Home Chemical modification of kraft lignin using black liquor heat treatment
Article
Licensed
Unlicensed Requires Authentication

Chemical modification of kraft lignin using black liquor heat treatment

  • Iara Fontes Demuner , Fernando José Borges Gomes ORCID logo EMAIL logo , Marcela Ribeiro Coura , Antonio Jacinto Demuner , Ana Márcia Macedo Ladeira Carvalho , Diana Catalina Cubides-Román , Larisse Aparecida Ribas Batalha and Rosane Nora Castro
Published/Copyright: June 3, 2024
Become an author with De Gruyter Brill

Abstract

Utilizing kraft technical lignin to produce value-added products is one of the obstacles associated with kraft mill work as an operational biorefinery. The objective of this work was to evaluate chemical modification in eucalypt kraft lignin after heat treatment of black liquor. To prove possible structural changes, advanced analytical tools were used, such as pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC/MS), Fourier transform infrared spectroscopy (FTIR), and two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Kraft lignins extracted from heat-treated liquors compared with the untreated liquors showed a high total lignin content, varying between 96.4 and 98.3 %, and a lower content of sugars and ash. Py-GC/MS, FTIR and 2D NMR analyses showed interesting modification on the lignin structure, such as a reduction in S-type and G-type lignin and an increase in H-type and Ca-type lignin with heat treatment of the black liquor. The heat treatment of the black liquor proved to be efficient in the chemical modification of the extracted kraft lignins. Demethylation and demethoxylation reactions occurred and they generated kraft lignin with free phenolic groups and that were rich in catechol groups.


Corresponding author: Fernando José Borges Gomes, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 07, CP. 2682, 1 CEP 2389-0000, Seropédica, RJ, Brazil, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization: Iara Fontes Demuner, Fernando José Borges Gomes, Antonio Jacinto Demuner, Ana Márcia Macedo Ladeira Carvalho. Methodology: Iara Fontes Demuner, Fernando José Borges Gomes, Marcela Ribeiro Coura, Diana Catalina Cubides-Román, Larisse Aparecida Ribas Batalha, Rosane Nora Castro. Formal analysis and investigation: Iara Fontes Demuner, Fernando José Borges Gomes, Marcela Ribeiro Coura, Antonio Jacinto Demuner, Ana Márcia Macedo Ladeira Carvalho. Writing – original draft preparation: Iara Fontes Demuner. Writing – review and editing: Fernando José Borges Gomes, Marcela Ribeiro Coura, Antonio Jacinto Demuner, Ana Márcia Macedo Ladeira Carvalho, Diana Catalina Cubides-Román, Larisse Aparecida Ribas Batalha, Rosane Nora Castro.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Funding provided by the Minas Gerais State Research Foundation (FAPEMIG), from the Brazilian National Council for Science and Technology Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) is greatly appreciated.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Bajwa, D.S., Pourhashem, G., Ullah, A.H., and Bajwa, S.G. (2019). A concise review of current lignin production, applications, products and their environment impact. Ind. Crops Prod. 139: 111526, https://doi.org/10.1016/j.indcrop.2019.111526.Search in Google Scholar

Basu, S., Malik, S., Joshi, G., Gupta, P.K., and Rana, V. (2021). Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: a comprehensive review. Carbohydr. Polym. Technol. Appl. 2: 100050, https://doi.org/10.1016/j.carpta.2021.100050.Search in Google Scholar

Berlin, A. and Balakshin, M. (2014). Industrial lignins: analysis, properties, and applications. In Gupta, V. K., Tuohy, M. G., Kubicek, C. P., Saddler, J., and Xu, F. (Eds). Bioenergy Research: Advances and Applications. Elsevier, Amsterdam, The Netherlands.10.1016/B978-0-444-59561-4.00018-8Search in Google Scholar

Bernhardt, J.J., Rößiger, B., Hahn, T., and Pufky-Heinrich, D. (2021). Kinetic modeling of the continuous hydrothermal base catalyzed depolymerization of pine wood based kraft lignin in pilot scale. Ind. Crops Prod. 159: 113119, https://doi.org/10.1016/j.indcrop.2020.113119.Search in Google Scholar

Boeriu, C.G., Bravo, D., Gosselink, R.J.A., and Van Dam, J.E.G. (2004). Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20: 205–218, https://doi.org/10.1016/j.indcrop.2004.04.022.Search in Google Scholar

Boschetti, W.T.N., Lopes, A.D.C.P., Ribeiro, R.A., Reyes, R.Q., and Carneiro, A.C.O. (2019). Kraft lignin as an additive in pine and eucalyptus particle composition for briquette production. Revista Arvore 43: 1–8, https://doi.org/10.1590/1806-90882019000200001.Search in Google Scholar

Capanema, E.A. and Balakshin, M. (2014). High purity lignin, lignin composition, and higher structured lignin. WO2014/144746 A1.Search in Google Scholar

Crestini, C., Lange, H., Sette, M., and Argyropoulos, D.S. (2017). On the structure of softwood kraft lignin. Green Chem. 19: 4104–4121, https://doi.org/10.1039/c7gc01812f.Search in Google Scholar

da Costa, C.A.E. (2017). Vanillin and syringaldehyde from side streams of pulp and paper industries and biorefineries. Universidade do Porto, Porto.Search in Google Scholar

da Silva, C.E.S., Batalha, L.A.R., Carvalho, A.M., Oliveira, V.B.L.G.O., Carvalho, A.M.M.L., Carneiro, A.C.O., and Gomes, F.J.B. (2022). Evaluation of kraft lignin and residues of sawmill for producing briquettes. Pesqui. Florest. Bras. 42: 1–12, https://doi.org/10.4336/2022.pfb.42e202102186.Search in Google Scholar

de Bhowmick, G., Sarmah, A.K., and Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol. 247: 1144–1154, https://doi.org/10.1016/j.biortech.2017.09.163.Search in Google Scholar PubMed

de Souza, R.E., Gomes, F.J.B., Brito, E.O., Lelis, R.C.C., Batalha, L.A.R., Santos, F.A., and Junior, D.L. (2020). A review on lignin sources and uses. J. Appl. Biotechnol. Bioeng.: 100–105, https://doi.org/10.15406/jabb.2020.07.00222.Search in Google Scholar

Demuner, I.F., Colodette, J.L., Demuner, A.J., and Jardim, C.M. (2019). Biorefinery review: wide-reaching products through kraft lignin. Bioresources 14: 7543–7581, https://doi.org/10.15376/biores.14.3.Demuner.Search in Google Scholar

Demuner, I.F., Gomes, F.J.B., Coura, M.R., Gomes, J.S., Demuner, A.J., Carvalho, A.M.M.L., and Silva, C.M. (2021). Determination of chemical modification of eucalypt kraft lignin after thermal treatment by Py-GC-MS. J. Anal. Appl. Pyrolysis 156: 105158, https://doi.org/10.1016/j.jaap.2021.105158.Search in Google Scholar

Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R., and Xu, C.(Charles) (2020). Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renewable Sustainable Energy Rev. 123: 109768. https://doi.org/10.1016/j.rser.2020.109768.Search in Google Scholar

Faix, O. (1991). Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21–28, https://doi.org/https://doi.org/10.1515/hfsg.1991.45.s1.21.10.1515/hfsg.1991.45.s1.21Search in Google Scholar

Fernández-Costas, C., Gouveia, S., Sanromán, M.A., and Moldes, D. (2014). Structural characterization of kraft lignins from different spent cooking liquors by 1D and 2D nuclear magnetic resonance spectroscopy. Biomass Bioenergy 63: 156–166, https://doi.org/10.1016/j.biombioe.2014.02.020.Search in Google Scholar

Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Gordobil, O., González Alriols, M., and Labidi, J. (2020). Direct lignin depolymerization process from sulfur-free black liquors. Fuel Process. Technol. 197: 106201, https://doi.org/10.1016/j.fuproc.2019.106201.Search in Google Scholar

Gierer, J. (1970). The reactions of lignin during pulping. In: A description and comparison of conventional pulping processes. Svenska Traforskningsinstitutet Stockholm, Stockholm.Search in Google Scholar

Giummarella, N., Pylypchuk, I.V., Sevastyanova, O., and Lawoko, M. (2020). New structures in eucalyptus kraft lignin with complex mechanistic implications. ACS Sustain. Chem. Eng. 8: 10983–10994, https://doi.org/10.1021/acssuschemeng.0c03776.Search in Google Scholar

Gordobil, O., Herrera, R., Poohphajai, F., Sandak, J., and Sandak, A. (2021). Impact of drying process on kraft lignin: lignin-water interaction mechanism study by 2D NIR correlation spectroscopy. J. Mater. Res. Technol. 12: 159–169, https://doi.org/10.1016/j.jmrt.2021.02.080.Search in Google Scholar

Hu, L., Pan, H., Zhou, Y., and Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6: 3515–3525, https://doi.org/10.15376/biores.6.3.3515-3525.Search in Google Scholar

Huang, Y., Wang, L., Chao, Y., Nawawi, D.S., Akiyama, T., Yokoyama, T., and Matsumoto, Y. (2016). Relationships between hemicellulose composition and lignin structure in woods. J. Wood Chem. Technol. 36: 9–15, https://doi.org/10.1080/02773813.2015.1039543.Search in Google Scholar

IBÁ (2022). Cenários Ibá 72-edição. Brazilian Tree Industry. Brasília. Available on: https://iba.org/datafiles/publicacoes/cenarios/72-edicao.pdf. (accessed in May 2024).Search in Google Scholar

Ibrahim, M.N.M., Chuah, S.B., and Rosli, W.D.W. (2004). Characterization of lignin precipitated from the soda black liquor of oil palm empty fruit bunch fibers by various mineral acids. AJSTD 21: 57–67, https://doi.org/https://doi.org/10.29037/ajstd.92.10.29037/ajstd.92Search in Google Scholar

Inwood, P.J.W. (2014). Sulfonation of kraft lignin to water soluble value added products (Master of Science in Environmental Engineering). Lakehead University, Thunder Bay, Canada.Search in Google Scholar

Karthäuser, J., Biziks, V., Mai, C., and Militz, H. (2021). Lignin and lignin-derived compounds for wood applications—a review. Molecules 26: 2–15, https://doi.org/10.3390/molecules26092533.Search in Google Scholar PubMed PubMed Central

Kumar, A., Biswas, B., Jaura, R., Rani, R., Krishna, B.B., and Bhaskar, T. (2023). Structure elucidation of prot, alkali and dealkaline lignin(s) by NMR, FT-IR and Py-GC/MS: effect of solid acid and base catalysts. Sustain. Energy Fuels 7: 1942–1954, https://doi.org/10.1039/d3se00045a.Search in Google Scholar

Lancefield, C.S., Wienk, H.J., Boelens, R., Weckhuysen, B.M., and Bruijnincx, P.C.A. (2018). Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem. Sci. 9: 6348–6360, https://doi.org/10.1039/c8sc02000k.Search in Google Scholar PubMed PubMed Central

Latham, K.G., Matsakas, L., Figueira, J., Rova, U., Christakopoulos, P., and Jansson, S. (2021). Examination of how variations in lignin properties from kraft and organosolv extraction influence the physicochemical characteristics of hydrothermal carbon. J. Anal. Appl. Pyrolysis 155: 105095, https://doi.org/10.1016/j.jaap.2021.105095.Search in Google Scholar

Laurichesse, S. and Avérous, L. (2014). Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39: 1266–1290, https://doi.org/10.1016/j.progpolymsci.2013.11.004.Search in Google Scholar

Leppävuori, J., Wikberg, H., Ohra-aho, T., Liitiä, T., and Kanerva, H. (2017) CatLignin: reactive lignin for wood adhesives. In 19th International Symposium on Wood, Fibre and Pulping Chemistry, Porto Seguro, Brazil. Porto Seguro, Brazil, pp. 137–141.Search in Google Scholar

Li, Z. and Ge, Y. (2011). Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations. J. Braz. Chem. Soc. 22: 1866–1871, https://doi.org/https://doi.org/10.1590/S0103-50532011001000006.10.1590/S0103-50532011001000006Search in Google Scholar

Lin, S.Y., 1992. Commercial spent pulping liquors. In: Dence, C.W., Lin, S.Y. (Eds.). Methods in lignin chemistry. Springer-Verlag, Berlin, pp. 75–80.10.1007/978-3-642-74065-7_6Search in Google Scholar

Lisperguer, J., Perez, P., and Urizar, S. (2009). Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 54, https://doi.org/http://dx.doi.org/10.4067/S0717-97072009000400030.10.4067/S0717-97072009000400030Search in Google Scholar

Luo, H. and Abu-Omar, M.M. (2017). Chemicals from lignin. In: Encyclopedia of sustainable technologies. Elsevier, Ohio, pp. 573–585.10.1016/B978-0-12-409548-9.10235-0Search in Google Scholar

Mainka, H., Täger, O., Körner, E., Hilfert, L., Busse, S., Edelmann, F.T., and Herrmann, A.S. (2015). Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber. J. Mater. Res. Technol. 4: 283–296, https://doi.org/10.1016/j.jmrt.2015.03.004.Search in Google Scholar

Malutan, T., Nicu, R., and Popa, V.I. (2008). Contribution to the study of hydroxymethylation reaction of alkali lignin. BioResources 3: 13–20, https://doi.org/10.15376/biores.3.1.13-20.Search in Google Scholar

Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., and Guan, J.-P. (2018). An overview on the use of lignin and its derivatives in fire retardant polymer systems. In: Lignin – trends and applications. InTech, London, UK..10.5772/intechopen.72963Search in Google Scholar

Melro, E., Filipe, A., Sousa, D., Valente, A.J.M., Romano, A., Antunes, F.E., and Medronho, B. (2020). Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 148: 688–695, https://doi.org/10.1016/j.ijbiomac.2020.01.153.Search in Google Scholar PubMed

Mongkhonsiri, G., Anantpinijwatna, A., Charoensuppanimit, P., Arpornwichanop, A., Gani, R., and Assabumrungrat, S. (2021). Novel biorefinery-integrated-kraft-pulping network for sustainable development. Chem. Eng. Process. Process Intensif. 163: 108373, https://doi.org/10.1016/j.cep.2021.108373.Search in Google Scholar

Mukundan, S., Atanda, L., and Beltramini, J. (2019). Thermocatalytic cleavage of C–C and C–O bonds in model compounds and kraft lignin by NiMoS2/C nanocatalysts. Sustain. Energy Fuels 3: 1317–1328, https://doi.org/10.1039/c8se00576a.Search in Google Scholar

Nenkova, S., Vasileva, T., and Stanulov, K. (2008). Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass. Chem. Nat. Compd. 44: 182–185, https://doi.org/10.1007/s10600-008-9009-z.Search in Google Scholar

Okamoto, T., Takeda, H., Funabiki, T., Takatani, M., and Hamada, R. (1996). Fundamental studies on the development of lignin-based adhesives, I. Catalytic demethylation of anisole with molecular oxygen. Kinet. Catal. Lett. 58: 237–242, https://doi.org/https://doi.org/10.1007/BF02067028.10.1007/BF02067028Search in Google Scholar

Pola, L., Collado, S., Oulego, P., Calvo, P., and Díaz, M. (2021). Characterisation of the wet oxidation of black liquor for its integration in Kraft paper mills. Chem. Eng. J. 405: 126610, https://doi.org/10.1016/j.cej.2020.126610.Search in Google Scholar

Ponnuchamy, V., Gordobil, O., Diaz, R.H., Sandak, A., and Sandak, J. (2021). Fractionation of lignin using organic solvents: a combined experimental and theoretical study. Int. J. Biol. Macromol. 168: 792–805, https://doi.org/10.1016/j.ijbiomac.2020.11.139.Search in Google Scholar PubMed

Ponomarenko, J., Dizhbite, T., Lauberts, M., Viksna, A., Dobele, G., Bikovens, O., and Telysheva, G. (2014). Characterization of softwood and hardwood lignoboost kraft lignins with emphasis on their antioxidant activity. BioResources 9: 2051–2068, https://doi.org/10.15376/biores.9.2.2051-2068.Search in Google Scholar

Poveda-Giraldo, J.A., Solarte-Toro, J.C., and Cardona Alzate, C.A. (2021). The potential use of lignin as a platform product in biorefineries: a review. Renew. Sust. Energ. Rev. 138: 110688, https://doi.org/10.1016/j.rser.2020.110688.Search in Google Scholar

Rößiger, B., Röver, R., Unkelbach, G., and Pufky-Heinrich, D. (2017). Production of bio-phenols for industrial application: scale-up of the base-catalyzed depolymerization of lignin. Green Sust. Chem. 07: 193–202, https://doi.org/10.4236/gsc.2017.73015.Search in Google Scholar

Sathawong, S., Sridach, W., and Techato, K.A. (2018). Lignin: isolation and preparing the lignin based hydrogel. J. Environ. Chem. Eng. 6: 5879–5888, https://doi.org/10.1016/j.jece.2018.05.008.Search in Google Scholar

Schier, F., Morland, C., Dieter, M., and Weimar, H. (2021). Estimating supply and demand elasticities of dissolving pulp, lignocellulose-based chemical derivatives and textile fibres in an emerging forest-based bioeconomy. For. Policy Econ. 126: 102422, https://doi.org/10.1016/j.forpol.2021.102422.Search in Google Scholar

Schutyser, W., Renders, T., Van Den Bosch, S., Koelewijn, S.F., Beckham, G.T., and Sels, B.F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47: 852–908, https://doi.org/10.1039/c7cs00566k.Search in Google Scholar PubMed

Sjöström, E. (1993). Wood chemistry. Fundamentals and applications, 2nd ed. Academic Press, California.Search in Google Scholar

Wang, H.M., Wang, B., Wen, J.L., Yuan, T.Q., and Sun, R.C. (2017). Structural characteristics of lignin macromolecules from different Eucalyptus species. ACS Sustain. Chem. Eng. 5: 11618–11627, https://doi.org/10.1021/acssuschemeng.7b02970.Search in Google Scholar

Wikberg, H., Leppävuori, J., Ohra-aho, T., and Liitiä, T. (2017) CatLignin: reactive lignin for phenol replacement in resins. In 7th Nordic Wood Biorefinery Conference, NWBC 2017. Stockholm, Sweden. pp. 94–97.Search in Google Scholar

Wongtanyawat, N., Lusanandana, P., Khwanjaisakun, N., Kongpanna, P., Phromprasit, J., Simasatitkul, L., Amornraksa, S., and Assabumrungrat, S. (2018). Comparison of different kraft lignin-based vanillin production processes. Comput. Chem. Eng. 117: 159–170, https://doi.org/10.1016/j.compchemeng.2018.05.020.Search in Google Scholar

Zhou, X.-F. and Lu, X.-J. (2014). Structural characterization of kraft lignin for its green utilization. Wood Res. 59: 584–592.Search in Google Scholar

Zhu, W., Westman, G., and Theliander, H. (2014). Investigation and characterization of lignin precipitation in the lignoboost process. J Wood Chem Technol 34(2): 77–97, https://doi.org/10.1080/02773813.2013.838267.Search in Google Scholar

Received: 2023-12-11
Accepted: 2024-05-03
Published Online: 2024-06-03
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Biorefining
  3. Chemical modification of kraft lignin using black liquor heat treatment
  4. Chemical Pulping
  5. A review on chemical mechanisms of kraft pulping
  6. Estimating lags in a kraft mill
  7. Paper Technology
  8. Effect of wettability on paper literature deacidification by ultrasonic atomization
  9. Thermoformed products from high-density polyethylene and Softwood kraft pulp
  10. Paper Physics
  11. Rate-dependent tensile properties of paperboard and its plies
  12. Comparing the in-plane shear moduli of cardboard measured by flexural vibration, torsional vibration, static torsion, off-axis vibration, and off-axis tension tests
  13. Paper Chemistry
  14. Analysis of polydisperse polymer adsorption on porous cellulose fibers
  15. Effects of carboxymethylation and TEMPO oxidation on the reversibility properties of cellulose-based pH-responsive actuators
  16. Coating
  17. Plastic-free, oil- and water-resistant paper for food packing
  18. Quantitative study of thermal barrier models for paper-based barrier materials using adaptive neuro-fuzzy inference system
  19. Printing
  20. Influence of selected sheet-fed offset printing conditions on primary mottling
  21. Packaging
  22. The study of citric acid crosslinked β-cyclodextrin/hydroxypropyl cellulose food preservation film
  23. Environmental Impact
  24. Effect of flax sheet prepared by wet-laying technology on tensile properties of flax/polypropylene composites
  25. Modifications and applications of aerogel prepared with waste palm leaf cellulose in adsorptions for oily contaminations
  26. Use of secondary condensates from evaporation as washing liquid in kraft pulp bleaching
  27. Treatment of secondary fiber papermaking wastewater with aerobic granular sludge cultured in a sequencing batch biofilter granular reactor
  28. Recycling
  29. Alkaline treatment and fractionation of OCC for strength improvement
  30. Nanotechnology
  31. Preparation of microfibrillated cellulose by in situ and one step method using calcium hydroxide as swelling and grinding agent
  32. Chemical Technology/Modifications
  33. Preparation and application in the paper protection of carboxymethyl cellulose grafted with β-cyclodextrin
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/npprj-2023-0091/html
Scroll to top button