Startseite On the development of a continuous methodology to fractionate microfibriallated cellulose
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the development of a continuous methodology to fractionate microfibriallated cellulose

  • M. Shanb Ghazani EMAIL logo , D. M. Martinez , M. Al-Shibl , A. Madani , J. Olson , B. DeMuner und J. Kadla
Veröffentlicht/Copyright: 1. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The focus of this study is the development of a methodology to mechanically separate or fractionate micro-fibrillated fibre suspensions (MFC) into different size classes. We extend the principle outlined by Madani et al. (2010) and create a continuous separation in an annular gap undergoing spiral Poiseuille flow (solid body rotation superimposed on pressure driven flow). Achieving hydrodynamic stability of this flow was the main scientific challenge for scale-up. This work is presented in two different studies. In the first study, we perform a series of batch-wise centrifugation tests to develop the criteria for motion of the individual classes of particles which compose a Eucalyptus MFC suspension. Here, we suspend the MFC in a weak gel and demonstrate a linear reduction in average particle size with increasing centrifugal force; motion is initiated in heavier particles before the lighter ones. In the second study, we use this batch-wise data to design a continuous prototype and we successfully demonstrate a continuous separation with performance similar to that achieved in the batch-wise tests.

Funding statement: We greatly appreciate the financial support of Eka Chemicals and the Natural Sciences and Engineering Research Council of Canada 150695836.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

Al-shibl, M. 2016. On the fluid mechanics of viscoplastic particle suspension fractionation: Understanding multilayer spiral Poiseuille flow in an annulus. Ph.D. thesis. University of British Columbia.Suche in Google Scholar

Ansys Inc. 2013. ANSYS FLUENT Theory guide. 15, Canonsburge, Pennsylvania 15317.Suche in Google Scholar

Azizi Samir, M., Alloin, F., Dufresne, A. (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626.10.1021/bm0493685Suche in Google Scholar

Bittleston, S. H., Hassager, O. (1992) Flow of viscoplastic fluids in a rotating concentric annulus. J. Non-Newton. Fluid Mech. 42:19–36.10.1016/0377-0257(92)80002-FSuche in Google Scholar

Cozzolino, C., Nilsson, F., Iotti, M., Sacchi, B., Piga, A., Farris, S. (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf. B 110:208–216.10.1016/j.colsurfb.2013.04.046Suche in Google Scholar PubMed

Daneshi, M., Pourzahedi, A., Martinez, D. M., Grecov, D. (2019) Characterising wall-slip behaviour of carbopol gels in a fully-developed Poiseuille flow. J. Non-Newton. Fluid Mech. 269:65–72.10.1016/j.jnnfm.2019.06.003Suche in Google Scholar

Das, B., Nayak, A. K., Nanda, U. (2013) Topical gels of lidocaine HCl using cashew gum and Carbopol 940: Preparation and in vitro skin permeation. Int. J. Biol. Macromol. 62:514–517.10.1016/j.ijbiomac.2013.09.049Suche in Google Scholar PubMed

Dubief, D., Samain, E., Dufresne, A. (1999) Polysaccharide microcrystals reinforced amorphous poly ( beta-hydroxyoctanoate ) nanocomposite materials. Macromolecules 32:5765–5771.10.1021/ma990274aSuche in Google Scholar

Eriksen, O., Syverud, K., Gregersen, O. (2008) The use of microfibrillated cellulose produced from Kraft pulp as strength enhancer in TMP paper. Nord. Pulp Pap. Res. J. 23:299–304.10.3183/npprj-2008-23-03-p299-304Suche in Google Scholar

Frigaard, I. A., Crawshaw, J. P. (1999) Preventing buoyancy-driven flows of two Bingham fluids in a closed pipe – Fluid rheology design for oilfield plug cementing. J. Eng. Math. 36:327–348.10.1023/A:1004511113745Suche in Google Scholar

Haapala, A., Laitinen, O., Karinkanta, P., Liimatainen, H., Niinimäki, J. (2013) Optical characterisation of size, shape and fibrillarity from microfibrillar andmicrocrystalline cellulose: and fine ground wood powder fractions. Appita J. 66:331–339.Suche in Google Scholar

Hiraoki, R., Tanaka, R., Ono, Y., Nakamura, M., Isogai, T., Saito, T., Isogai, A. (2018) Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis. Cellulose 25:1599–1606.10.1007/s10570-018-1675-9Suche in Google Scholar

Hubbe, M. A., Rojas, O. J., Lucia, L. A., Sain, M. (2008) Cellulosic nanocomposites: A review. Bioresources 3:929–980.10.15376/biores.3.3.929-980Suche in Google Scholar

Huh, D., Bahng, J., Ling, Y., Wei, H., Kripfgans, O. D., Fowlkes, J. B., Grotberg, J. B., Takayama, S. (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79:1369–1376.10.1021/ac061542nSuche in Google Scholar PubMed PubMed Central

Iwamoto, S., Nakagaito, A., Yano, H., Nogi, M. (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A 81:1109–1112.10.1007/s00339-005-3316-zSuche in Google Scholar

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A. (2011) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438–5466.10.1002/anie.201001273Suche in Google Scholar PubMed

Korehei, R., Jahangiri, P. J., Nikbakht, A., Martinez, D. M., Olson, J. A. (2016) Effects of Drying Strategies and Microfibrillated Cellulose Fiber Content on the Properties of Foam-Formed Paper. J. Wood Chem. Technol. 36:235–249.10.1080/02773813.2015.1116012Suche in Google Scholar

Laitinen, O. T., Kemppainen, K., Stoor, T., Niinimäki, J. (2011) Fractionation of pulpand paper particles selectively by size. BioResources 6:672–685.10.15376/biores.6.1.672-685Suche in Google Scholar

Larsson, P. A., Riazanova, A. V., Cinar Ciftci, G., Rojas, R., Øvrebø, H. H., Wågberg, L., Berglund, L. A. (2019) Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose 26:1565–1575.10.1007/s10570-018-2214-4Suche in Google Scholar

Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90:735–764.10.1016/j.carbpol.2012.05.026Suche in Google Scholar PubMed

Lenshof, A., Laurell, T. (2010) Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39:1203–1217.10.1039/b915999cSuche in Google Scholar PubMed

Madani, A. 2011. Fractionation of particle suspensions in a viscoplastic fluid: towards a novel process. Ph.D. thesis. University of British Columbia.Suche in Google Scholar

Madani, A., Kiiskinen, H., Olson, J. A., Martinez, D. M. (2012) Fractionation of microfibrillated cellulose and its effects on tensile index and elongation of paper. Nord. Pulp Pap. Res. J. 26:306–311.10.3183/npprj-2011-26-03-p306-311Suche in Google Scholar

Madani, A., Martinez, D. M., Frigaard, I. A., Olson, J. A. (2013) The stability of spiral Poiseuille flows of Newtonian and Bingham fluids in an annular gap. J. Non-Newton. Fluid Mech. 193:3–10.10.1016/j.jnnfm.2012.02.007Suche in Google Scholar

Madani, A., Storey, S., Olson, J., Frigaard, I., Salmela, J., Martinez, D. (2010) Fractionation of non-Brownian rod-like particle suspensions in a viscoplastic fluid. Chem. Eng. Sci. 65:1762–1772.10.1016/j.ces.2009.11.017Suche in Google Scholar

Moyers-Gonzalez, M., Frigaard, I. A., Nouar, C. (2004) Nonlinear stability of a visco-plastically lubricated viscous shear flow. J. Fluid Mech. 506:117–146.10.1017/S0022112004008560Suche in Google Scholar

Naderi, A., Lindström, T., Sundström, J. (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157.10.1007/s10570-015-0576-4Suche in Google Scholar

Nechyporchuk, O., Belgacem, M., Bras, J. (2016) Production of cellulose nanofibrils: a review of recent advances. Ind. Crop. Prod. 93:2–25.10.1016/j.indcrop.2016.02.016Suche in Google Scholar

Osong, S. H., Norgren, S., Engstrand, P. (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123.10.1007/s10570-015-0798-5Suche in Google Scholar

Prashant, Derksen J. (2011) Direct simulations of spherical particle motion in bingham liquids. Comput. Chem. Eng. 35:1200–1214.10.1016/j.compchemeng.2010.09.002Suche in Google Scholar

Sajeesh, P. (2014) Particle separation and sorting in microfluidic devices: A review. Microfluid. Nanofluid. 17:1–52.10.1007/s10404-013-1291-9Suche in Google Scholar

Shafiei-Sabet, S., Hamad, W., Hatzikiriakos, S. (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133.10.1021/la303380vSuche in Google Scholar PubMed

Shafiei-Sabet, S., Hamad, W., Hatzikiriakos, S. (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359.10.1007/s10570-014-0407-zSuche in Google Scholar

Shafiei-Sabet, S., Martinez, D. M., Olson, J. A. (2016) Shear rheology of micro-fibrillar cellulose aqueous suspensions. Cellulose 23:2943–2953.10.1007/s10570-016-1040-9Suche in Google Scholar

Shanb Ghazani, M. 2019. On the development of a method for continuous fractionation of non-Brownian particles in a viscoplastic fluid. Ph.D. thesis. University of British Columbia.Suche in Google Scholar

Siqueira, G., Bras, J., Dufresne, A. (2010) Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2:728–765.10.3390/polym2040728Suche in Google Scholar

Spence, K. L., Venditti, R., Habibi, Y., Rojas, O. J., Pawlak, J. J. (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour. Technol. 101:5961–5968.10.1016/j.biortech.2010.02.104Suche in Google Scholar PubMed

Taghavi, S. M. 2011. From displacement to mixing in a slightly inclined duct. Ph.D. thesis. University of British Columbia.Suche in Google Scholar

Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J., Laine, J. (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020.10.1007/s10570-010-9431-9Suche in Google Scholar

Tanaka, A., Seppänen, V., Houni, J., Sneck, A., Pirkonen, P. (2012) Nanocellulose characterization with mechanical fractionation. Nord. Pulp Pap. Res. J. 27:689–694.10.3183/npprj-2012-27-04-p689-694Suche in Google Scholar

Varanasi, S., He, R., Batchelor, W. (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896.10.1007/s10570-013-9972-9Suche in Google Scholar

Zhu, H., Helander, M., Moser, C., Stahlkranz, A., Soderberg, D., Henriksson, G., Lindstrom, M. (2012) A novel nano cellulose preparation method and sizefraction by cross flow ultra-filtration. Curr. Org. Chem. 16:1871–1875.10.2174/138527212802651197Suche in Google Scholar

Received: 2019-08-18
Accepted: 2019-12-09
Published Online: 2020-02-01
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/npprj-2019-0069/html?lang=de
Button zum nach oben scrollen