NPs.

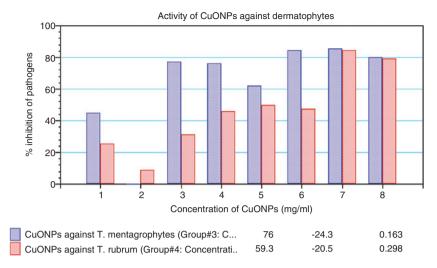


Figure 5: Graphical representation of antifungal susceptibility of dermatophytes against CuO nanoparticles (NPs).

Table 1: Antidermatophytic activities of CuO nanoparticles (NPs) and sertaconazole against dermatophytes (mg/ml).

Pathogen	CuO NPs MIC	Sertaconazole MIC
Trichophyton rubrum	2.19	0.867

MIC, minimum inhibitory concentration.

[21, 22]. It has been also reported that copper ions penetrate inside cells and also disrupt biochemical processes [23]. The exact mechanism behind this is not known and needs to be studied further.

The greater the size of the NPs (more than 30 nm) the safer they are for human health, as they will not enter the bloodstream through skin when applied with a lotion

or a cream-based product. No study has reported that NPs >30 nm can penetrate human skin, whereas chemical ingredients of sunscreen, which are molecular in size and thus significantly smaller than NPs, are designed to be absorbed into the skin and therefore can get into the blood. The biggest concern with NPs in cosmetics is the threat of inhalation when they are used in powders and sprays; this is not a matter of concern with CuO NPs as they will be dispersed in cream or lotion [24].

With the view to reducing the cost of experimentation for analyzing the variability in MICs against CuO NPs, different dermatophytes were exposed to phylogenetic analysis. To explain the susceptibility of pathogens, these species were analyzed using ClustalW and bootstrapping NJ plotting using MEGA 4 (Version 4.0.1). Broad phylogenetic trees of various dermatophytic strains were found homologous in the *BlastX* search of chitin synthase gene

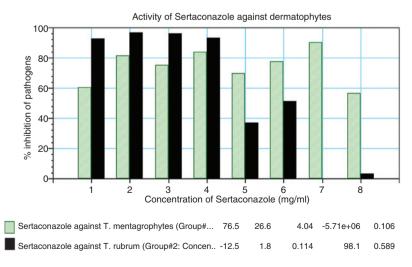


Figure 6: Graphical representation of antifungal susceptibility of dermatophytes against sertaconazole.

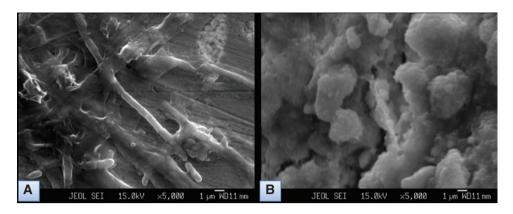
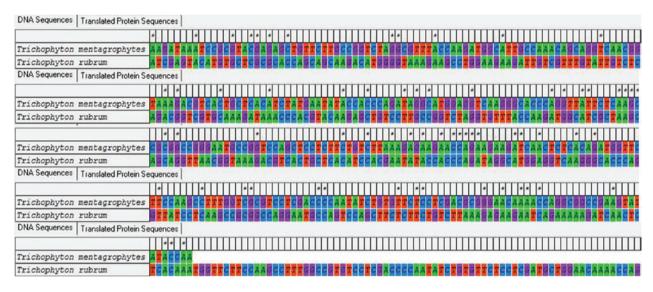



Figure 7: Scanning electron micrograph of: (A) normal, (B) lysed mycelium of *Trichophyton rubrum*.

Figure 8: Alignment of the chitin synthase gene 1 (*chs* gene 1) of *Trichophyton mentagrophytes* and *Trichophyton rubrum* by the bootstrapped ClustalW program in MEGA 4 and its phylogenetic tree constructed using the sequences of (*chs* gene 1) by the bootstrapped N-J plot used for the antifungal susceptibility test (sequences of the strains were obtained from NCBI database).

(chs gene 1). The gene alignment and protein sequences of chs gene 1 extracted from NCBI blast have shown homology in sequences (Figures 8 and 9) and greater confidence levels in the 1000 bootstrapped N-J plot. From the phylogenetic analysis it was evident that T. mentagrophytes and T. rubrum are far apart in the alignment tree, which may be a factor responsible for their sensitivity against NPs. In the phylogenetic tree the two pathogens, i.e. T. rubrum and T. mentagrophytes, lie far apart, yet the NPs were active against them. It is concluded that pathogens aligned between these two would also be susceptible to CuO NPs according to their alignment in the tree, thereby reducing the cost of experimentation. Moreover, T. rubrum is aligned in the bottom of the tree, showing its less evolved characters during the course of evolution; it is thus less susceptible to NPs.

4 Conclusions

Turbidimetry is a rapid, accurate and quantitative method for monitoring the growth of dermatophytic fungi which is based on the CLSI recommended broth microdilution method. The study has opened a wide channel for exploring the sophisticated nanotechnological tools in developing novel antifungal agents. The treatment with chemically synthesized CuO resulted in lysis of dermatophytic cells. The prediction of the susceptibility of the pathogenic dermatophytes towards active NPs based on their phylogenetic position is a novel approach. Further, the present findings strongly support the potential of the CuO NPs as a useful cosmeceutical and can be used in developing effective formulations against dermatophytoses, after successful topical testing in collaboration of

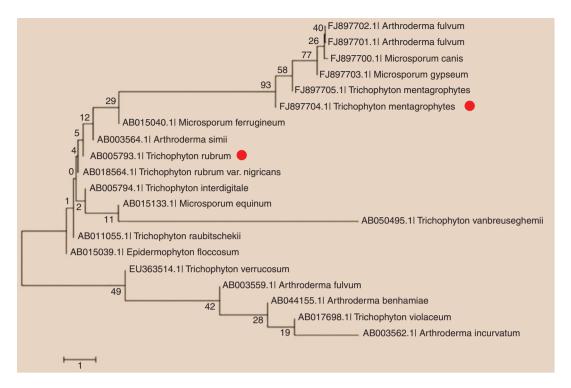


Figure 9: Molecular phylogenetic tree constructed using the sequences of chitin synthase gene 1 (chs gene 1) of available strains of the some pathogenic fungi (ClustalW 1.6 alignment). The number of branch points represents the percentage of 1000 bootstrapped datasheets showing specific internal branches.

Dr. A.K. Bajaj, former head of the dermatology department of Moti Lal Nehru Medical College, Allahabad, India, which is in progress.

Acknowledgments: Thanks are due to the Head, Department of Botany, University of Allahabad, Department of Science and Technology, New Delhi, India for providing the research facilities; Dr. V Sai Muthu Kumar of the Physics Department of Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India for his valuable discussions and suggestions; University Grant Commission for financial support and Indian Institute of Sciences, Bangalore for characterization of nanoparticles.

References

- [1] Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties, and applications towards biology, catalysis and nanotechnology. Chem. Rev. 2004, 104, 293-346.
- [2] Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265-275.
- [3] Mishra AK, Pandey H, Agarwal V, Ramteke PW, Pandey AC. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. J. Nanopart. Res. 2014, 16, 1-10.

- [4] Mishra SB, Pandey H, Pandey AC. Nanosuspension of Phyllanthus amarus extract for improving oral bioavailability and prevention of paracetamol induced hepatotoxicity in Sprague-Dawley rats. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4, 035007 (6pp).
- [5] Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 101-116.
- [6] Jani AMM, Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636-704.
- [7] Montferrand CD, Huc L, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater. 2013, 9, 6150-6157.
- [8] Ahmadi SJ, Outokesh M, Hosseinpour M, Mousavand T. A simple granulation technique for preparing high-porosity nano copper oxide (II) catalyst beads. Particuology 2011, 9, 480-485.
- [9] Lee S, Choi US, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 1999, 121, 280-289.
- [10] Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51(Suppl. 4), 2-15.
- Dobrowolska A, Paweł SC, Kaszuba A, Kozłowska M. PCR-RFLP analysis of the dermatophytes isolated from patients in Central Poland. J. Dermat. Sci. 2006, 42, 71-74.
- [12] Chen BK, Friedlander SF. Tinea capitis update: a continuing conflict with an old adversary. Curr. Opin. Pediatr. 2001, 13, 331-335.

- [13] Pandey A, Mishra RK, Tiwari AK, Kumar A, Bajaj AK, Dikshit A. Management of cosmetic embarrassment caused by Malassezia spp. With Fruticose lichen Cladia using phylogenetic approach. BioMed. Res. Int. 2013, 2013, 8 pages.
- [14] Stoimenov PK, Klinger RL, Marchin GL, Klabunde JS. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679-6686.
- [15] Pandey H, Parashar V, Parashar R, Prakash, R, Ramteke PW, Pandey AC. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 2011, 3, 4104-4108.
- [16] Kumar C, Ed., Nanomaterials: Toxicity, Health, and Environmental Issues Nanotechnologies for the LifeSciences, Wiley-VHC: Weinheim, Germany, 2005, Vol 5.
- [17] Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 2008, 18, 1482-1484.
- [18] CLSI, "Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard," CLSI Document M27-A3, CLSI, Wayne, Pa, USA, 2008, 3rd ed.
- [19] Dang TMD, Le TTT, Fribourg-Blanc E, Mau CD. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2, 015009 (6pp).
- [20] Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876-887.
- [21] Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms. J. Appl. Microbiol. 2012, 114, 1175-1183.
- [22] Bagchi B, Dey S, Bhandary S, Das S, Bhattacharya A, Basu R, Nandy P. Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates. Mater. Sci. Eng. 2012, 32, 1897-1905.
- [23] Kim JH, Cho H, Ryu SE, Choi MU Effects of metals ions on the activity of protein tyrosine phosphate VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch. Biochem. Biophys. 2000, 382, 72-80.
- [24] Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2002, 2012, 26 pages.

Bionotes

Rajesh Kumar Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India

Rajesh Kumar is currently working as a Senior Research Fellow (upgraded from CSIR-JRF), in the Biological Product Laboratory

Department of Botany, University of Allahabad, India, under the supervision of Professor Anupam Dikshit FNASc on the topic "Studies on Controlled Delivery of Plant based Antimicrobials using Nanomaterials", he has expertise in culturing and isolation of genetic material of microbes and in handling of instruments like rotary evaporator, Clevenger apparatus, Spectramax (384 plus), reverse transcription polymerase chain reaction (RT PCR), Uv-Vis spectrophotometer, shaker incubator, ultrasonicator, etc. He has three publications to his credit including one book, one book chapter and one journal paper.

Shashi Kant Shukla Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India

Shashi Kant Shukla received his MSc in Botany from the University of Allahabad, India in 2011. He is currently perusing his doctoral research under the able guidance of Professor Anupam Dikshit FNASc, Biological Product Laboratory, Head, Department of Botany, University of Allahabad, Allahabad, India. His research interest includes the different aspects of PGPR and synthesis, fundamental properties and interactive study of nanomaterials with plant growth promoting rhizobacteria (PGPR). He is well versed in handling scanning electron microscopy (SEM), transmission electron microscopy (TEM), real-time PCR, gel-documentation system, UV-Vis absorption spectroscopy, molecular techniques such as the broth microdilution assay recommended by the Clinical and Laboratory Standards Institute (CLSI), using Spectramax Plus 384, isolation and characterization of PGPR from rhizospheric soil, biosynthesis of nanoparticles (NPs) and DNA/RNA extraction.

Anand Pandey Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India

Anand Pandey obtained his DPhil in 2014, at the University of Allahabad, India. His research work mainly focused on medicinal and aromatic plants, especially the lichens of India with bioprospective values, including antibacterial, antifungal and antioxidant properties of lichens. He is well versed in classical and modern antimicrobial assays such as CLSI broth microdilution assay. Dr. Pandey also worked on the successful culture of lichens. He has published four international and two national research papers, authored five book chapters and three conference proceedings. Moreover, he has been awarded three times at conferences/seminars for his research work presentation.

Sanjeev Kumar Srivastava Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore-560012, India

Sanjeev Kumar Srivastava obtained his PhD, in Polymer Nanocomposites at the Instrument Design Development Centre, IIT Delhi, India. He has been the Technology Manager at the Centre for Nano Science and Engineering, IISc Bangalore, India since March 2012. Dr. Srivastava is also a member of the Society of Scientific Value, Delhi. He has published 15 research papers in international and national journals, including Polymer, Nature, and the Journal of Nano Research. He is coordinator for Indian Nanoelectronics User Program (INUP) of the Department of Electronics and Information Technology (MCIT) Government of India which provides hands on training to external academic researchers. He is associated with about 150 organizations of India through the INUP.

Anupam Dikshit Biological Product Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India, anupambplau@rediffmail.com

Anupam Dikshit, FNASc, Head, Department of Botany, Co-ordinator Environmental Sciences, University of Allahabad, India, has a number of international patents and awards for developing various biological products for agricultural and human health after visiting the UK, USA and Germany. He is currently using molecular, nanotechnological and bioinformatical tools. In addition, he has a visiting Professorship in Sri Sathya Sai Institute of Higher Learning (SSSIHL), Prasanthi Nilayam and Visva Bharati, Santiniketan. He has delivered lectures as a Resource person in different states and Central Universities of India. Professor Dikshit has more than 100 publications in national and international journals. He has guided one DSc and 19 DPhil students.