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Abstract: Urban environments are characterized by a com-
plex interplay of various sound sources, which signifi-
cantly influence the overall soundscape quality. This study
presents a methodology that combines the intermittency
ratio (IR) metric for acoustic event detection with deep
learning (DL) techniques for the classification of sound
sources associated with these events. The aim is to provide
an automated tool for detecting and categorizing poly-
phonic acoustic events, thereby enhancing our ability to
assess and manage environmental noise. Using a dataset
collected in the city center of Barcelona, our results demon-
strate the effectiveness of the IR metric in successfully
detecting events from diverse categories. Specifically, the
IR captures the temporal variations of sound pressure
levels due to significant noise events, enabling their detec-
tion but not providing information on the associated sound
sources. To fill this weakness, the DL-based classification
system, which uses a MobileNet convolutional neural net-
work, shows promise in identifying foreground sound
sources. Our findings highlight the potential of DL techni-
ques to automate the classification of sound sources, pro-
viding valuable insights into the acoustic environment. The
proposed methodology of combining the two above tech-
niques represents a step forward in automating acoustic
event detection and classification in urban soundscapes
and providing important information to manage noise
mitigation actions.
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1 Introduction

Sound perception depends on several factors, not only the
acoustical ones. Among these, the temporal structure of
sound pressure level (SPL) plays an important role, since
human hearing tends to adapt to steady sounds, but remains
very sensitive to SPL fluctuations over time, as well as to
prominent, salient noise events. Unfortunately, these events
occur very often in real life, such as those generated by trans-
port systems, e.g., car pass-bys, which can evoke increased
annoyance. Thus, peak values and relative SPL changes can
be important in noise perception and its influence on non-
auditory health effects, such as annoyance and sleep distur-
bance. To grasp and describe these SPL fluctuations, several
methods have been proposed so far. Many of them look at
transients in SPL time history, such as exceedances above
fixed or time adaptive thresholds [1-4]; others focus on mod-
eling the hearing perception process of such events [5].

A review of the wide range of algorithms, protocols, or
criteria reported in the literature for identifying noise events
in the time series of A-weighted SPLs is given by Brown and
De Coensel [2]. A small set of parameters was identified [3],
which may prove useful in the construction of event-based
indicators supplementary to energy-equivalent measures (i.e.,
Lpeq)- A further approach is the detection of noise “notice-
events,” that is those clearly perceivable and, therefore,
potentially affecting exposed people. On this issue, the model
proposed in [5] considers aspects of human auditory percep-
tion, such as attention strength and habituation to time con-
stants; it is grounded in the hypothesis that long-term percep-
tion of environmental sound is determined primarily by short
notice events. Thus, the detection of noise events is strongly
required to guide noise mitigation actions and clearly demands
automatic procedures [6,7].
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However, the detection of noise notice-events per se is
not sufficient for an efficient noise mitigation planning
aimed at improving or protecting the quality of the sonic
environment. For this purpose, a further issue needs to be
addressed: the recognition of the source generating the
sound event. Several studies on soundscape have shown
that the human response to sound events depends not only
on SPL, but also on the type of noise source. For instance,
natural sources are rated more acceptable than the mechan-
ical ones. Once more, automatic procedures able to detect the
type of sound source, such as distinguishing road traffic from
other sources, are strongly needed [8,9]. The procedure devel-
oped in [10] showed promising results and it was applied in
some noise monitoring networks [11].

A step toward meeting these needs is outlined in the
European Noise Directive (END, Directive 2002/49/EC) [12],
which mandates EU Member States to create strategic
noise maps and action plans for major agglomerations,
roads, railways, and airports. A key requirement of the
END is to identify and classify noise sources contributing
to environmental noise [13], enabling targeted mitigation
strategies. Traditional noise mapping techniques do not
face this level of granularity required by the END, high-
lighting the need for innovative approaches that integrate
temporal and source-specific analyses.

Within the above issue, this article presents the appli-
cation of the criterium proposed by the intermittency
ratio metric (IR) [4] for acoustic event detection together
with deep learning (DL) techniques for the classification
of source(s) producing such events (e.g., automatically
categorizing the detected events by convolutional neural
network (CNN) [14]). The integration of these methods pro-
vides a dual-layered analysis — temporal and categorical —
that offers more and deeper insights into urban noise. The
IR metric identifies prominent noise events based on their
temporal characteristics and evolution, while the DL model
assigns these events to specific noise sources, widening its
comprehension. This synergy aligns directly with the objec-
tives of the END, enabling enhanced noise mapping and more
effective noise mitigation actions.

This article is organized as follows: Section 2 explains
the methodology proposed to combine the IR for acoustic
event detection and the DL model for classification. First, it
explains the datasets that have been used, and later it
provides details about the application of the IR and the
DL models over the data. Next, Section 3 describes the
results obtained when applying the proposed methodology
over the data, both in terms of acoustic event detection
and classification. Finally, Section 4 concludes the article,
highlighting the findings of the study and future work
directions.
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2 Materials and methods

This subsection first explains the methodology proposed in
this article in Subsection 2.1. Then, Subsection 2.2 details the
datasets used for the study. Next, Subsection 2.3 explains how
the IR algorithm has been used for sound event detection.
Finally, Subsection 2.4 explains the DL-based algorithm used
for sound source classification.

2.1 Proposed methodology

The proposed methodology is outlined in Figure 1. The IR
criterium used for sound event detection has been applied
on the time history of the SPL data. Thus, the first step
requires converting the audio recording file into a time
series of SPL values with a preset time resolution. Then,
the criterium of sound event detection selects all the SPL
values exceeding the preset threshold (Equation (2)). After-
wards, a deep CNN would provide the probability of a
source type associated to the event, considering that mul-
tiple events can overlap in an urban acoustic environment.

2.2 Dataset used

The dataset used in this article is the one described by
Vidafia-Vila [15], composed of audio recordings taken in
the city center of Barcelona during two campaigns. The first
one took place in Autumn 2020 at noon, when there were
some mobility restrictions due to COVID-19 pandemic; the
second one was performed in Spring 2021 during the after-
noon, when the mobility restrictions were softened. The
dataset contains a rich variety of acoustic data, as the sounds-
cape was slightly different due to the effect of: i) the COVID-
19 restrictions, ii) the season of the year when data was
recorded, and iii) the hour of recording.

Four sensors were deployed at four different spots of a
street intersection, the crossroad between Villarroel Street
and Diputacid Street (Figure 2) located in the Eixample
area of Barcelona. The rationale behind the decision of
locating the four sensors on a crossroad was that the
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Figure 1: Outline of the methodology proposed to detect and classify the
sound events.
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four sensors would capture similar loud events (an acoustic
event that is loud enough should be recorded in the four
spots) while the background sounds would be different in
the four spots, enabling us to study the benefit of placing
more than one sensor on a street in terms of increasing the
accuracy at the time of performing acoustic event classifica-
tion or not [15]. For this work, this physical redundancy of
sensors (ie., more than one sensor capturing the same
acoustic event from a different perspective) is not relevant,
as it is not the topic under study. Therefore, using data from
the four sensors will just enable us to have a larger and richer
variety of data, as different events were occurring in the
background of the four locations.

The hardware used to collect the audio data was a
Zoom H5 recorder mounted on a tripod. The device was
powered with two Alkaline batteries, enabling to have an
autonomy of a few hours, which was enough for the dura-
tion of the recording campaign. The microphone used was
the one provided by the same Zoom recorder: the XYH-5
microphone capsule with a windscreen [16]. This micro-
phone capsule is composed of two condenser and unidir-
ectional microphones paired at 90° angle, enabling stereo
recordings. Therefore, the recordings obtained in the cam-
paign are stereo. The sampling rate of the recordings was
44,100 Hz bit 16-bit depth.
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Figure 3: Example of a recorder used mounted over a tripod.

As shown in Figure 3, the recorder was placed at an
angle of 45° from the floor and pointing to the street.
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Figure 2: Crossroad in the Eixample area of Barcelona and sound recording spots selected for data collection (edited from OpenStreetMaps).
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Table 1: The predetermined 21 categories of the sound sources and

corresponding labels of the Eixample dataset

Source category description  Label Number of occurrences
Background traffic noise rtn 4,295
Noise from people peop 912
Car brakes brak 913
Bird twittering bird 1,317
Motorcycles motorc 1,334
Engine idling eng 1,116
Car door slamming cdoor 294
Undefined impulsive noise impls 615
Undefined complex noise cmplx 158
Trolley troll 314
Wind wind 31
Car or motorbike horn horn 76
Sirens from vehicles sire 75
Music musi 38
Bicycle bike 75
House door hdoor 85
Bells bell 51
Waste into the recycling bin glass 49
Beep from truck on reversing  beep 31
Dog barking dog 28
Drilling drill 14

Putting together the acoustic data from both cam-

paigns in all the four recording spots, the dataset has a
duration of 5h in each sensing node, resulting in an aggre-
gated amount of data of 20 h. More details on measurement
and recording setup are reported by Vidafia-Vila [15].

In this work, data coming from the different sensors
were processed individually, differently to the usage of the
dataset in the study by Vidafia-Vila [15]. For the experi-
mental evaluation, 4h from each sensor (together with
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data coming from external sources) were used to train
the DL model, whereas the remaining hour was used for
testing. The detection of sound events was carried out only
for the testing hour. Even though the recordings are in stereo
mode, only the left channel of them was used, turning them
into mono audio files. The decision of conserving just one
channel was for simplicity purposes, making it easier to label
the events using only one channel. The sounds contained in
this dataset are the ones shown in Table 1.

Two complimentary datasets were used for training
the automatic classifier CNN, namely the BCNDataset [17]
and the UrbanSound8K dataset [18]. On the one hand, the
BCNDataset was selected as it contains acoustic data from
the same city like the evaluation dataset (the Eixample
dataset), and on the other hand, UrbanSound8K dataset
was used because all the sounds that are contained there
can be heard very clearly, and can be considered fore-
ground sounds.

The events present in the BCNDataset are similar to the
ones present in the Eixample dataset. Actually, some labels
are the same, such as rtn, sire, horn, brak, troll, peop or
musi. Then, there are categories that are slightly different
in both datasets but have a similar meaning in terms of
sound. For those cases, the labels were unified to match the
taxonomy of the Eixample dataset. These specific labels
can be checked on Table 2. Those categories that did not
contain acoustic events that could match the ones on the
Eixample dataset, specifically the busd category, were dis-
carded and tagged with a .

For the UrbanSound8k dataset, the labels were unified
as shown in Table 3. Those categories that did not contain
acoustic events that could match the ones on the Eixample
dataset were discarded and tagged with a ‘~.

Table 2: Unification of labels from the BCNDataset to the Eixample dataset

Source category description

Label in the BCNDataset

Label in the Eixample dataset Number of occurrences

A mix of background city noise and music bkmu
The opening or closing of blinds blin
People coughing coug
House door door
Whistle whtl

Unrecognizable noise
Background traffic noise

rare
rtn

Sirens from vehicles sire

Car or motorbike horn horn
Bus door busd
Car brakes brak
Trolley troll

Noise from people peop
Music musi

musi 18
cmplx 20
peop 20
hdoor 731
peop 8
cmplx 671
rtn 1,150
sire 9
horn 93
brak 810
troll 1
peop 2,256
musi 16
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Table 3: Unification of labels from the UrbanSound8K to the Eixample
dataset

Source Label in Label in the Number of
category UrbanSound8k Eixample occurrences
description dataset

Noise from air  air_conditioner — —
conditioner

Car horn car_horn horn 429
Children children_playing peop 1,000
playing

Dog barking dog_bark dog 1,000
Drilling noise Drilling drill 1,000
Engine idling engine_idling eng 1,000

Gun shot gun_shot — —
Jackhammer jackhammer — —

Siren siren sire 929

Street music street_music musi 1,000

As it can be observed, adding the UrbanSound8K
dataset and BCNDataset to the training set helps mitigating
the class imbalance of data in some categories (such as car
horns, sirens or street music). However, there are some
categories that still have a few amount of samples such
as bell sounds (with only 51 samples), beep sounds (with
31 samples), bike sounds (with 75 samples) or wind sounds
(with 31 samples). The lack of data in this categories can be
therefore mitigated by applying data augmentation techni-
ques such as mix-up augmentation.

2.3 Sound event detection

The digital audio recordings in the “wav” format have
been processed to get the A-weighted SPL time history
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with Fast (F) weighting according to the IEC 61672-1 stan-
dard (exponential integration time 7 = 125 ms, that is 8 SPL
values per second, 28,800 SPL values in 1h of recording).
An example of such processing is shown in Figure 4, where
the blue, red and green dotted lines report the equivalent
continuous level Lyeq and the percentile levels Lajo and Lags
hourly values, respectively. This plot is among the output of a
script developed in the R environment [19] to process the Lar
time history in order to detect the sound events and to deter-
mine the acoustic descriptors given in Table 4.

For the sound event detection task, the criterium used
in the metric termed IR has been applied [4]. In particular,
the IR value [20], in percentage, is calculated as the ratio of
the event-based sound energy Laeqrevents 10 the overall
sound energy Laeq,r, both referred to the time T:

10aeq,T events/10)

IR = x 100[%]. @

10(LAeq,T/10)
The time T can be 1h, the day and/or night period, 24 h
and so forth. A sound event is detected whenever its
A-weighted SPLs exceed the preset threshold K:

K = Lpeqr + C[dB(A)], 2

where the constant C is to be set. On the basis of practical
experience on transportation noise situations, the Authors
proposing IR suggest that C might not be smaller than 0 and
not larger than about 10 dB [4]. For low values of C, almost
any situation produces a large IR value, whereas high
values of C almost always produce low IR, because only
in extraordinarily intermittent situations the level rises
above the high threshold. To make IR able to distinguish
between situations with different degrees of intermittency,
the criterium for setting C would be a preferably uniform
spread of IR across the range of exposure situations as they
occur in the real world. The balance between these extreme
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Figure 4: Example of the Lar hourly time history obtained from digital audio recording processing (spot 4). Blue, red and green dotted lines
correspond to the equivalent continuous level (Laeq) and the percentile levels Lo and Lags hourly values, respectively.
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Table 4: Acoustic descriptors calculated by the script developed in the R environment

Equivalent continuous sound level Ly [dB(A)]

Standard deviation of sound level sL, [dB(A)]

5th percentile of sound level Las [dB(A)]

10th percentile of sound level Lo [dB(A)]
50th percentile of sound level Laso [dB(A)]
90th percentile of sound level Lago [dB(A)]
95th percentile of sound level Lpgs [dB(A)]

Intermittency ratio IR [%]

Onset of sound level for each event [dB(A)]

Onset rate of sound level for each event [dB(A)/s]

Sound exposure level SEL of each event [dB(A)]

Continuous equivalent sound level Leq of each event [dB(A)]

cases was investigated by numerical simulations of various
traffic situations and resulted in C = 3dB [4]. This has been
the value applied in the present study regardless of the iden-
tified sound sources and because mostly of the events were
from mixed road traffic.

An IR > 50% means that more than half of the sound
dose is caused by “distinct” sound events. In situations with
only events that clearly emerge from background noise (e.g., a
receiver point close by a railway track), IR yields values close
to 100%.The IR metric provides information on the noise
temporal structure and can be fruitfully added to the noise
energy content Lqq r to describe the potential harmful effects
on the exposed population. For instance, in the SiRENE study,
the IR values were included in the facade noise maps com-
puted for all dwellings in Switzerland [4]. Moreover, the IR
provide interesting results to classify urban roads on the basis
of traffic noise features [21].

An example of sound event detection is given in Figure 5,
where the parameters of sound event(s), reported with red
lines, are given as follows:

704 .

,,,,,,,

[dB(A)]

Aeq

1s short L

Time [s]

Figure 5: Parameters of the sound event detection based on IR algo-
rithm (adapted from the study by Alsina-Pages [7]).

* 7, and 7, are the start and end time of the event, corre-
sponding to the instants immediately before and just
after the exceedances of the threshold K (Equation (2))
above which an event (red line) is detected accordingly
to the IR criterium [4];

* T =T, — T, iS the event duration;

* T, is the time gap between two consecutive events;

For any detected event, the following parameters were
also determined (Figure 5):
* Tmax the instant at which the maximum SPL of the event
occurs (SPLyax);
¢ the onset O of the SPL O = SPL,,x — SPL, where SPL; is
the SPL corresponding to the start time 7; of the event;

*» the onset rate OR of the SPL OR = (Tmao_ 5
¢ the sound exposure level (SEL), corresponding to all the
acoustic energy of the sound event as if this had occurred

within a 1-s time period:

Te
SEL = 10 log| Y 10CPL10)|[dB(A)]. ®3)

=7

* the equivalent continuous level (Leq):
Laeq = SEL - 10 log 7 = SEL - 10 log(z. - 7)[dB(A)]. (4)

Figure 6 shows an example of the plot obtained by the
developed R script, where:

* the blue dotted line reports Lg, that is the threshold
applied for the sound event detection according to the
IR criterium;

* blue crosses correspond to the maximum sound level

of each event with duration 7 =2 1s and onset O = 5dB

(A), usually considered as “notice-event” in terms of

perception;

red circles correspond to the maximum sound level of

each event with duration 7 = 1s, onset O = 5dB(A) and

onset rate OR > 10 dB/s, respectively; some standards,
like the NORDTEST Method [21], classify a sound as
impulsive when the onset rate OR = 10 dB(A)/s.



DE GRUYTER

Sound event detection by intermittency ratio criterium and source classification

—_— 7

Las [dB(A)]
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Figure 6: Example of the L, hourly time history (spot 3) with L the threshold applied for the sound event detection according to the IR criterium at K
threshold (blue dotted line), maximum sound level of each event with duration 7 21s and onset O > 5 dB(A) (blue cross) and onset rate OR > 10 dB/s

(red circle).

2.4 Sound source classification

The CNN performs a polyphonic classification after the pre-
processing stage of the raw audio files and the training
process of the neural network.

2.4.1 Audio pre-processing

As inputs of the CNN, the audio files have been converted
to spectrograms. Spectrograms are graphic representations
of sound with x-axis representing time and y-axis the fre-
quency and colored scale indicating the SPL. The spectro-
grams were calculated using the LibROSA Python library,
version 0.8.1 [22]. The spectrograms of the raw audio files
were determined without applying any pre-processing tech-
nique, such as noise reduction, to enable the CNN to classify
not only the events in the foreground, but also the events in
the background. The recording was windowed in fragments
of 4s each and, then, the short-time Fourier transform was

10000
8000

6000

Frequency (Hz)

4000

2000

calculated, which computes the discrete Fourier transforms
over short overlapping windows [22]. Once the spectrograms
were calculated, they are resized to a resolution of 224 x 224,
aiming to maintain compatibility with the chosen CNN.

The 4 s windowing was necessary because one of the
datasets used for training (the Eixample dataset) is labelled
with weak labels of a 4 s resolution. Differently from strong
labels, where each acoustic event is defined by the start
and end time, weak labels only indicate the presence or
absence of a source category in each fragment. In the
Eixample dataset, this weak labelling process was carried
out by fragments of 4 s, meaning that every 4s there is a
tag with all the categories that are present on it, regardless
of their saliency.

A sample spectrogram is shown on Figure 7. Specifi-
cally, the spectrogram on the left shows a 4-s fragment
containing the sounds of road traffic noise, a car brake, a
car horn, and an impulsional sound. Therefore, this spec-
trogram contains 4 categories as labels, but the position of
them inside of the spectrogram is not known. Similarly, the

10000
8000

6000

Frequency (Hz)

4000

2000

1s 2s 3s 4s

Figure 7: Example of two spectrograms. The left one contains noises from road traffic noise, a car brake, a car horn and an impulsional noise. The

right one contains road traffic noise, car brakes and people talking.
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spectrogram on the right contains three sounds: road
traffic noise, car brakes and people talking.

The other two datasets used for training the neural
network, namely the BCNDataset and the UrbanSound8k
dataset, are labelled with strong labels.

The sounds of the UrbanSound8k dataset are not masked
by other categories and do not enable to perform polyphonic
classification directly, as each fragment contains an event of
only one category. The fact that UrbanSound8k dataset con-
tains fragments of durations of 4 s (or, in some cases, shorter),
makes the selected window length a convenient size to work
with. Those fragments that had a duration shorter than the
selected size were synthetically modified and repeated until
the 4-s duration was achieved.

For the BCNDataset, as the audio fragments contain
strong labels, the labels were converted to weak labels
by simply splitting the audio files into fragments of 4s
and aggregating all the labels contained in that amount
of time.

The spectrograms of all the datasets were obtained using
the same parameters. Then, each spectrogram was normal-
ized according to its maximum and minimum value, in such a
way that each spectrogram contained only values ranging
between 0 and 1.

2.4.2 Sound source classification using DL

Once all the spectrograms were obtained using the same
parameters, each audio fragment of 4 s was characterized
by a matrix of 224 x 224 positions, and values ranging from
0 to 1. For the acoustic event classification task, and simi-
larly to the work performed by Vidafia-Vila [15], a PyTorch
[23] implementation of the MobileNet v2 architecture [24]
was selected. This architecture has been used in other
works and has proved to achieve good classification results
using acoustic data. For instance, in the study by Chen et al.
[25], this architecture was used with the UrbanSound8K
dataset achieving a classification accuracy over 95%. The
authors of the article have also used it in previous works
[15,26]. Specifically, in the study by Vidafia-Vila [15], dif-
ferent combinations of the three datasets employed in
this article were used to evaluate the classification of
acoustic events.

To maintain compatibility with the selected architec-
ture, which expects an RGB image at the input, each spec-
trogram matrix was replicated 3 times, creating a greyscale
image.

As for the training data, the network was trained for 50
epochs with the datasets described in Section 2.2. That is,
for training, data from three different sources was mixed:
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* UrbanSound8K dataset, fully used for training. This way,
training data contained clear examples of the categories
that compose this dataset.

BCNDataset was used for training as well. This dataset

contains real-world data collected in a balcony in the city

center of Barcelona (also in the Eixample district), meaning
that it contains similar sounds to the ones that can be found
in the Eixample dataset.

+ Eixample dataset, namely, the data collected at the cross-
road in the Eixample area of Barcelona; 4 h of recordings
per sensor were used for training, while the remaining
hour was left for testing of the algorithm.

The testing data were the hour that was excluded from
the Eixample dataset, which was used both to evaluate the
event detection using the IR and the event classification
using the CNN.

3 Results

This Section is divided in two: first, the results obtained using
the IR for sound event detection are presented in Subsection
3.1. Then, the source identification results obtained using the
CNN are shown in Subsection 3.2.

3.1 Sound event detection

For each 1-h time history of A-weighted SPL, the overall
value of the acoustic descriptors calculated by the script devel-
oped in the R environment (Table 4) is given in Table 5. The
difference of values among the recording spots are small, for
instance 1dB(A) for Laeq and 0.6 dB(A) for Lago, usually repre-
senting the background sound level. The IR values range from
43.7 to 49.0%, indicating that the sound energy of the events
roughly contributes to half of the overall energy. The noise
climate, determined by the difference Lajg — Lago, ranges

Table 5: Overall values of acoustic descriptors of each A-weighted SPL
1h-time history

Spot Lpeq Las Lpto Laso  Laso  Laos  ska IR [%]
[dB [dB [dB [dB [dB [dB [dB
(A)] (A1 (A (A)] (A)] (A)] (A)]

1 57.7 62.8 611 54.9 48.4 46.7 49 49.0

2 58.2 63.5 615 55.5 47.8 46.2 5.2 47.9

3 57.2 62.0 60.5 55.1 47.8 46.0 49 437

4 58.1 63.4 613 55.2 48.0 46.4 5.2 49.0
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Table 6: Number and descriptors of sound events detected in each A-weighted SPL 1h-time history

Spot 1 2 3 4

Type of event NE IE NE IE NE IE NE IE
Number 40 2 54 4 42 9 62 1
Overall T [s] 191.125 2.625 168.875 4.750 161.500 11.375 183.250 1.875
T [s] 4.8 13 4.2 1.2 3.8 13 44 1.875
La max [AB(A)] 68.4 73. 68.1 70.3 68.4 72.8 68.0 78.2
0 [dB(A)] 8.8 16.0 8.0 16.9 9.8 18.0 7.6 24.5
OR [dB(A)/s] 3.1 122 3.1 143 5.2 14.4 25 13.1
SEL [dB(A)] 79.9 79.1 79.7 76.9 78.4 783 79.5 86.3
@ [dB(A)] 64.9 68.5 65.0 66.7 64.5 67.9 64.7 74.3

NE, notice-event; IE, impulsive event.

from 12.7 to 13.7 dB(A), indicating large SPL time variability, as
also reported by SLa.

Based on the IR criterium for sound event detection,
namely a sound event is detected whenever its A-weighted
SPLs exceed the preset threshold K (Equation (2)), the number
of events detected in each 1h-recording are reported in Table 6,
considering only the sound events with duration 7 > 1s and
onset O > 5 dB(A), usually considered as “notice-event” (NE) in
terms of perception, and those classified as impulsive (IE)
because onset rate OR > 10 dB(A)/s. The average values of
some descriptors of the events are also given.

The probability density function of the SEL values is
given in Figure 8 for each of the four recording spots. Spots
3 and 4 show a very similar distribution, whereas they are
different for spots 1 and 2, the latter showing a bimodal
distribution. The dotted lines correspond to the mode value
for each distribution.

0.125

0.100-

0.075

0.050-

0.025

Probability Density Function

=

0.000
70 75

The R script provides also the A-weighted SPL time
history of each detected event. Figure 9 reports such an
example where the horizontal red dotted line corresponds
to the threshold for the event detection Lg and the inclined
blue line connects the SPL at the start time with the max-
imum SPL of the event.

Referring to the sound recording fragmentation into 4 s
windows, the detected sound events were often non-comple-
tely included in one 4 s window, because their length was
longer. Table 7 reports the percentage of detected notice-
events NE spanning over adjacent 4s windows for each
site. Moreover, Figure 10 shows the distribution of the event
durations 7 observed at each site.

The further step was to listen to the recordings of the
detected sound events to recognize the corresponding source(s),
according to the classification reported in Table 1. The label-
ling outcome selected by the listener was taken as reference

80 85

SEL [dB(A)]

Figure 8: Density plot of SEL values of “notice-event” (NE) observed at the four sites. The legend numbers refer to the locations highlighted on

Figure 2.
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Figure 9: Example of the A-weighted SPL time history of a detected
event. The horizontal red dotted line corresponds to the threshold for the
event detection Lg and the inclined blue line connects the SPL at the start
time with the maximum SPL of the event.

for evaluating the performance of the sound source classifi-
cation by DL technique.

3.2 Sound source classification

Once the events were detected by the IR, the CNN classified
them into different categories. For model evaluation, each
event was manually listened to in order to verify whether
the neural network correctly classified the category causing
the event. This process was carried out by two experts that
listened all the events at different moments. After the lis-
tening process, the results from hoth experts were checked
and discussed until consensus was reached.

The neural network had 21 output neurons (one for each
class described in Table 1), each outputting a probability

Table 7: Percentage of detected notice-events NE spanning over adja-
cent 4 s windows for each site

Spot 1 2 3 4
N. of overall notice-events NE 40 54 42 62
Percentage of NE spanning over 55.0% 37.0% 40.5% 50.0%

adjacent 4 s windows
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(between 0 and 1) that the corresponding event was present,
using a sigmoid activation function. Then, this output was
binarized using a custom threshold for each class aiming to
maximize the true positive events and minimize the false nega-
tive events for that category. The thresholds were selected
from a validation set, which was a subsample of the training
dataset (10% of data from BCNDataset and 10% of data from
the Eixample dataset) that was not used for training nor testing
and in which we did not apply any data augmentation techni-
ques. Therefore, the process for obtaining the thresholds was:

1. First, we passed the validation data through the net-
work, obtaining an output probability values for each
class.

2. Then, given that more than one category might be active
on each input fragment due to the polyphonic nature of
the training data, we calculated the ROC curve for every
class, which gave us the true positive rate (TPR) and
false negative rate (FNR) in different thresholds.

3. Next, we calculated the geometric mean of the TPR and
FNR for every threshold as follows:

Geometric_mean = \/TRP x (1 - FPR). (5)

4. Finally, for each class, we selected the threshold that
enabled us to have the highest geometric mean.

The results of this procedure resulted in 21 different
thresholds, most of them having values of around 0.5. The
specific value of threshold per class is: rtn = 0.5, peop = 0.66,
brak = 0.56, bird = 0.52, motorc = 0.42, eng = 0.5, cdoor = 0.59,
impls = 0.47, cmplx = 0.70, troll = 0.56, wind = 0.5, horn = 0.14,
sire = 0.54, musi = 0.48, bike = 0.43, hdoor = 0.60, bell = 0.59,
glass = 0.55, beep = 0.5, dog = 0.54, drill = 0.48.

In the testing phase, once the events detected by the IR
were passed through the network, the expert listeners
would review each fragment and check whether it con-
tained the detected noise sources.

Given the data were collected in a very noisy environ-
ment with common overlapping sounds, the manual eva-
luation categorized each output result of every neuron and
for every event as follows:

* TP:FG: meaning True Positive: Foreground. This category
represents the sources that have been detected both by
the CNN and the expert listener and for the noise sources
that are occurring in the foreground;

* TP: BG: meaning True Positive: Background. This cate-
gory represents the sources that have been detected both
by the CNN and the expert listener but that the event was
occurring in the background or was masked by more
salient event;

* FP: meaning False Positive. This category represents the
sources that have been detected by the CNN but that the
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Figure 10: Density plot of event durations t of “notice-event” (NE) observed at the four sites. The legend numbers refer to the locations highlighted on

Figure 2.

expert listener could not hear them. Therefore, this cate-
gory represents a mistake of the CNN;

* FN: meaning False Negative. This category reflects those
events that were heard by the expert listener but that the
CNN could not detect. Therefore, this category represents
a mistake of the CNN too;

* TN: meaning True Negative. This category represents all
the outputs that both the CNN and the manual listener
did not detect. Therefore, this category represents a cor-
rect prediction.

As it can be observed, the standard metrics of TP, FP,
FN and TN were used, but the True Positive events were
divided into two categories: one for the most salient events
and one for the events in the background. This way, it can
be analyzed whether the positive events are only detected
in the foreground or if there are events that are detected
but are masked with other sounds.

The aggregated results from the four sensors, as shown
in Table 8, provide insights into the performance of the

Table 8: Classification results aggregated from the four sensors and all
the categories obtained from the CNN

Category  Description Amount of
labels

TP:FG Foreground: Most salient event 534

TP:BG Background: Present but not most 74

salient event

FP Detected but not present 48

FN Present but not detected 110

TN Not present 6,384

CNN-based classification system, particularly in identifying
foreground events, with a sensitivity equal to 0.829 and a
specificity of 0.985.

The system demonstrated a commendable ability to
detect the most salient sounds, with 534 events classified
as TP: FG. These foreground events, which are the promi-
nent parts of the audio, were accurately identified by the
CNN. This indicates that the model is effective in capturing
and classifying events that strongly influence the sonic
environment.

However, the system also displayed limitations, pri-
marily in the detection of background sources. Despite
successfully classifying 74 TP: BG events, the CNN missed
110 events during manual listening analysis, mainly in the
background. While this discrepancy exists, it is important
to note that the system’s ability to correctly identify back-
ground sources is still notable. The fact that 74 background
events were accurately identified indicates that the model
is capable of capturing and classifying sources that are less
prominent in the audio.

Actually, considering the system as a whole, as the
events are detected through the IR, it is coherent to think
that the classifier should focus on detecting the most pro-
minent sound, which is the one that has made the IR
trigger the event.

Also, the number of false negatives exceeds the count of
false positives, indicating a higher tendency for the system to
fail in recognizing background sources compared to the iden-
tification of sources not present in the audio file.

For a more detailed analysis of the classification results,
Table 9 shows the same categories (True Positives in the Fore-
ground, Tue Positives in the Background, False Positives, False
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Negatives and True Negatives) segregated by type of event
and per class. This way, it is possible to analyze which of the
categories are better classified.

As it can be observed, there are some sources that
were not present in the testing data, and therefore it was
not possible to evaluate if the algorithm is able to classify
them when they are present. These are: musi, glass, beep
and dog. However, it is still relevant to include them in the
table to check that the system does not produce False
Positive events in that category. The lack of those events
in the testing hour occurred as the hour selected for testing
the system contains real-world data, and during that time
of the data gathering campaign, those sources were not
present.

As it can be observed, all the fragments of events con-
tained the rtn source, with some overlapping sources as
well. The model was able to predict successfully all those
events. Moreover, the system was capable of detecting also
most of the motorc events, showing a good capability of
detecting motorized sources. Same happens with the bus
door category or even the house door source, where most
of the events are correctly classified.

Also, in general, the system tends to have less False
Positive detections than False Negatives. With the data
used for evaluation, it can be seen that none of the wind,
drill or sire sounds present in the data were actually
detected by the CNN. When listening to the events, it can
be concluded that it is because these few samples were
actually masked by other sounds. Therefore, this reveals
that the system struggles to identify all of the polyphonic
sounds of a sample when they are highly masked.

As of consistency between sensors, it seems that the data
gathered in the four different sensors have the same behavior

Table 10: Precision, Recall and Fi-score per category and aggregate
metrics

Category Precision (%) Recall (%) F1-score (%)
rtn 100 100 100
peop 93.8 58.9 72.4
brak 100 93.3 96.5
bird 100 88.8 94.1
motorc 90.6 95.5 93
impls 61.1 100 75.9
troll 42.9 429 42.8
horn 333 80 471
bike 94.7 47.4 63.2
hdoor 100 73.3 84.6
busd 90 62.1 73.5
Macro-average 90.6 84.2 84.3
Micro-average 87.5 87.5 87.5

Sound event detection by intermittency ratio criterium and source classification
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in the CNN, showing that the system is robust against using
data coming from different physical sound devices.

If the TP:FG and the TP:BG are added together, we can
obtain the general True Positive values of the system, enabling
the calculation of standard metrics such as the Precision, Recall
or Fl-score of the system per class. Actually, for the sake of
better understanding the behavior of the classifier, Table 10
shows the classification metrics of those categories which con-
tained samples (at least, 5) in the testing set and aggregating the
classification data of the four sensors.

Table 10 reveals key insights into the classifier’s per-
formance: certain categories, such as rtn, brak, and bird,
achieved exceptionally high Fl-scores and the maximum
Precision score, with rtn even attaining perfect scores
across all metrics. Following this categories, motorc also
demonstrates a strong overall performance, with an Fi-
score bhigger than 90%. The performance of the classes
rtn, brak, and motorc suggest that the classification model
excels at classifying road traffic-related sounds, which is
one of the categories with more interest in the END [15].

Conversely, categories such as troll and horn display
lower performance, indicating more difficulties in accurately
detecting these types of events. This reflects challenges in
accurately detecting these types of events, possibly due to
their more subtle or masked characteristics within the audio
data used for testing and the fact that there are only few
events of these categories in the testing set (only 14 troll
events and 5 horns).

We must remember that the limited number of events
in certain categories, such as troll and horn, can be attrib-
uted to several factors tied to the data collection and selec-
tion process: First, the testing data were derived from real-
world, continuous recordings. Unlike synthetic or artifi-
cially balanced datasets, real-world data inherently reflects
the natural distribution of sounds, which may not include all
categories equally. Then, the testing data were chosen as a
continuous time segment, representing a specific period of
the day in which the IR criteria can be applied to detect the
acoustic events, which is the target of this work.

In summary, while there is room for refinement, par-
ticularly in the detection of background sources, the CNN-
based classification system demonstrates promising cap-
abilities in identifying sources in the acoustic environment,
achieving an overall aggregated metric surpassing the 84%
of Fl-score (both micro and macro averaged) among those
categories that were more present in the testing data.
Addressing these limitations — probably by using more
training data in those categories that are less present in
the dataset such as musi, glass, beep or dog — will lead to a
more robust and reliable tool for assessing and managing
environmental noise.
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4 Conclusions

The proposed methodology in this study combines the
IR criterium for acoustic event detection with DL techni-
ques for the classification of sound sources associated with
these events. The rationale behind this combination is
to provide a tool that can automatically detect and
classify polyphonic acoustic events significantly affecting
soundscape quality.

Using a dataset collected in the city center of Barcelona
(and particularly a busy street with both traffic and leisure
sounds), the results show that the IR criterium has been
able to successfully detect events from a wide variety of
source categories. This highlights the effectiveness of the IR
metric in capturing the temporal irregularity characteris-
tics of perceived noise notice-events, contributing to the
accurate identification of various sound sources.

Results also support a significant capability of the CNN-
based classification system to handle the identification of
acoustic events with an aggregated macro and micro Fl-
score surpassing 84%, and it is especially successful classi-
fying foreground events. Concretely, the system successfully
classified 534 True Positive Foreground sound sources,
representing the most salient sounds in the audio record-
ings. However, the system showed more limitations in
detecting background sources. While it correctly classified
74 sources in the background, it missed 110 sources that
were heard in the background during a manual expert lis-
tening analysis for source identification. This discrepancy
suggests a higher tendency for the system to fail to recognize
background sources compared to sources not present in the
audio file. Notwithstanding this inaccuracy, the described
methodology represents a step forward in automating
acoustic event detection and classification in urban sound
environment, providing information on sound events in
terms of their occurrences and sources, which aligns to the
research objectives of the (END, Directive 2002/49/EC) [12],
targeting to create tools that enable effective noise mitigation
actions.

Addressing these limitations will lead to a more robust
and reliable tool for assessing and managing environ-
mental noise. Future work should focus on the analysis
of the specific characteristics of the missed background
events to identify patterns or features that the CNN might
have overlooked. Additionally, exploring methods to enhance
the model’s sensitivity to both foreground and background
events, such as incorporating more diverse training data or
refining the neural network architecture, could lead to
improvements in performance.

Furthermore, it would be beneficial to investigate the
relationship between the characteristics of the detected

DE GRUYTER

events and their perceived impact on human listeners.
Understanding how different types of events contribute
to the overall soundscape experience can provide useful
information for more efficient noise mitigation strategies,
tailored to specific environments.
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