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Abstract: The explosive growth of Internet of Things (IoT)-

driven imaging in medicine, city surveillance, and intelli-

gent infrastructure requires secure, timely transportation

of delicate visual information with salient information, like

faces and diagnostically important medical areas. Stan-

dard block ciphers, including AES, are unable to consis-

tently retain these attributes under burst errors, partial data

corruption, or focused cropping. In this paper, we intro-

duce a lightweight substitution–permutationnetwork (SPN)

oriented encryption paradigm purpose-built for salient

information secrecy in resource-limited IoT applications.

We integrate permutation-driven block shuffle by chaos,

recurrent neural network (RNN)-guided nonlinear static S-

box generation, and bit-parity scrambling at the bit level

to improve confusion–diffusion properties. We demon-

strate experimental results of NPCR > 99.60 %, UACI >

33.40 %, near-zero correlation, and satisfactory key sensitiv-

ity. The technique maintains integrity of the salient region

even with 50 % pixel loss, with throughput acceptable for

real-time applications. Compared with previous work on

lightweight approaches, we provide improved salient fea-

ture retention and lower computational complexity, and

thus an ideal solution to security-critical applications of IoT-

driven imaging.
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1 Introduction

Recent computing technological advancements have trans-

formed the generation, processing, and transmission of

information, reforming the very essence of our connected

globe. The spread of the Internet of Things (IoTs) and mas-

sive IoT systems has brought into being huge networks

of billions of devices, interchanging voluminous data in

real-time to drive automation, industrial intelligence, and

smart infrastructures. Blockchain technology has brought

into being decentralized, tamper-proof ledgers, permitting

secure and transparent digital transactions. Quantum com-

puting approaches a tipping point where problems are

solved by quantum computers but are unsolvable by clas-

sical devices, but such power itself holds a huge threat to

conventional cryptographic mechanisms. Artificial intelli-

gence (AI)-powered intelligent computing, with deep learn-

ing and neural networks, optimizes at hitherto unimagin-

able scales the decision-making and predictive analytics. In

the age of global village of internet linking at ultra-high

data rates, data flows unimpeded across borders, promoting

worldwide collaboration and innovation. But such hyper-

connectivity exacerbates exposure to data breaches, pri-

vacy intrusion, and cyberattacks. Cryptography does not

appear as an optional solution but as the foundation of

digital trust mathematical armor preserving confidential-

ity, integrity, and authentication of the source of every

transmitted bit. Cryptography absence renders immutabil-

ity useless in blockchain, IoTs become exploitable surveil-

lance tools, AI models can be poisoned, and quantum break-

throughs could unravel the very ciphers protecting our

most sensitive data. In this period, information security is

at data gathering, transmission, storage, and even during
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handling transcends as more than a technical necessity

but as the cornerstone of future safe, resilient, and trust-

worthy digital system bases. In the last few years, number

of lightweight encryption schemes has been developed by

researchers in the field of cryptography [1]. The motivation

of all researchers is to design between low latency, high

throughput and reduced computation [2]. In most cases

security is compromised at the cost of lightweight. Thework

presented in ref. [3] proposes a privacy-preserving learning

mechanism (PPLM) coupled with an industrial IoT system

for the detection of bearing failures using lightweight edge-

basedmodel aggregation and a 2 dimensional Convolutional

Neural Network. The scheme ensures privacy but the use of

Cryptonet, introduces processing delayswhen implemented

real-time and the scheme does not discuss saliency protec-

tion. The work presented in ref. [4] presents a lightweight

encryption scheme for IoT devices that utilize quantum

encryption; chaotic maps, confusion-diffusion operations,

and discrete wavelet transform (DWT). The scheme pos-

sesses resistance against statistical differential attacks and

brute force attacks. However, converting between quan-

tum and classical domains introduce computational over-

head, lack of saliency protection and real-world deploy-

ment on constrained IoT hardware remains invalidated.

The work presented in ref. [5], evaluates the S-boxes before

implementing in the lightweight encryption scheme, using

a machine learning-based model. The machine learning

model utilizes the key cryptographic properties and selects

best S-boxes from a pool of generated S-boxes to be utilized

in the encryption scheme. This approach enhances security

at the cost of computational overhead and latency. To secure

IoT communications, the work presented in ref. [6] intro-

duces a lightweight encryption scheme. The scheme utilizes

DNA sequences to generate keys and ECC to form a private

key for encryption and decryption. The encryption scheme

possesses strong immunity to differential, statistical and

brute force attacks. The work lacks discussion on the scal-

ability and saliency protection in real world images. To bal-

ance the processing efficiency and security in a constraint

environment, a lightweight encryption scheme is proposed

in ref. [7]. The scheme follows SPN architecture, and it is

evaluated across various metrics and shows improvements

in both encryption speed and security performance. How-

ever, the paper lacks technical specifics about the crypto-

graphic primitives used, and potential limitations under

adversarial conditions, lack of saliency protection or large-

scale deployment are not explored. A lightweight image

encryption scheme that is designed for IoT based envi-

ronment is presented in ref. [8]. The encryption scheme

utilizes chaotic mapping, password-based fuzzy shifts, and

logical XOR with shift registers to enhance key complexity.

The scheme is implemented on MATLAB and AVR micro-

controller. The scheme shows strong immunity to vari-

ous cryptographic attacks. However, its reliance on fuzzy

logic and specific hardware modeling limit generalizabil-

ity and real-time adaptability across diverse IoT platforms.

The work presented in ref. [9] a multiple-image encryp-

tion scheme utilizing spatial multiplexing, encryption is

achieved via Fresnel diffraction and Fibonacci Lucas trans-

form, creating a rich key space for improved security. While

offering strong theoretical and experimental validation, the

system’s optical complexity and hardware dependencymay

limit scalability and integration into typical IoT or low-

resource environments. The work presented in ref. [10]

proposes a new image encryption scheme based on a one-

dimensional piece-wise quadratic polynomial chaotic map

(PWQPCM), offering enhanced chaotic behavior. It utilizes

pixel segmentation, substitution, and diffusion for secure

encryption with low time cost. While the scheme shows

promising results in simulations, its performance under

hardware constraints and resistance to advanced crypt-

analysis require further exploration for practical deploy-

ment. The use of deep learning algorithms has also gained

significant attention from the researchers in the field of

cryptography. Due to the ability to learn complex pat-

terns and optimized performance of neural networks, are

being widely utilized in the generation of nonlinear map-

ping S-boxes and random sequences for cryptography. By

adjusting the parameters in training, deep learning frame-

works have been utilized to increase the nonlinearity and

avalanche effects of S-boxes. The work presented in ref.

[11], has presented a novel algorithm that utilizes a Gen-

erative Adversarial Network (GAN) to create cryptographic

keys with high entropy, enhancing resistance to brute force

attacks. To secure wireless sensor networks (WSN) in vehic-

ular networks, the work presented [12], introduces a deep

learning-based intrusion detection and prevention system.

In this mechanism, to analyze the data from the WSN-DS

dataset, CNN is utilized. The proposed approach addresses

security challenges in WSNs and demonstrates significant

improvements over existing methods. The study presented

in ref. [13] introduces a deep-learning-based framework,

DeepEDN that can be utilized for secure medical image

encryption. Using a Cycle-GAN network, medical images are

transformed between original and encryption and restored

via a reconstruction network for decryption. The schemes

discussed in this section do not protect salient informa-

tion under data loss or cropping attack. This study fills

the research gap by introducing lightweight encryption
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scheme that safeguards image saliency within an SPN struc-

ture, balancing security with high throughput. In this SPN

architecture, the substitution is done through pre-computed

S-boxes that are generated by utilizing chaotic maps and

RNNs. The S-box generation approach employs the Logistic

Chaotic Map to generate a sequence that serves as input

to an RNN, which undergoes iterative training to t opti-

mized S-box values. These values are designed to meet

critical cryptographic criteria, including Nonlinearity (NL),

Strict Avalanche Criterion (SAC), Bit Independence Criterion

(BIC), and Linear Approximation Probability (LAP), ensur-

ing robust security properties. The encryption framework

incorporates block and bit-level permutations to effectively

distribute salient image features, while multiple rounds of

S-box substitutions ensure confusion. This layered approach

significantly amplifies protection for critical information

while maintaining a lightweight architecture, Important for

resource-constrained IoT devices.

1.1 Research objective

This research addresses the protection of saliency in images

within an IoT framework. By developing an advanced,

lightweight encryption scheme, we aim to overcome the

limitations of traditional block ciphers in high-security IoT

applications [14–40]. The primary contributions of this

work are as follows (see Figure 1):

1. To protect saliency in RGB images, we introduce a

lightweight encryption scheme that safeguards image

saliency within an SPN structure, balancing security

and computational complexity with high throughput.

2. For the SPN encryption scheme we proposed chaos and

RNN based highly nonlinear S-box generation method

achieving robust cryptographic properties.

3. To disperse the salient information in the encrypted

image a block shuffling algorithm is implemented.

Figure 1: Research objectives of proposed study.

1.2 Organization of the paper

The paper is organized as follows: Section 2 added the

problem formulation by highlighting the strengths and gap

analysis for the proposed investigation. Section 3 provides

a detailed setup of the experimental environment and the

specifications of the dataset utilized in the security analy-

sis of the proposed saliency-preserving lightweight encryp-

tion scheme. The proposed encryption scheme follows SPN

architecture; for the Substitution, S-boxes are pre-generated

using RNN. Section 4 is devoted to the discussion on the

generation of these S-boxes. To check the cryptographic

strength and feasibility of the generated S-boxes in the

proposed scheme, the analysis of the proposed S-boxes is

carried out and listed in Section 5 of the paper. Section 6

is devoted to the discussion on the proposed encryption

scheme, and Section 7 carries out the analysis of the pro-

posed encryption scheme. Finally, the conclusion is drawn

in Section 8 of the article.

2 Problem formulation

The rapid advancement of Internet of Things (IoT) tech-

nologies has transformed the acquisition, processing, and

exploitation of real-time imaging data in applications such

as smart infrastructure and public safety, surveillance,

intrusion detection, driverless vehicles, medicine diagnos-

tics, and robots. In these applications, the imagery acquired

has salient components faces, license plates, signs of dis-

ease, or other objects of significance in assisting humans

and computer vision systems to make decisions. These

salient components must be preserved because of corrup-

tion or loss of them during transmission and decryption

might render the data useless for operations purposes.

Traditional block ciphers, like advanced encryption stan-

dard (AES) is applied to fixed-size data blocks of substitu-

tion–permutation rounds tailored for generic secrecy with

no built-in capability to privilege or protect prominent

visual information. As such, in practical transmission appli-

cationswith burst errors, partial data corruption, or deliber-

ate cropping, traditional cryptographicmethods tend to lead

to permanent distortion of important areas (see Figure 2).

This deficiency undermines the integrity and usability of

security sensitive and mission-critical IoT-enabled imaging

applications.

The importance of the problem inability of tradi-

tional encryption mechanisms to preserve salient regions

offers a direct threat to operational decision-making

under high-stakes scenarios such as identifying suspects in

video surveillance, identifying abnormalities in radiological
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Figure 2: Cropped AES-encrypted images from the center region and their corresponding decrypted cat images for different crop sizes: (a) original

image, (b) AES encrypted image, (c) cropped image, (d) recovered image, (e) original image, (f) AES encrypted image, (g) cropped image, (h) recovered

image.

images, or detecting perils in driverless navigation. Under

scenarios where each pixel of critical information has the

potential to make or break safety, security, or life-saving

responses, loss of these features undermines the very pur-

pose of the imaging system itself. Bridging this gap requires

creating a fast, salient-information-preservation-oriented

encryption scheme where secure confidentiality is ensured

and, simultaneously, ensures these decision-critical regions

are saved and readable even under uncooperative transmis-

sion scenarios.

3 Experimental setup

The image encryption schemewas implemented usingMAT-

LAB 2017b on a personal computer featuring an Intel(R)

Core(TM) i7-7700 CPU, operating at 3.60 GHz, with 8GB of

RAM and running on the Windows 10 platform. The effec-

tiveness of the scheme was assessed using a dataset com-

prising ten RGB images as shown in Figure 3. The dataset

comprises a diverse collection of images varying in con-

tent, resolution, and file size, making it well-suited for

evaluating image encryption schemes. It includes standard

benchmark images like Barbara, Peppers, and Baboon, as

well as high-resolution real-world scenes such as River-

front Walkway and Outdoor Gathering. Resolutions range

from 512 × 512 to 1,916 × 1,078, and file sizes vary from

approximately 110–800 KB, as shown in Table 1. This mix

of synthetic and natural images, with varying textures and

complexities, ensures a comprehensive assessment of the

encryption algorithm’s performance across different visual

scenarios. We have used standard test images data set [14]

and VisDrone2019-DET datasets [15] and are commonly uti-

lized in image processing literature, making comparisons

possible with another research.

4 S-box generation methodology

The encryption scheme immunity to differential and lin-

ear cryptanalysis depends heavily on the S-boxes. In this

section, we present a novel S-box generation technique

using RNNs and chaoticmaps. The proposedmethod utilizes

RNN architecture with a Long Short-Term Memory (LSTM)

layer. The LSTM layer contains 100 hidden units. This is

followed by a fully connected layer of size 256 (matching

the number of 8-bit S-box values), a softmax layer for class

probability distribution, and a classification layer. The tech-

nique relies on a formal mathematical framework using

matrix algebra and modular arithmetic. The sequence of

steps involved in this algorithm is given as follows (see

Figure 4):

Step 1: Initialization of Parameters

The initialization of parameters is a critical step

to ensure the stability and performance of the chaotic

sequence and neural network-based S-box generation pro-

cess. The chaotic sequence is initialized using the Logistic

Map with a control parameter r = 3.99 and an initial value
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Figure 3: Image dataset used for performance evaluation. The dataset includes twelve color images of varying resolutions and sizes, representing

both natural and synthetic scenes. (a) Watch, (b) Barbara, (c) Peppers, (d) airplane, (e) girl, (f) monarch, (g) Baboon, (h) cat, (i) aerial parking view,

(j) outdoor sports court, (k) lakeside pathway, (l) urban street view, (m) glass bridge walkway, (n) riverfront walkway, (o) waterpark crowd, (p) outdoor

gathering.
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Table 1: Specifications of images used for the evaluation of proposed

encryption scheme.

Image Dimension Size Bit depth

Watch 1,024 × 768 700 24

Barbara 787 × 576 650 24

Peppers 512 × 512 550 24

Airplane 512 × 512 450 24

Girl 768 × 512 610 24

Monarch 768 × 512 600 24

Baboon 512 × 512 620 24

Cat 490 × 733 650 24

Aerial parking view 960 × 540 110 24

Riverfront walkway 1,916 × 1,078 380 24

Waterpark crowd 1,389 × 1,042 234 24

Outdoor gathering 1,400 × 1,050 225 24

Figure 4: Flowchart of the proposed chaotic RNN-based S-box

generation. The process starts with initialization of control parameter

r = 3.99 and an initial value x0 = 0.5, followed by generation of chaotic

sequences using a logistic map. These sequences are used in the RNN

architecture for S-box generation.

x0 = 0.5, both chosen to ensure high sensitivity and chaotic

behavior. For the RNN, the number of hidden units is set to

100 to balancemodel complexity and training efficiency. The

network is trained using the Stochastic Gradient Descent

with Momentum (SGDM) optimizer, with a learning rate of

0.01 and a total of 100 epochs. The parameters for chaotic

map and S-box generation using RNN are initialized.

Step 2: Generation of Chaotic Sequence Using Logis-

tic Map

The parameter space as a transformation on a metric

space ℝn, extended to matrix space Mm×n
(
ℤn

)
. Define the

chaotic mapping  :Mm×n
(
ℤn

)
→Mm×n

(
ℤn

)
as:

Xt+1 = 𝜆Xt
(
I − Xt

)
mod n, X0 ∈ Mm×n

(
ℤn

)
(1)

The normalization mapping  :Mm×n
(
ℤn

)
→ [0, 1]

m×n

is given by:

X (norm)
t

= Xt −min(X)

max(X)−min(X)
(2)

Step 3: RNN Architecture for S-box Generation

The transformation from input Xt output Yt modeled

as:

– Hidden state update (Recursive transformation inmod-

ular Hilbert spacen)

Ht = f
(
WhHt−1 + UhXt + bh

)
mod n. (3)

– Activation function as a nonlinear mapping in modular

space

f (Z) = tanh(Z)mod n. (4)

– Output computation with softmax projection in modu-

lar space

Yt = 𝜎
(
WyHt + by

)
mod n, (5)

whereWh,Uh, bh,Wy, by are trainable weight matrices

overMm×n
(
ℤn

)
).

Step 4: Data Preparation and Training of RNN

Define the categorical targetmodular vector spaceYn =
{0, 1,… , 255}mod n. The RNN is trained byminimizing the

cross-entropy loss function:

L = −
n∑
i=1

Yi log
(
Ŷi

)
mod n. (6)

The parameter updates usingmodular gradient descent

on the loss manifold are given by:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΔWh = −𝜂∇Wh
L mod n,

ΔUh = −𝜂∇Uh
L mod n,

Δbh = −𝜂∇bh
L mod n,

ΔWy = −𝜂∇Wy
L mod n,

Δby = −𝜂∇by
L mod n,

(7)

where 𝜂 is the learning rate controlling convergence over

Mm×n
(
ℤn

)
.

Step 5: S-box Generation using Trained Network

The trained network generates Yt iteratively, and the

S-box values S are extracted as:

S[i] = argmaxYt mod n. (8)
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Ensuring uniqueness via an injective mapping:

Sfinal = Unique(S) mod n. (9)

where duplicate values are replaced iteratively to maintain

bijection overMm×n
(
ℤn

)
.

Step 6: Termination of Algorithm

The S-box nonlinearity NL(S) is computed as a measure

of security strength with the condition:

NL(S) ≥ 112 mod n, (10)

then the algorithm terminates. Otherwise, the initial chaotic

parameter is perturbed infinitesimally:

X0 ← X0 + 𝛿 mod n, 𝛿 ≪ 1, (11)

Leading to a new transformation  , followed by

retraining the RNN and regenerating NL(S) meets the

required cryptographic threshold. The generated S-boxes

are shown in Tables 2–4.

5 Evaluation of S-boxes

Substitution boxes are assessed based on a range of criteria

that determine their effectiveness. Key attributes consid-

ered in this evaluation are Nonlinearity (NL), Bit Indepen-

dence Criteria (BIC), Strict Avalanche Criteria (SAC), Linear

Approximation Probability (LAP), and Differential Approxi-

mation Probability (DP).

5.1 Nonlinearity (NL)

S-box is designed to mask the relationship between the

encryption key and the resulting cipher text, enhancing the

security of the encryption process. One way to measure the

effectiveness of an S-box in achieving this goal is through

its nonlinearity. Nonlinearity quantifies how well the S-box

resists linear approximations. This measure of nonlinearity

for an S-box can be determined by using the mathematical

formula in Eq. (12):

NL = 2n−1 − 1

2
max

(|||Wf (a)
|||
)
. (12)

The nonlinearity of the projected S-boxes is computed

and tabulated in Table 5. Table 6 shows the comparison of

the nonlinearities of the projected S-boxes and state of the

art S-boxes.

Figure 5 shows the nonlinearity values of all eight

Boolean functions of each of the proposed S-boxes, with

each of them attaining the best score of 112. The non-

linearity measures the minimum Hamming distance of a

Boolean function from the set of affine functions, and larger

values reflect greater resilience against linear cryptanaly-

sis. The uniform attainment of the highest possible magni-

tude among all Boolean components across the substitution

level ensures no output bit has lower security, eliminat-

ing potential weaknesses exploitable by linear approxima-

tions of outputs. In addition, the consistent outcomes among

the three proposed S-boxes demonstrate the strength and

reproducibility of the utilized RNN-aided nonlinear S-box

Table 2: RNN based nonlinear S-box 1.

207 149 112 138 150 234 81 226 185 151 165 16 200 54 198 40

97 233 135 249 42 164 139 96 194 189 1 111 117 147 216 179

162 10 51 13 161 119 9 25 152 245 121 66 136 22 14 254

76 214 103 173 148 208 131 91 210 23 7 201 100 145 8 2

176 242 27 221 57 45 59 153 85 239 116 174 232 192 39 212

236 172 184 30 78 133 50 143 26 98 155 247 199 64 159 33

36 183 225 77 213 186 146 142 115 126 241 253 113 46 68 231

137 110 109 34 238 223 3 70 163 48 101 6 65 188 156 83

123 15 127 60 215 61 243 104 29 252 157 177 19 21 203 235

181 128 5 209 228 28 204 89 180 99 141 195 251 24 178 182

196 160 35 122 4 55 41 144 202 94 87 158 88 217 106 79

32 58 240 71 191 18 230 197 227 154 86 0 244 130 166 248

69 125 169 75 193 53 90 67 43 80 219 222 190 206 124 187

49 168 250 11 170 93 47 132 74 120 56 31 175 63 134 38

44 255 224 118 82 107 95 205 84 73 108 129 62 17 105 102

218 211 140 167 237 229 171 52 246 92 220 20 12 37 114 72
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Table 3: RNN based nonlinear S-box 2.

177 165 167 114 121 138 105 136 243 213 134 38 35 36 21 161

62 139 194 186 67 27 197 15 20 119 84 90 204 43 229 135

50 143 18 83 224 75 237 200 170 65 226 57 210 245 144 201

209 106 69 184 171 205 146 7 64 169 168 179 92 23 133 47

221 152 79 71 251 192 26 254 196 199 193 203 149 112 100 183

31 60 158 104 225 120 206 109 208 175 5 110 25 223 22 239

202 118 125 44 102 162 211 98 145 3 234 111 147 156 59 10

250 85 212 74 219 97 232 246 195 17 155 70 140 176 81 230

32 227 101 191 4 141 93 52 41 126 28 37 73 137 159 215

182 132 54 174 51 154 217 34 130 247 89 103 150 16 173 108

29 117 190 253 53 9 220 40 113 129 6 123 56 153 188 233

128 207 241 72 198 180 96 240 242 218 185 178 86 244 160 236

91 131 127 228 187 30 78 122 164 68 235 99 231 8 24 0

82 222 115 58 142 19 252 248 77 49 45 12 87 11 216 39

172 238 2 88 33 181 61 107 13 189 249 166 116 151 148 14

76 124 163 95 66 157 1 55 255 48 46 214 80 63 42 94

Table 4: RNN based nonlinear S-box 3.

141 63 72 205 201 214 180 13 57 140 225 236 244 95 24 12

172 166 85 186 100 210 206 89 142 231 161 70 108 241 174 251

23 111 92 242 90 39 221 117 243 246 18 212 218 106 200 74

122 135 87 185 47 9 146 173 30 35 27 175 148 222 99 38

193 112 232 197 228 202 154 121 235 252 144 164 54 167 52 216

19 171 219 17 208 234 132 76 181 165 255 65 16 20 71 93

118 169 26 66 189 177 64 176 36 43 82 40 37 1 155 88

223 77 204 131 119 127 158 188 3 21 139 0 149 160 226 191

179 240 159 103 49 229 217 34 249 101 91 80 116 215 81 163

58 207 45 48 115 227 130 203 168 114 6 237 60 253 170 97

55 254 84 42 199 94 69 8 44 128 109 196 83 151 125 245

86 124 61 239 10 123 110 233 183 56 157 178 211 59 182 220

152 75 107 190 15 28 187 7 31 29 195 248 126 32 198 192

224 25 230 41 104 79 102 67 5 98 156 247 51 33 105 53

184 147 62 22 162 194 14 250 50 150 78 153 68 4 145 213

133 134 129 2 113 120 96 143 209 138 238 11 46 136 137 73

Table 5: Nonlinearity of proposed S-boxes.

f f f f f f f f Average

Proposed S-box 1 112 112 112 112 112 112 112 112 112

Proposed S-box 2 112 112 112 112 112 112 112 112 112

Proposed S-box 3 112 112 112 112 112 112 112 112 112

generation technique. The uniform attainment ensures

even confusion properties across the substitution layer,

essentially improving the whole cipher’s resistance to ana-

lytical attack in both lightweight and cryptographic applica-

tions of high security.

5.2 Bit Independence Criteria (BIC)

A vector Boolean function f : {0, 1}n → {0, 1}n meets the

Bit Independence Criteria (BIC) if a single bit change in

the input causes a change in the output. This means that
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Table 6: Comparison of cryptographic characteristics of proposed

S-boxes with existing nonlinear confusion components of modern block

ciphers.

Nonlinearity SAC BIC-NL BIC-SAC LAP DAP

Proposed

S-box 1

112 0.5022 112 0.500 0.0620 0.0156

Proposed

S-box 2

112 0.5002 112 0.505 0.0620 0.0156

Proposed

S-box 3

112 0.4899 112 0.5046 0.0620 0.0156

Ref. [16] 114 0.4975 112 0.508 0.1360 0.1000

Ref. [17] 112 0.5063 104.3 0.5083 0.1250 0.0468

Ref. [18] 106.75 0.5020 103.6 0.5023 0.1328 0.0391

Ref. [19] 108 0.4941 108 0.5141 0.0781 0.0156

Ref. [20] 110 0.500732 108 0.5036 0.0781 0.0156

Ref. [21] 110 0.500732 108 0.5036 0.0781 0.0156

Ref. [22] 110.25 0.4951 103.36 0.4951 0.0625 0.0156

Ref. [23] 112 0.5031 112 0.5112 0.0926 0.0291

Ref. [24] 110 0.5005 102.78 0.5001 0.1328 0.0390

each bit in the output is independently influenced by

any bit change in the input, helping ensure that minor

changes in the input data lead to unpredictable, widespread

changes in the output. The Bit Independence Criteria (BIC)

value ranges from 0 to 1, with a value near 0.5 indicating

optimal performance for a cryptographic S-box. Table 6

presents the BIC measurements for each of the proposed

S-boxes.

5.3 Strict Avalanche Criteria (SAC)

The Strict Avalanche Criterion (SAC) for an S-box S: 𝔽 n
2
→ 𝔽m

2

states that for any input x ∈ x ∈ 𝔽 n
2
and any bit i of x, flip-

ping xi should change each output bit S j(x) with probability

0.5. Mathematically, SAC is defined as:

Pr
(
S j(x) ≠ S j

(
x⊕ ei

))
= 0.5, ∀x ∈ 𝔽 n

2
, ∀i ∈ {1,… , n},

∀ j ∈ {1,… ,m}, (13)

where ei is the unit vector with a 1 in the i-th position. For a

cryptographic S-box to meet this criterion, it must achieve a

SAC value of 0.5, reflecting its ability to disrupt predictable

patterns in the output and enhance overall security.

5.4 Differential Approximation Probability
(DAP)

Let S: 𝔽 n
2
→ 𝔽m

2
be an S-box. The Differential Approximation

Probability (DAP) is given by [29]:

DAP(S) = max
Δx∈𝔽 n

2
∖{0},Δy∈𝔽m

2

DS

(
Δx,Δy

)
2n

, (14)

where the differential distribution table (DDT) entry is

defined as:

DS
(
Δx,Δy

)
= #

{
x ∈ 𝔽 n

2
||S(x)⊕ S(x⊕Δx) = Δy

}
, (15)

Thus, DAP(S) quantifies the maximum probability over

all nonzero input differencesΔx and output differencesΔy,
satisfying:

1

2m
≤ DAP(S) ≤

𝛿(S)

2
, (16)

where the differential uniformity is:

𝛿(S) = max
Δx≠0

max
Δy

DS

(
Δx,Δy

)
. (17)

A lower DAP(S) value corresponds to higher resistance

against differential cryptanalysis. The ideal DAP is close to

zero, while the theoretical maximum is 1. Evaluating DAP

is important for assessing the S-box’s resilience against dif-

ferential analysis, with results for both the proposed and

literature-based S-boxes shown in Table 7.

Figure 5: Comparison of nonlinearity values for Boolean functions f0 − f7 across three proposed S-boxes. Each proposed S-box achieves consistently

optimal nonlinearity of 112, demonstrating strong resistance to linear cryptanalysis and uniform performance across all Boolean components.
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Table 7: Fixed point analysis of proposed mechanism.

S-box Fixed point Repulsive fixed points

Ref. [16] 0 0

Ref. [17] 3 1

Proposed S-box 1 0 0

Proposed S-box 2 0 0

Proposed S-box 3 0 0

5.5 Linear Approximation Probability (LAP)

For an S-box S: 𝔽 n
2
→ 𝔽m

2
, the Linear Approximation Prob-

ability (LAP) quantifies the maximum bias of any linear

approximation between input and output bits. It is defined

as:

LAP(S) = max
𝛼∈𝔽 n

2
∖{0},𝛽∈𝔽m

2

|||||
2WS

(
𝛼, 𝛽

)
2n

− 1
|||||
, (18)

where the Walsh-Hadamard correlation is given by:

WS

(
𝛼, 𝛽

)
=

∑
x∈𝔽 n

2

(−1)𝛼⋅x ⊕ 𝛽 ⋅ S(x) (19)

LAP values for the proposed and literature-based S-

boxes are presented in Table 6 to show their resistance to

linear cryptanalysis.

Figure 6 show a side-to-side comparison of the given

S-boxes (S-box 1, S-box 2, and S-box 3) with the existing

nonlinear confusion components of contemporary block

ciphers, evaluated across six basic cryptographic strength

indicators having a direct impact on cryptanalytic attack

resistance.

In nonlinearitymetric, all the proposed S-boxes achieve

an ideal uniform level of 112, which approaches the

upper theoretical limit of 8-bit balanced S-boxes and offers

fair resistivity against linear cryptanalysis by minimiz-

ing the correlation of the linear approximations and true

input–output mapping to a minimum degree. The output

of the Strict Avalanche Criterion (SAC) is kept decisively

around the ideal 0.5 boundary level, such that single-bit

input variation induces an even and extensive output vari-

ation and boosts unpredictability and slows down differen-

tial and statistical attack analyses. In the case of BIC with

reference to BIC-NL, the designs put forward again achieve

the ideal 112, with no exploitable linear relationships of out-

put bits among them which is a property useful in defying

correlation attack types. The BIC-SAC scores, again close to

ideal 0.5, confirm this independence of avalanche spread,

defying once more any statistical guess an attacker might

make.

The proposed S-boxes have the LAP among the low-

est seen (0.0620), thereby directly improving immunity to

Matsui’s linear cryptanalysis by minimizing the highest

success probability of linear approximations. Finally, the

DAP results (0.0156) are tied to the minimum achievable

limit for 8-bit S-boxes, thereby drastically restricting the

practicability of Biham–Shamir differential cryptanalysis

by minimizing the highest differential propagation proba-

bility. Figure 6 and Table 6, clearly reveal the fact that the

proposed S-boxes are not only comparable but, in some

cases, superior to existing confusion elements in crypto-

graphic power, and they possess better resistivity to a vast

spectrum of classical and modern block cipher assaults.

Figure 6: Visual comparison of cryptographic characteristics for the proposed S-boxes and existing nonlinear confusion components from modern

block ciphers.
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5.6 Bijectivity

Bijectivity is an important property of S-boxes in cryptog-

raphy, ensuring each input maps to a unique output and

every output have a distinct input. This one-to-one map-

ping prevents attackers from inferring input values from

outputs and adds critical confusion and diffusion to the

cryptographic process. In our case, the S-boxes meet the

bijectivity criterion by containing unique values from 0 to

255.

5.7 Fixed point analysis

A strong fixed point satisfies:

S−1(x) = x and S(x) = x. (20)

The number of strong fixed points is:

SF(S) =
{
x ∈ 𝔽 n

2
||S(x) = x and S−1(x) = x

}
. (21)

A cryptographically strong S-box should minimize

| (S)| to resist fixed-point attacks. Ideally, a secure S-box

has no fixed points (i.e., |F(S)| = 0). If FPR(S) deviates sig-

nificantly from
1

2n
, it may indicate structural weaknesses

exploitable in certain cryptographic attacks. The proposed

S-boxes (1, 2, and 3) contain no fixed points and no repul-

sive fixed points, which mean good resistance to fixed-

point attacks as shown in Table 8. Compared with [16,

17], the proposed S-boxes are superior, particularly to the

potential cryptanalytic weaknesses concerning fixed points.

The absence of fixed points ensures that no input remains

invariant under substitution, which enhances nonlinear-

ity and differential properties necessary for cryptographic

strength.

Table 7 outlines the fixed point analysis of the pro-

vided S-boxes against prevalent nonlinear confusion ele-

ments. In cryptography design, a fixed point, where S(x)

= x, or a repulsive fixed point, where inputs map close to

themselves under repeated application, introduces struc-

tural vulnerabilities exploitable in chosen-plaintext and

algebraic attacks. The proposed S-box 1, S-box 2, and S-

box 3 exhibit zero fixed points and zero repulsive fixed

points, ensuring the absence of identity mappings or short

cycles that could weaken cipher strength. This structural

robustness, combined with the high nonlinearity, optimal

SAC, and low LAP/DAP values demonstrated in Table 7,

confirms the proposedmechanism’s enhanced resistance to

linear, differential, and structural cryptanalysis, making it a

highly effective and secure choice for modern block cipher

architectures.

Table 8: Number of rows and columns to be added after zero padding.

Image Dimension Number of

rows to be

added

Number of

columns to

be added

Size after

zero

padding

Watch 1,024 × 768 0 0 1,024 × 768

Barbara 787 × 576 1 0 788 × 576

Peppers 512 × 512 0 0 512 × 512

Airplane 512 × 512 0 0 512 × 512

Girl 768 × 512 0 0 768 × 512

Monarch 768 × 512 0 0 768 × 512

Baboon 512 × 512 0 0 512 × 512

Cat 490 × 733 2 3 490 × 736

Aerial

parking

view

960 × 540 0 0 960 × 540

Riverfront

walkway

1,916 × 1,078 0 2 1,916 × 1,080

Waterpark

crowd

1,389 × 1,042 3 2 1,389 × 1,044

Outdoor

gathering

1,400 × 1,050 0 2 1,400 × 1,052

6 Proposed encryption scheme

The proposed encryption scheme follows SPN architec-

ture, leveraging structured linear transformations, alge-

braic mappings, and modular arithmetic in Mm×n
(
ℤn

)
to

ensure high security via diffusion and confusion mecha-

nisms. The steps are given as follows:

Step 1: Preprocessing and Image Partitioning

The image is partitioned into b × b blocks. If the image

is not multiple of b × b, zero padding is done. To make the

image divisible by block size 4 × 4, Table 8 lists the number

of rows and zeros to be added. By doing this the image gets

divisible by block size and can be portioned into blocks for

further process. Define the image as amatrix I ∈ Mm×n
(
ℤn

)
within the modular vector space. A projection mapping is

applied:

I′ = P(I), P:Mm×n
(
ℤn

)
→Mm′×n′

(
ℤn

)
, (22)

wherem′, n′ are the nearest multiples of block size b, ensur-

ing uniform partitioning into b × b subspaces for encryp-

tion operations.

Step 2: Permutation Transformation

To disperse the salient information in the image, the

blocks of images are permuted using a permutation trans-

formation. Using a logistic chaotic map, construct a permu-

tation matrix PM ∈ Mb×b
(
ℤn

)
as an algebraic transforma-

tion:

Row PM = sort
(
𝜆xt

(
1− xt

)
mod n

)
, (23)
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where xt follows a chaotic sequence. The number of rows

and blocks are checked in the image and based on that the

first row or column of the permutation matrix is generated

using Eq. (23), the remaining rows/columns are the shifted

version of first row/column. The dimensions of the permu-

tation matrix depend on the dimensions of blocks. Apply a

block-wise transformation via conjugation:

I′′ = PMI
′PT

M
, (24)

The scrambling and information spreading in the mod-

ular space are ensured. Themappingmatrix should be such

that the first row should contain unique numbers randomly

from 1 to G and the remaining rows will consist of numbers

that are shifted version of row 1 and it is also essential that

the columns must also contain unique values.

Step 3: Bit-Level Parity Mapping

The parity based mapping is data-dependent and pro-

vides immunity against the chosen plaintext. For this, define

a parity mapping operator  as an injective function action

onMb×b
(
ℤn

)
:

 : {0, 1}8 → {0, 1}8 (25)

where the bijective reordering function is defined as in

Eq. (26) ensuring permutation within each block by altering

the even and odd bit distributions.

P
(
bi
)
= b𝜋(i), 𝜋: even(b) ↦ odd(b) (26)

Step 4: Nonlinear Algebraic Substitution

Substitution replaces pixel values or bits using nonlin-

ear mappings, which breaks direct statistical relationships

between the original image and encrypted image, mak-

ing cryptanalysis much harder. Substitution is performed

using structured S-box transformations in the modular

space:

S
(
I′′
)
= S8×8

(
I′′
)
mod n, (27)

for an 8-bit substitution:

S
(
I′′
)
= S4×4

(
I′′
)
mod n, (28)

for a 4-bit transformation, ensuring cryptographic non-

linearity via structured algebraic mappings as shown in

Figure 7.

Step 5: Affine Key Mixing via XOR

Introduce a 128-bit encryption keyK and apply an affine

transformation via modular XOR:

I′′′ = I′′ ⊕ K mod n, (29)

where⊕ denotes the affine transformation under modular

addition inMm×n
(
ℤn

)
.

Figure 7: Illustration of the image encryption process using the proposed S-box. The plain image is first converted into binary form, and then

partitioned into least significant bits (LSBs) and most significant bits (MSBs). After binary-to-decimal conversion, the resulting values determine the row

and column indices used for S-box substitution. This mapping produces the encrypted image, ensuring strong pixel confusion and enhanced security.



L. Said et al.: Application in protection of saliency in digital information — 13

Step 6: Circular Shift Transformation

Apply a cyclic shift operator CSCS over the modular

space:

I′′′′ = CS
(
I′′′

)
, (30)

where

CS(I)i, j = I(i+k)mod m,( j+k)mod n, (31)

ensuring uniform spreading via structured matrix shifts in

Mm×n
(
ℤn

)
.

Step 7: Final Nonlinear Substitution and KeyMixing

A final round of S-box substitution is performed, fol-

lowed by key mixing:

Ienc = S
(
I′′′′

)
⊕ K mod n, (32)

Figure 8: Flowchart of the proposed hybrid image encryption scheme. The plain image is divided into blocks and processed through multiple S-box

substitution stages (4-bit and 8-bit), guided by modular conditions and a 128-bit key. Circular shift and parity-based bit permutation operations

enhance diffusion and confusion.



14 — L. Said et al.: Application in protection of saliency in digital information

ensuring maximal nonlinearity and resistance against

cryptanalytic attacks.

Decryption via Inverse Transformations

Decryption follows a structured sequence of inverse

transformations, restoring the original image:

I = S−1
(
CS−1

(
Ienc ⊕ K

))
P−1
M
, (33)

where each inverse function is systematically applied in

Mm×n
(
ℤn

)
to ensure accurate recovery. This encryption

framework provides robust diffusion, confusion, and alge-

braic security, making it highly resilient to differential and

statistical attacks while ensuring computational efficiency

in modular arithmetic spaces. The encryption scheme is

shown in Figure 8.

7 Security analysis

To check the immunity of the proposed scheme against var-

ious cryptographic threads, the security analysis is of vital

importance. The security analysis includes key analysis, his-

togram, differential, correlation and entropy analysis. To

check the protection of salient information we utilize crop-

ping analysis. For the speed of the encryption, throughput

analysis is carried out.

7.1 Encryption key analysis

In this examination, two critical analyses, Key Space analy-

sis and key sensitivity analysis, are employed and presented

accordingly.

7.1.1 Brute force analysis

A brute-force attack tries each possible encryption key in

a systematic way until the proper one is located. With the

scheme envisioned here, the implementation of a 128-bit

encryption key implies a key space of 2128 possible combi-

nations, which significantly exceeds the commonly recom-

mended cryptographic security threshold of 2100 [26]. Such a

large key space makes comprehensive key searches compu-

tationally infeasible for any practical adversary, even one

with powerful computing capabilities. Table 9 provides a

comparative evaluation of the new scheme’s key space with

recently established algorithms, showing large variability

across schemes. The AES standard, for example, also uses

128-bit key space (2128), with strong and highly reputable

security. While widening the key space particular beyond

2512 practical for brute-force resistance and future-proof

Table 9: Comparison of key space analysis of recently projected

encryption scheme.

Algorithm Key space length Comparison with 2100

Ref. [21] 2 Exceeds threshold significantly

Ref. [28] 2 Exceeds threshold

Ref. [29] 2 Exceeds threshold significantly

Ref. [30] 2 Exceeds threshold significantly

Ref. [31] 2 Matches threshold

Ref. [32] 2 Exceeds threshold

Ref. [33] 2 Exceeds threshold

Proposed 2 Exceeds threshold

security for the advent of new threats like quantum com-

puting but also provides trade-offs. Relatively large key sizes

require larger memory and increased processor power for

encryption and decryption and can have effects in real-time

or processor-starving environments, like IoT devices [27].

Our proposed scheme puts such consideration in a balanced

state with secure yet computationally feasible design.

7.1.2 Key sensitivity analysis

We carried out an exhaustive key sensitivity analysis to test

the strength of our encryption system. In experiment 1, the

encryption and decryption operation with Key 1 effectively

recovered the original image, validating the accuracy of the

decryption process. In Experiment 2, the original image was

encrypted using Key 1 but decrypted with Key 2, which had

only a single-bit change from Key 1. The output was a totally

distorted and unrecognizable image, as can be seen from

Figure 9. The radical change indicates the high key sensi-

tivity of our scheme, withstanding unauthorized decryption

and strengthening the system’s capability in protecting sen-

sitive information.

7.2 Histogram analysis

The three dimensional (3D) histogram is the graphical rep-

resentation of the frequency distribution of the pixel inten-

sities within an image, plotting the range of color combina-

tions within the RGB color space. For a flat image, natural

patterns and structures cause noticeable differences in the

histogram representation. This can be seen in Figure 10,

whereas some of the spheres in the 3D space are clearly

larger, and others are smaller. The varying sizes of the

spheres indicate that certain color combinations occurmore

frequently than others. The random placement of spheres

at different positions in the 3D cube signifies the presence

of different distributions of colors in the original image.
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Figure 9: Key sensitivity analysis of suggested encryption algorithm. The image decrypted with one bit changed key does not convey any useful

information. (a) Plain image, (b) enciphered image, (c) correctly decrypted image, (d) decrypted image with changed key.

Figure 10: Histogram analysis of the encrypted image. The pixel intensity distribution appears nearly uniform, indicating that encryption effectively

conceals statistical features of the original image. This uniformity demonstrates strong resistance against histogram-based and statistical attacks.

When the image is encrypted using the proposed scheme,

the cryptographic operation destabilizes the inherent pat-

terns, achieving a high level of diffusion and confusion. The

3D histogram is now evenly distributed, tiling the cube with

spheres of equal area. This homogeneity suggests that all

color combinations are equally probable, eliminating any

prevailing colors or structural dependencies. The absence

of variation among the sizes of spheres shows that the
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distribution of pixel intensity is ideally balanced, in favor

of the strength of the encryption mechanism. The transfor-

mation of the histogram from non-uniform to a uniform

distribution confirms the success of the proposed encryp-

tion technique. A uniformly distributed 3D histogram is

one of the main signs of high entropy, reducing statistical

leakages that might be used in cryptanalysis. The elimina-

tion of structured patterns in the encrypted image demon-

strates better resistance to statistical and color-based dif-

ferential attacks. Effectively, the uniformity illustrated in

Figure 10 that verifies the proposed scheme achieves a good

security level by keeping an equal distribution of colors

across the RGB space, making it highly resistant to crypto-

graphic attacks. The detail of three dimensional histograms

was introduced.

Figure 11 presents the histogram analysis of the pro-

posed encryption scheme for two test images. The sub-

figures (a–d) and (i–l) show the original images with

their respective red, green, and blue channel histograms,

where distinct peaks reflect the uneven distribution of pixel

Figure 11: Histogram analysis of the encrypted image. The pixel intensity distribution appears nearly uniform, indicating that encryption effectively

conceals statistical features of the original image. This uniformity demonstrates strong resistance against histogram-based and statistical attacks.
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intensities typical of natural images. After encryption,

shown in (e–h) and (m–p), the histograms for all three color

channels become uniformly distributed, indicating that the

encrypted images have no visible statistical patterns from

the originals. This uniformity demonstrates the scheme’s

effectiveness in concealing image characteristics, thereby

enhancing resistance against statistical attacks.

Figure 12 shows the three-dimensional histograms of

the plain and encrypted images for two test cases. In the

original images (a–d, i–l), the histograms exhibit sharp

peaks and concentrated clusters, indicating strong correla-

tions between neighboring pixel intensities, which is a com-

mon trait in natural images. After encryption (e–h, m–p),

the histogramsbecomeuniformly dispersed across all inten-

sity bins, with no visible peaks or patterns. This trans-

formation confirms that the proposed encryption scheme

effectively removes inherent pixel correlations, making the

encrypted images statistically indistinguishable and more

secure against histogram-based cryptanalysis.

7.3 Differential analysis

Exploiting the encryption algorithm’s sensitivity to small

changes in the original image, attackers conduct differential

attacks. By making minute alterations to the original image,

they encrypt both versions using the same secret key, aiming

Figure 12: Three dimensional histograms analysis of the encrypted image. The pixel intensity distribution appears nearly uniform, indicating that

encryption effectively conceals statistical features of the original image. This uniformity demonstrates strong resistance against histogram-based

and statistical attacks.
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Figure 13: Differential analysis of the proposed encryption scheme. The metrics NPCR and UACI show high values, indicating that small changes in the

plain image produce significant differences in the encrypted image. This confirms strong resistance against differential attacks.

to discern the relationship between the resulting cipher

texts. To thwart such attacks, the encryption system should

produce vastly different cipher texts even with slight modi-

fications to the original image, indicating strong sensitivity.

Two analyses are employed to assess the system’s resilience

against such attacks one is the universal average change

intensity (UACI) and the other is thenumber of pixels change

rate (NPCR). UACI measures the disparity in average inten-

sity between two encrypted images derived fromanoriginal

and a slightly altered single-pixel version. Themathematical

expression for NPCR is given as Eq. (34):

UACI =
∑
a,b

E(a, b)− E′′(a, b)
255 × N ×M

, (34)

where N × M represents image dimensions, E(a, b)

denotes the encrypted plain image, and E′′(a, b) signifies

the encrypted modified image. UACI values are displayed

in Figure 13, compared with a recently developed cryp-

tosystem in Table 10. NPCR, calculated between encrypted

images derived from the original and a single pixel modi-

fied version, quantifies the percentage change in pixels. A

high NPCR value indicates robust immunity to differential

attacks in a cryptosystem. Equations (35) and (36), outlines

its computation:

NPCR =

∑
a,b

D(a, b)

M × N
× 100 %, (35)

Table 10: Comparison of NPCR and UACI of recently encryption scheme

for 512 × 512 images of Lena.

Algorithm NPCR UACI

Ref. [34] 99.61 33.46

Ref. [35] 99.63 –

Ref. [29] 99.61 32.50

Ref. [36] 99.60 32.18

Proposed 99.60 33.50

D(a, b) =
⎧
⎪⎨⎪⎩

0 if E(a, b) = E′(a, b)

1 if E(a, b) ≠ E′′(a, b)
(36)

where N × M represents image dimensions, E(a, b) stands

for the encrypted plain image, and E′′(a, b) denotes the

encrypted modified image are shown in Figure 13, NPCR

values are compared with a recently developed cryptosys-

tem in Table 11.

7.4 Correlation analysis

The correlation coefficient (CC) is a key statistical measure

for dependency of the neighboring pixels and offers a direct

estimate of the encryption efficiency in disturbing the

spatial redundancies. In the case of any image, the values

of the CC are calculated in the horizontal direction (HC),

vertical direction (VC), and diagonal direction (DC) and

are bounded in the range [−1, 1]. A CC of 1 reflects perfect

linear dependency, a CC of 0 indicates no correlation, and

a CC of −1 denotes complete negative correlation. In the

flat image, Table 11 depicts CC values near unity (≈0.98) in
all orientations for the Lena benchmark, highlighting its

inherent vulnerability due to strong pixel associations. In

contrast, our proposed RNN–chaos-based S-box encryption

mechanism drastically suppresses these correlations,

yielding CC values near zero across all directions,

thereby eliminating exploitable patterns. This substantial

decorrelation serves as a formidable defense against

statistical and differential cryptanalysis, ensuring that the

cipher image exhibits near-random structural properties.

The visual evidence in Figure 14 further corroborates the

numerical results. In the plain image correlation plots

(Figure 14a, c, and e), pixel clusters are tightly concentrated

along the principal diagonal, indicative of strong linear

associations. Post-encryption (Figure 14b, d, and f), the

pixel distributions become uniformly scattered, illustrating

the algorithm’s capacity to dismantle deterministic

dependencies. This decorrelation, driven by the synergy

of chaotic sequence-driven pseudo-random number
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Table 11: Correlation analysis of the proposed encryption scheme.

Image Original Encrypted Image Original Encrypted

Lena

Vertical 0.97266 0.00231

Monarch

Vertical 0.8953 0.0154

Horizontal 0.94555 0.0032 Horizontal 0.8433 0.0542

Diagonal 0.921301 0.0008 Diagonal 0.8129 0.0046

Barbara

Vertical 0.949987 −0.0051
Baboon

Vertical 0.8261 0.0047

Horizontal 0.91338 −0.0034 Horizontal 0.8737 0.0060

Diagonal 0.8707 −0.00233 Diagonal 0.7843 0.0020

Peppers

Vertical 0.97051 −0.0015
Cat

Vertical 0.9091 −0.0034
Horizontal 0.96347 0.0018 Horizontal 0.9623 −0.0019
Diagonal 0.93652 0.0035 Diagonal 0.8798 −0.0034

Airplane

Vertical 0.930144 −0.0034
Girl

Vertical 0.9921 0.0049

Horizontal 0.93640 0.0031 Horizontal 0.9755 0.0034

Diagonal 0.88191 0.0073 Diagonal 0.9705 −0.0023

Sails

Vertical 0.884244 0.0010

Watch

Vertical 0.9206 −0.0037
Horizontal 0.8389 −0.0198 Horizontal 0.9208 −0.0052
Diagonal 0.7817 −0.01251 Diagonal 0.8988 −0.0069

Aerial parking view

Vertical 0.989939 0.000928

Glass bridge walkway

Vertical 0.941963 0.001202

Horizontal 0.918405 0.006507 Horizontal 0.972396 0.000852

Diagonal 0.964264 0.003373 Diagonal 0.996383 0.006049

Outdoor sports court

Vertical 0.948632 0.002375

Riverfront walkway

Vertical 0.924528 0.000552

Horizontal 0.961195 0.002576 Horizontal 0.972169 0.003173

Diagonal 0.999272 0.004021 Diagonal 0.993953 0.005287

Lakeside pathway

Vertical 0.898726 0.006727

Waterpark crowd

Vertical 0.941963 0.0068

Horizontal 0.978619 0.007899 Horizontal 0.972396 0.002985

Diagonal 0.900481 0.006322 Diagonal 0.996383 0.004454

Urban street view

Vertical 0.911549 0.002805

Outdoor gathering

Horizontal 0.967445 0.005177

Horizontal 0.897174 0.004935 Diagonal 0.980877 0.00321

Diagonal 0.968902 0.005121 Vertical 0.96752 0.008616

generation and RNN-optimized S-box transformations,

exemplifies the strength of the proposed scheme in

concealing salient visual structures and preserving

confidentiality under high-stakes imaging scenarios.

7.5 Cropping analysis

As discussed in the earlier sections of this write up that

the available lightweight encryption schemes are subjected

to cropping and noise attack. In this section of the article,

we have to check the immunity of the encryption scheme

against cropping and noise attacks. The noise and crop-

ping alter pixels values; therefore, separate analysis is not

necessary. Figure 15 shows the Impact of increasing pixel

loss on the decryption quality of an encrypted cameraman

image using the proposed scheme. Figure 15(a) shows the

encrypted image and Figure 15(b) shows the decrypted cam-

eraman. In (c, e, g, i, k), progressive pixel loss is introduced

in the top-left region of the encrypted image 12.5 %, 16.7 %,

25 %, 33.3 %, and 50 %, respectively. The corresponding

decrypted results in (d, f, h, j, l) show preserved structural

and salient features, such as face details, despite significant

data loss. This demonstrates the scheme of strong resistance

to cropping attacks and its ability to retain critical visual

information under pixel loss conditions. To quantitatively

assess the encryption scheme’s ability to preserve structural

integrity under conditions such as burst errors, cropping, or

data loss, the Structural Similarity Index (SSIM) is employed.

SSIM evaluates the perceived quality and structural simi-

larity between two images, with values ranging from 0 to

1. A score near 1 indicates strong structural resemblance,

while a score near 0 reflects significant differences. Given

an original image Iorig and an encrypted image Ienc, SSIM is

computed as:

SSIM
(
Iorig, Ienc

)
=

(
2𝜇orig𝜇enc + C1

)(
2𝜎orig,enc + C2

)
(
𝜇2
orig

+ 𝜇2
enc

+ C1

)(
𝜎2
orig

+ 𝜎2
enc

+ C2

) ,

(37)
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Figure 14: Visualization of horizontal (HC), vertical (VC), and diagonal (DC) pixel correlations for the original and encrypted Baboon images. The

original image shows strong pixel correlations, while the encrypted image exhibits a random scatter distribution, confirming effective decorrelation

and high security against statistical attacks. (a) Vertical CC analysis of Baboon, (b) vertical CC analysis of encrypted Baboon, (c) horizontal CC analysis

of original Baboon, (d) horizontal CC analysis of encrypted Baboon, (e) diagonal CC analysis of original Baboon, (f) diagonal CC analysis of encrypted

Baboon.

where 𝜇orig and 𝜇enc are the mean luminance values

of the original and encrypted images, 𝜎2
orig

and 𝜎2
enc

are

their variances, 𝜎orig,enc is the covariance between them,

C1 and C2 are small positive constants that stabilize the

computation when the denominators are near zero.

In cryptographic image evaluation, a low SSIM value

between Iorig and Ienc indicates strong encryption, as

it implies minimal structural similarity and hence

negligible leakage of visual information. Conversely,

in salient-information-preserving encryption schemes,

SSIM may be deliberately higher within predefined

Regions of Interest (ROIs) to maintain decision-critical

details while remaining low in non-salient regions to

ensure confidentiality. SSIM is calculated between the

original images and the decrypted images affected by

cropping. The SSIM results for various cropping ratios

are presented in Table 12. SSIM values approaching 1

indicate that the structural content of the original image

is well preserved, even after significant pixel loss. This

confirms the encryption scheme’s robustness, as it prevents

unauthorized extraction of meaningful visual information

while maintaining high structural fidelity.

Table 12 listed SSIM values for the image subjected

to varying levels of cropping. Higher SSIM values indi-

cate stronger structural resemblance between the cropped

decrypted images and the originals. The results demon-

strate the proposed encryption scheme’s robustness against

cropping and burst errors, effectively preserving structural

integrity even under substantial pixel loss.

7.6 Man-in-the-Middle (MITM) attack

Man-in-the-Middle (MITM) attack is a severe threat where

data is intercepted, modified, or injected in between

communicating parties. In encrypted image transmission,
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Figure 15: Decryption results under pixel loss conditions. The proposed encryption scheme demonstrates strong robustness against cropping

and data loss, successfully recovering the main visual content and preserving salient image features despite missing pixel regions.

attackers may attempt chosen-ciphertext attacks to modify

ciphertext and monitor system behavior when decrypting.

The proposed chaos and RNN-based encryption algorithm

offer strong resistance to MITM attacks through multiple

Table 12: SSIM measurements of cropped images with original image.

Cropping ratio SSIM

No cropping 1.0000

1/8 cropping 0.9986

1/6 cropping 0.9987

1/4 cropping 0.9824

1/3 cropping 0.8781

1/2 cropping 0.7598

security layers. In the first place, it employs a 128-bit secret

key, offering 2128 combinations, making brute-force attacks

infeasible. Even a single change in the key produces a

totally different ciphertext, as can be seen from Figure 11,

foiling the attempts of attackers to predict or manipulate

encrypted data. Second, disorderly block shuffling confuses

image blocks with a logistic chaotic map so that attackers

cannot restore the original image without accurate infor-

mation about block locations. Third, a nonlinear S-box

generated using RNN improves confusion, satisfying the

Strict Avalanche Criterion (SAC) that even slight changes in

ciphertext produce extremely different decrypted results,

disabling any effort to inject or alter data. These collective

mechanismsmakeMITM interception ineffective, providing

unbroken security for IoT-based image encryption.
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Figure 16: Test findings of the proposed cryptosystem based on NIST SP 800-22 statistical experiments. The results show that all tested sequences

pass the randomness criteria, confirming the proposed system’s strong statistical performance and suitability for secure cryptographic applications.

7.7 Data injection attack

The proposed encryption technique enhances image secu-

rity against data injection attacks by causing even cropped

or manipulated encrypted images to retain essential visual

information upon decryption though with degradation, as

shown in Figure 16. The application of chaotic block shuf-

fling disrupts the location of injected or manipulated data,

rendering unauthorized alteration meaningless. The RNN-

based nonlinear S-box transformation also increases con-

fusion so that even a slight alteration in encrypted data

causes drastically different decrypted output, thereby effec-

tively thwarting pattern injections and desired changes. By

combining multi-round XOR operations, bit permutations,

and S-box substitutions, the scheme diffuses information in

a chaotic way, destroying any tampering attempt. Despite

cropping attacks or burst errors, the encryption scheme

preserves the integrity of key visual content such as facial

contours in surveillance videos ensuring aggressive protec-

tion in IoT applications. Data injection attempts ultimately

collapse, being unable to manipulate meaningful content,

embedding uncompromising security and tenacity in real-

world applications.

7.8 NIST analysis

To validate the randomness in the encrypted image,

encrypted through the proposed lightweight encryption

scheme is tested utilizing the NIST 800-22 test suite. For

successful passage of each test in the suit a p value exceeding

0.01 is required. The outcomes are presented in Figure 16,

and it is affirmed from this investigation that the encrypted

image complies with all the tests listed in NIST 800-22.

7.9 Chosen plaintext attack

The 128-bits key and its circular shifted version XORed with

each block and the blocks are permuted using chaotic gen-

erated permutation matrix. The resulting image is heav-

ily dependent on key and permutation matrix. Hence it is

not possible for the attacker to predict the output, even by

choosing the plaintext. Moreover, the bit level parity mak-

ing further harder the success of chosen plaintext attacks.

This combination of block permutations, key XORing and bit

level parity mapping hides the relation between the chosen

plain image and its cipher image.

7.10 Chosen cipher text attack

The same complex process is used in the decryption phase.

The proposed encryption scheme applies nonlinear substi-

tution at two distinct stages (Steps 4 and 7). These layers

introduce high confusion and nonlinearity, making differ-

ential patterns difficult to trace in chosen cipher text attack.

Secondly the encryption scheme utilizes a chaotic permuta-

tionmatrix derived froma logisticmap to disrupt the spatial

locality of image pixels. Even minor changes in cipher text

blocks result in unpredictable shifts, making it infeasible for

the attacker to isolate meaningful patterns.

7.11 Throughput analysis

Encryption speed analysis measures the time an algorithm

takes to process data, expressed as throughput. High

throughput is crucial for performance, especially in data

communication and IoT applications. The proposed encryp-

tion scheme’s throughput was assessed on a personal



L. Said et al.: Application in protection of saliency in digital information — 23

Figure 17: Throughput analysis of the proposed encryption scheme. The results indicate a high throughput, demonstrating the scheme’s

computational efficiency and suitability for real-time or large-scale image security applications.

Table 13: Throughput analysis of the proposed LWE and comparison

with state of the art LWEs.

Encryption

scheme

Time in

seconds

Size of

data (bytes)

Throughput

in KB/s

AES [37] 64 513,024 7.828125

HIGHT [38] 159 513,024 3.1509433962

ITUBee [39] 0.0842 40 0.463925178

Lilliput [40] 0.1218 32 0.2565681

PRESENT 0.1488 128 0.840053

Proposed 59 513,024 8.695322

computer featuring an Intel(R) Core(TM) i7-7700 CPU, oper-

ating at 3.60 GHz, with 8GB of RAM and running on the

Windows 10 platform. The results, shown in Figure 17,

and Table 14, show that the proposed scheme outperforms

recent LWE schemes in throughput.

Figure 17 presents a bar chart illustrating the through-

put analysis of the proposed encryption scheme across vari-

ous images. The average throughput benchmark (8.675 kB/s)

serves as a reference point for evaluating performance con-

sistency. Higher throughput values indicate faster encryp-

tion processing, making the proposed scheme suitable for

high-speed encryption applications in real-world scenarios

(see Table 13).

7.12 RAM storage and suitability for IoT
deployment

The RAM footprint of an encryption algorithm is a deci-

sive factor in determining its suitability for resource-

constrained environments such as IoT and embedded sys-

tems. As shown in Table 14, the proposed chaos–RNN-

based scheme requires 40,812 bytes of RAM, which is

slightly lower than AES (43,119 bytes) yet higher than ultra-

lightweight algorithms such as PRESENT (3,430 bytes), Lil-

liput (4,394 bytes), and ITUBee (6,207 bytes). While these

Table 14: Comparison of algorithm size with state of the art lightweight

encryption techniques.

Encryption scheme Size in bytes

AES [37] 43,119

PRESENT 3,430

ITUBee [39] 6,207

Lilliput [40] 4,394

HIGHT [38] 12,744

Proposed 40,812

smaller ciphers offer superior memory efficiency, they do

so at the expense of reduced cryptographic strength and

limited resistance to advanced attacks. In contrast, the pro-

posed scheme strikes a deliberate balance between secu-

rity and efficiency, integrating high-strength cryptographic

features, such as an S-box nonlinearity of 112, effective

linear and differential attack resistance, and information-

preserving functions for key information, in a memory size

variable for implementation in mid-level edge computing

and IoT devices. Minimizing S-box storage, RNN calcula-

tions, and buffer spacewill form the future research agenda

for ultra-constrained IoT nodes with small memory of a

few kilobytes for decreasing the memory required without

losing the efficacy of the encryption.

7.13 Discussion on lightweight encryption

Due to the low computational complexity, efficient mem-

ory usage, and high throughput, the proposed encryp-

tion scheme qualifies for lightweight cryptographic solu-

tions for the IoT devices. The proposed encryption scheme

utilizes a block-based design, dividing the image into

4 × 4 blocks, which allows for localized and paralleliz-

able operations,minimizing both processing time andmem-

ory overhead. The use of a simple one-dimensional logis-

tic map for permutation ensures efficient key-dependent
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scrambling with minimal arithmetic operations. Addition-

ally, the bit-level parity mapping is implemented using

lightweight logic operations that do not introduce any sig-

nificant computational burden. Substitution is achieved

using pre-generated S-boxes obtained from RNN models,

which are stored as lookup tables to avoid runtime neural

computations, thereby reducing complexity and memory

access latency. The affine key mixing is performed via XOR

operations, which are natively supported by hardware and

the operation is computationally inexpensive. The use of

modular arithmetic, simple logic, and avoidance of heavy

mathematical primitives like matrix inversion or elliptic

curve operations further reinforce its lightweight nature.

Based on the throughput and RAM analysis provided in

Table 14, the proposed encryption scheme demonstrates

favorable lightweight characteristics when compared with

state-of-the-art lightweight encryption (LWE) algorithms.

Although the RAM usage of the proposed scheme is

40,812 bytes, which is higher thanmost lightweight schemes

like PRESENT (3,430 bytes), Lilliput (4,394 bytes), and ITUBee

(6,207 bytes), it remains lower than AES (43,119 bytes). Given

that all schemes were implemented and tested under the

same MATLAB 2017b environment on the same hardware,

the trade-off between higher speed and moderate RAM

usage is acceptable, especially for image-based applica-

tions where performance is critical. Therefore, the pro-

posed scheme can still be classified as lightweight, offering

a balance between computational efficiency and memory

requirements.

8 Conclusion with future

recommendations

This paper puts forward a chaos–RNN-based lightweight

encryption system for the encryption of the most promi-

nent image regions in IoT applications. The new design

sustains an average S-box nonlinearity of 112, near the the-

oretical optimal and directly supporting resistance to linear

attack by decreasing linear correlations, improves the Strict

Avalanche Criterion (SAC) and Bit Independence Criterion

(BIC) for improved diffusion, reduces LinearApproximation

Probability (LAP), and indirectly the Differential Approx-

imation Probability (DAP), supporting resistance to linear

and differential attack respectively. These cryptographic

strengths are tempered by a UACI of 33.50 % and NPCR of

99.60 %, ensuring high sensitivity to plaintext changes. The

scheme provides a throughput of 8.695 KB/s, outperforming

AES and other lightweight cryptosystems, and demonstrates

robustness against cropping and burst errors, enabling

accurate reconstruction even after 30 % data loss. NIST SP

800-22 tests validate utmost statistical randomness. Though

RNN training and S-box generation add computational over-

head for highly resource-constrained IoT devices, future

research will address optimizing computational efficiency,

minimizing thememory footprint, applying the approach to

multimedia formats, and adding post-quantum resilience.

These results represent a critical step toward AI-driven,

cryptographically secure, and lightweight encryption opti-

mally tailored for next-generation IoT environments.
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