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Abstract: By optimizing energy utilization and integration,
microgrids can improve the reliability of energy supply,
reduce energy operating costs, and decrease energy emissions.
However, there is insufficient coordination between energy
interaction and low-carbon operation systems, resulting in
increased carbon emissions and energy waste. Therefore, a
low-carbon economic optimization method for microgrid clus-
ters is built based on energy interaction operation strategies.
This method adopts a multi-energy collaborative operation
mode to construct a low-carbon optimization model for micro-
grid clusters. In the comparison of operating costs between
microgrid clusters with and without energy interaction, for
microgrids A, B, and C, when there was energy interaction,
the operating costs of microgrids A and B both decreased by
25,400 RMB and 16,400 RMB, respectively, while the operating
cost of microgrid C increased by 5,200 RMB. In terms of pur-
chasing electricity costs, the purchasing electricity costs of
microgrids A, B, and C all decreased in the energy interaction.
In terms of purchasing gas costs, the purchasing cost of micro-
grid A slightly increased, while the purchasing cost of micro-
grids B and C decreased. Adopting energy interaction strategies
has a positive effect on the economic cost of purchasing energy.
After energy interaction, the purchasing demand of microgrid
Awas less than 4,000 kW, andmost of the time, the purchasing
energy demand was low. However, compared with before
energy interaction, the purchasing demand of microgrids
B and C significantly decreased. In the cost of carbon sales
on microgrids, microgrids A, B, and C increased by $213.73,
$230.02, and $415.92, respectively, in scenarios 1–3. The
designedmethod has a promoting effect on the comprehensive
operational economy and low-carbon emissions of microgrid

clusters, providing technical references for the safety, stability,
and environmental protection of microgrid clusters.

Keywords: energy interaction, microgrid cluster, low
carbon economy, optimization, operation strategy

1 Introduction

With the increasingly severe energy crisis and environ-
mental issues, stable energy supply and energy conserva-
tion have become a global issue. The development and
utilization of new energy technologies and small-scale
power systems have also attracted widespread attention
[1]. As a new distributed energy supply system, microgrids
can integrate multiple energy sources and loads to achieve
efficient utilization of energy. Various energy sources in
microgrid systems are generally renewable, and the opera-
tional strategy of microgrids can achieve optimized energy
allocation, thereby reducing energy waste, pollutant emis-
sions, and lowering energy supply costs. Wind power and
photovoltaic power generation have been widely used in
renewable energy. Although they have advantages, their
uncertainty and randomness have led to key safety, stabi-
lity, and economic issues. The uncertainty of renewable
energy and load demand has become a crucial issue, which
has an obvious impact on the microgrid operation [2].
Multi-microgrid (MMG) systems are considered suitable
candidates for wind power deployment. Although MMG
systems can effectively utilize wind power generation,
uncertainty and randomness still have impact on the sche-
duling and operation.

In response to the above issues and challenges, many
scholars have carried out optimization research on micro-
grid energy operation. Chen et al. proposed a new cumu-
lative relative regret decision method to optimize energy
management, considering the inherent uncertainties asso-
ciated with such systems. The traditional optimization model
was enhanced by incorporating the demand response of heat
load. The proposed method ensured the elasticity of
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microgrids, minimized the conservatism of microgrid opera-
tion, and verified its effectiveness [3]. To address the inherent
uncertainty of wind power and implement an optimized
scheduling strategy for MMG systems, Liu et al. proposed
an adjustable robust optimization (ARO) based on meteoro-
logical clustering. This model performed well in improving
the accuracy of wind power generation descriptions, enhan-
cing cost-effectiveness, and declining carbon emissions [4].
Given the inevitable uncertainty brought by renewable
energy and load demand, achieving reliable online energy
dispatch for microgrid clusters has become challenging. To
enhance privacy protection and overall convergence, Xie
et al. proposed a decentralized decomposition and coordina-
tion approach on the basis of the multiplication alternating
direction approach. A groundbreaking off-grid microgrid
cluster energy management strategy on the basis of tubular
model predictive control was designed [5]. To integrate
demand response into the MMG based on renewable energy,
Alamir proposed an improved algorithm to optimize energy
management. The peak load reduction rate increased signifi-
cantly from 13.9 to 16.13% without a hydrogen energy storage
system, and from 12.68 to 16.46%with an integrated hydrogen
energy storage system [6]. Fan et al. developed a deep low-
carbon economic optimization strategy for the integrated
energy system (IES). The method considered carbon trading,
coal consumption, penalties for renewable energy emission
reductions, and natural gas costs. The method reduced
carbon emissions and operating costs. Its performance was
better than IES without CCUS, reducing costs by 8.8% and
carbon emissions by 70.11% [7].

To address environmental pollution and conflicts of
interest among multiple stakeholders in IES, Wang et al.
built a new IES low-carbon economic collaborative optimi-
zation strategy on the basis of carbon trading mechanisms
and Stackelberg game theory. The economic and environ-
mental optimization scheduling of IES was achieved in a
carbon-constrained environment [8]. Yan et al. established
a bilateral distributed operation optimization model based
on game theory. The experimental results confirmed that
the economic benefits were enhanced, with power and
heat loss rates of 0 and 0.00059%. The energy supply effi-
ciency significantly enhanced, and the total carbon emis-
sions declined by 8.64% [9]. The new energy used in the
power grid declined carbon emissions. However, the
output of wind power generation was unpredictable,
which made it difficult to manage the power grid and
increased the demand for carbon emission control. Yu
et al. built a low-carbon economic dispatch strategy based
on renewable energy and flexible resource cooperation.
This strategy addressed the operational risk of wind power
output randomness. The results verified its effectiveness

[10]. The complex market environment posed a serious
challenge to the coordination of bidding strategies for
multi-energy virtual power plant (MEVPP) between hetero-
geneous supply-side devices and demand-side users. In a
recent publication, Wu et al. proposed a multi-objective
MEVPP bidding strategy with different energy flows. Com-
pared with the profit-oriented optimization, the multi-
objective optimization with solutions led to a 46% decrease
in profits and an 8% increase in satisfaction. Compared
with a single-oriented optimization, a 5.2% decrease in
satisfaction led to a profit increase of approximately
103% [11]. Yang et al. built an optimization scheduling
model based on combined cooling, heating, and power
generation and carbon capture devices, with the objective
function of minimizing the total costs. A low-carbon and
economical optimization scheduling model was developed
based on the operational constraints of multiple energy
flows in the IES. The total costs of hierarchical carbon
trading were reduced by 5.9%, and the total operating costs
were shorted by 3.1% [12]. The continuous advancement of
renewable energy technologies has significantly increased
the complexity and scale of power system architecture. To
achieve low-latency data processing, emerging smart energy
systems were usually deployed. This method ensured that
microgrids made optimal cost control decisions under load
balancing conditions. Therefore, Chen et al. proposed a two-
layer optimization control model, which included an upper
layer optimization control module and a lower layer optimi-
zation control module. The upper and lower modules worked
together to provide information for system-wide decision-
making. Subsequently, through a series of tests, the dual-layer
optimization model was proven to be a feasible solution [13].
Domestic and foreign scholars have conducted extensive
research on the energy operation optimization of microgrids.
For example, the cumulative relative regret decision strategy
proposed by Chen et al. enhanced the traditional microgrid
energy management optimization model, improved system
resilience, and reduced operational conservatism. Liu et al.
effectively improved the accuracy of wind power generation
description, enhanced cost-effectiveness, and reduced system
carbon emissions through an ARO model based on meteor-
ological clustering. In addition, the decentralized decomposi-
tion and coordination algorithm proposed by Xie et al., as well
as the improved optimization algorithm proposed by Alamir
solved the energy scheduling problem ofmicrogrid clusters to
some extent.

In summary, researchers have conducted some research
on low-carbon economy optimization in microgrid clusters,
including MMG systems, microgrid cluster energy manage-
ment, and deep low-carbon economy optimization strategies.
However, the application of energy interaction strategies to
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optimize the operation of microgrid clusters is not deep
enough. Therefore, an innovative low-carbon economic opti-
mization method for microgrid clusters based on energy
interaction operation strategy is proposed to analyze energy
interaction and multi-energy collaboration of microgrid wind
and photovoltaic power generation, providing a technical
basis for low-carbon economic optimization of microgrid
clusters. An innovative optimization algorithm based on
energy interaction operation strategy is designed, which inno-
vatively comprehensively considers the energy demand,
renewable energy output, and grid constraints of each
microgrid in the microgrid cluster, achieving multi-energy
coordinated operation. Therefore, in the field of microgrid
optimization, this study provides new ideas and methods for
microgrid optimization and provides a solid technical foun-
dation for the low-carbon economic optimization of micro-
grid clusters.

The article structure of this study is as follows. The
first section focuses on elaborating the process of the
low-carbon economic optimization method for microgrid
clusters based on energy interaction operation strategy,
which is also the focus and innovation. The second section
demonstrates the experimental verification. The third sec-
tion draws conclusions and exhibits shortcomings and
directions that need to be further explored in the future.

2 Methods and materials

This study innovatively constructs a low-carbon economic
optimization method for microgrid clusters based on an

energy interaction operation strategy. First, the microgrid
energy interaction is achieved by combining an energy
interaction operation strategy. Then, the multi-energy col-
laborative operation is adopted. A low-carbon economic
optimization model for microgrid clusters is constructed.

2.1 Energy interaction operation strategy
between microgrid clusters

Microgrid is an energy supply method based on small-scale
energy systems, aimed at meeting the energy needs of spe-
cific regions or groups. It is composed of various sources,
such as solar energy, wind energy, and traditional power
networks [14,15]. In energy interconnection, the reliability
and stability of the energy supply are crucial. This can be
achieved by establishing an intelligent energy dispatch
system. The intelligent energy dispatch system can monitor
and control the generation and consumption of various
energy sources in microgrids, meet user energy needs
through reasonable energy resources, and ensure the
normal operation [16,17]. Through energy interconnection,
not only can the reliability of energy supply be improved,
but also the operating costs can be reduced. Figure 1 dis-
plays the typical microgrid power supply architecture.

In Figure 1, the energy supply structure of microgrid
clusters is mainly divided into energy production, conversion,
storage, and utilization equipment. The main sources of
energy supply are wind power generation, natural gas, and
photovoltaic power generation [18]. However, there is cur-
rently insufficient cost optimization and energy synergy for

Natural Light Natural wind Natural gas

Superior power grid

Wind power generation

Photovoltaic power generation

Gas turbine unit

Electric refrigeration Electric to gas conversion
Electric heating

Electric hydrogen production Thermal cooling

Cold insulation
Electric power 

storage
Gas storage Heat storage

Cooling load Electric load Heat load

Figure 1: Microgrid cluster energy supply structure.
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multi-energy supply. A low-carbon economic optimization
method for microgrid clusters is built based on energy inter-
action operation strategies. The core of the energy interaction
operation strategy between microgrids is to achieve efficient
energy utilization and system stability by coordinating the
supply and demand of different energy sources. Carbon
trading price, abbreviated as carbon pricing, is a mechanism
for clearly pricing greenhouse gas emissions in units of
carbon dioxide equivalent per ton. At present, there are var-
ious forms of carbon pricing mechanisms in the industry,
among which the most important are carbon emissions
trading markets and carbon taxes. The carbon emissions
trading market is a market-based energy-saving and emission
reduction policy tool. Companies included in the carbon
trading system need to set a unit carbon emission quota for
every ton of carbon dioxide emitted. These companies can
implement internal emission reduction measures to reduce
emissions, obtain or purchase these quotas, or engage in
quota trading with other companies. To achieve the stability
and economy of microgrids, a distributed functional oper-
ating cost model is constructed based on multi-energy micro-
grid carbon trading and energy supply costs, combined with
carbon emission trading schemes. Taking wind-solar units as
an example, the schematic diagram is presented in Figure 2.

There are multiple forms of energy interaction and
collaborative operation in multi-energy microgrid systems.
An energy interaction strategy that considers multi-energy
collaboration is proposed. Energy interaction can be
divided into three types: decentralized, centralized, and
mixed modes. The spatial position and collaboration of
spatial interaction objects in multi-energy microgrid clus-
ters are important parts of achieving energy interaction
[19,20]. The centralized energy strategy refers to managing
and allocating energy through a unified and centralized
energy system. The decentralized energy strategy refers
to dispersing energy facilities to multiple locations and

providing energy through a distributed energy system.
The hybrid energy strategy refers to the optimization and
combination of different types of energy to achieve com-
plementarity and mutual promotion, and improve the sta-
bility and reliability of the overall energy system. In terms
of cost reduction, centralized energy systems can purchase,
store, and distribute energy on a large scale, thereby
enjoying the cost reduction brought by economies of scale.
Distributed energy systems can reduce energy losses
during transmission, thereby improving energy utilization
efficiency and reducing costs. The hybrid energy strategy
can achieve complementarity between different types of
energy, thereby optimizing the energy structure,
improving energy utilization efficiency, and reducing costs.
The spatial interaction structure of multi-energy micro-
grids is shown in Figure 3.

In the multi-energy collaboration between multi-
energy microgrid clusters, due to multiple microgrids,
the ability of microgrids with energy interactions at all
levels is optimized, as shown in the following equation:
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In Eq. (1), k represents a microgrid. Ak t, and Bk t, signify
whether the microgrid participates in the first layer deci-
sion variable matrix. Xk t, and Y k t, signify whether the
microgrid participates in the second layer decision variable
matrix. Pe
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, , respectively, represent the interac-
tion power matrix for the first layer energy interaction of the
microgrid. Pe
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1,nei

, and Pe

k t

3,nei

, , respectively, represent the inter-
action powermatrices for the second layer energy interaction
of the microgrid. The expression of the above parameters is
shown in the following equation:
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Figure 2: (a) Carbon emission trading. (b) Wind turbine energy supply – wind photovoltaic power generation for hydrogen production.
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In Eq. (2), Hk andVk , respectively, represent a collection of
microgrids with energy interaction behaviors directly con-
nected to k and separated from k . h and v, respectively, repre-
sent a single microgrid directly connected to k . Among them,

∈h Hk , and ∈v Vk . De1

represents the collection of power
supply devices for microgrids. Ge1

represents a collection of
microgrid gas supply devices. ∈d De1

and ∈g Ge1

. De

h

1

and
De

v

1

represent the distributed energy supply units and energy
interaction sets of microgridsh and v, respectively.Ge

h

3

andGe

v

3

,
respectively, represent the gas energy interaction sets between
gas boilers and electric to gas conversion devices inmicrogrids.
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power of functional devices that interact with electrical and
gas energy in microgrids h and v. The decision variable matrix
of the first layer is shown in the following equation:
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In Eq. (3), ak t, and bk t, represent the decision variable
elements in decisionmatrices Ak t, and Bk t, , respectively. Pe

d k t

1

, ,

represents the power supply equipment inside k. PL e

k t

, 1

, repre-
sents the demand for electrical energy load. The second deci-
sion variable matrices are shown in the following equation:
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In Eq. (4), xd v t, , and yg v t, , , respectively, represent the
decision variable elements of the second-level decision matrix.
τe

d v t

1, max

, , and τe

g v t

3, max

, , , respectively, represent the maximum elec-
trical energy interaction coefficient and maximum gas energy
interaction supply coefficient provided by v spaced apart from
k . Pe

d v t

1

, , and Pe
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3

, , , respectively, represent the electrical and gas
energy interaction power of v in the second layer. In the third
layer of decision variables, the ability flow equation is used to
evaluate the stable state and energy trading [21]. Therefore, a
multi-energy collaborative energy interaction strategy is pro-
posed, as displayed in Figure 4.

In Figure 4, based on the above energy interaction
strategy, a further optimization model for energy interac-
tion between microgrid clusters is constructed, with the
optimization objective of minimizing the operating costs
of microgrids during the energy interaction process. The
optimization model for energy interaction between micro-
grid clusters includes optimization functions and operating
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Figure 3: Multi-energy microgrid spatial interaction structure. (a) Microgrid space connection. (b) Microgrid space interaction.
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constraints. The overall operating cost of the regional
microgrid system includes the normal operating cost of
the first layer multi-energy microgrid and the energy
exchange cost between directly connected microgrids.
The second layer is the energy exchange cost between
microgrids and spaced microgrids. The energy purchase
cost of the third layer multi-energy microgrid is the
higher-level power grid and gas grid. The optimization
model for energy interaction between multi-energy micro-
grids is shown in the following equation:

= + +F C C Cmin .

1 2 3

(5)

In Eq. (5), C
1

, C
2

, and C
3

, respectively, represent the oper-
ating costs of themicrogrid cluster, the energy interaction costs
in the first and second layers, and the overall energy purchase
costs of the microgrid cluster in the third layer. The constraints
for the operation of microgrids include equality and inequality
constraints. In the former, the balance of electrical power,
power consumption, cold and hot power within the microgrid
is crucial, as well as the overall balance of electrical power and
power consumption within the microgrid cluster. The
inequality constraints include distributed wind-photovoltaic
unit coordinated operation, microgrid multi-energy operation

power variation, overall operating capacity of microgrid
cluster, energy storage device operation, and energy operation
cost constraints of microgrid cluster. In addition, there are
other equipment operation constraints.

2.2 Low-carbon economic optimization
operation model for microgrid clusters

Microgrids have the ability to operate independently and
schedule autonomously, enabling energy interconnection
and collaborative scheduling, and bringing new possibilities
for energy supply. To achieve a low-carbon economy, amicro-
grid cluster energy interaction operation strategy is proposed,
and a microgrid cluster low-carbon economy optimization
operation model is further designed. Through the optimiza-
tion algorithm, the optimal operation of the microgrid low-
carbon economy is solved to achieve a microgrid low-carbon
economy. Specifically, the study divides the model into upper-
level economic optimization of microgrid clusters and lower-
level economic optimization of microgrid clusters. To achieve
multi-objective optimization of the economic optimization
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operation model and solve the upper and lower level models,
a new particle swarm optimization (PSO) is combined, which
has superior performance and is based on the improved
niche technology [22,23]. The niche technology divides each
generation into several classes, selects several individuals
with high fitness from each class as excellent representatives
of a class to constitute a group, and then hybridizes and
mutates between populations to generate a new individual
group. Simultaneously, pre-selection mechanism, exclusion
mechanism, and sharing mechanism are applied to complete
tasks [24–26]. This study combines the PSO algorithm with
niche technology for solving multi-objective models. Mean-
while, the Pareto analysis method is introduced to describe
the multi-objective optimization problem of microgrid clus-
ters. First, a corresponding mathematical model is con-
structed, as shown in the following equation:
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In Eq. (6), y represents the target vector. x represents
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i

and ( )h xj , respectively, signify the i-th inequality constraint
and the j-th equality constraint. In this process, the Pareto
front is taken to describe the multi-objective optimization
problem, as shown in Figure 5.
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In Eq. (7), x
1

and x
2

signify the two solutions of Eq. (6).
The optimization objective of the upper-level economic
optimization part is to minimize the comprehensive oper-
ating cost and minimize the fluctuation of communication
power between the overall microgrid cluster and the
upper-level power grid [27]. Under the proposed energy
exchange strategy between multiple energy microgrids,
energy transactions are conducted with the higher-level
energy backbone network based on the overall energy
shortage and energy surplus within the cluster area. The
cost of purchasing and selling electricity and natural gas is
allocated based on the weight of the energy demand share
of each sub-microgrid within the cluster. The mathematical
model is shown in the following equation:

( )∑∑= + +
= =

C C C Cmin .

t

T

i

n

i t i t i t

1 1

,grid, ,gas, ,toc,

(8)

In Eq. (8), C signifies the overall operating cost of a
microgrid cluster running for a certain period of time.
Ci t,grid,

and Ci t,gas,

signify the electricity and gas costs of
the microgrid cluster and the primary energy grid of the
previous level. i represents a microgrid cluster. Ci t,toc,

sig-
nifies the overall operating costs of i. In the latter objective,
there are voltage frequency oscillations and power fluctua-
tions at the access points during the energy interaction
between microgrid clusters, which increase network losses
and operating costs. Therefore, the objective is shown in
the following equation:
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(9)

In Eq. (9), PE represents the power fluctuation in energy
trading communication between the microgrid cluster and
the upper-level main power grid. P tgride 1,

represents the
actual value of the corresponding communication power.
P tagride 1,

represents the corresponding average communica-
tion power. Pi t,buye 1,

1

and Pi t,selle 1,

2

, respectively, represent
the actual communication power values for purchasing and
selling energy in microgrid clusters. The power balance con-
straint between the regional microgrid cluster system and the
higher-level power grid is shown in the following equation:

∑ ∑
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P P P

P P P .

i t i t i t

j t j p t j t

i

n

i t t

i

n

i t

,ree 1, ,coe 1, ,nee 1,

,coe 1, , coe 1, ,nee 1,

1

,nee 1, gride 1,

1

,coe 1,

(10)
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Dominating solution

non-dominated solution

f1

f20

Figure 5: Multi-objective solving problem: Pareto frontier.
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In Eq. (10), i and j represent microgrid clusters. t repre-
sents time. Pi t,ree 1,

and Pj p t, coe 1,

, respectively, represent the
power shortage and balance of two microgrid clusters.
Pi t,coe 1,

and Pj t,coe 1,

, respectively, represent the electrical
power output of two microgrid clusters. Pi t,nee 1,

and
Pj t,nee 1,

represent the total power demand of two micro-
grid clusters. The power balance constraint between the
regional microgrid cluster system and the higher-level gas
grid is shown in the following equation:

∑ ∑
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− =

= +
= =

P P P

P P P
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1

,nee 3, gride 3,

1
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(11)

In Eq. (11), Pi t,ree 3,

and Pj p t, coe 3,

represent the shortage
and balance of gas power in two microgrid clusters.
Pi t,coe 3,

and Pj t,coe 3,

, respectively, represent the electrical
power output of two microgrid clusters. Pi t,nee 3,

and
Pj t,nee 3,

represent the total demand for gas power of two
microgrid clusters. Similarly, the lower microgrid cluster is
to minimize the average operating costs and achieve the
highest wind-photovoltaic efficiency. The mathematical
model for the previous objective (minimum average oper-
ating cost) is shown in the following equation:
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Figure 6: New PSO algorithm solving process.

=
∑ ( + + ∑ + − − )= =

−

C

C C C C C C

n
¯

min

.t

i

n

i i t j

n

i ej t i gj t i j t i gj t
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1
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1

1

,buy , ,buy , ,selle , ,sell ,

2 (12)

In Eq. (12), Ci,all,CO

2

signifies the total carbon trading
cost of i. Ci gj t,buy ,

and Ci gj t,sell ,

represent the costs of pur-
chasing and selling gas when i interacts with j . C̄ trun,

sig-
nifies the average operating cost of a microgrid cluster.
Ci t,run,

signifies the operating costs of the i-th microgrid.
Ci ej t,buy ,

and Ci ej t,sell ,

represent the cost of purchasing
and selling electricity when i interacts with j . The mathe-
matical expression for the latter goal (highest wind photo-
voltaic efficiency) is shown in the following equation:

( )

( )
=

∑ +
∑ +

=

=
η

P P

P P
.

i

n

i t i t

i

n

i z t i z t

wp

1
,WT, ,PVT,

1
,WT , ,PVT ,

(13)

In Eq. (13), η
wp

represents the wind-photovoltaic effi-

ciency factor. Pi t,WT,

signifies the actual consumption of
wind power by microgrids. Pi t,PWT,

signifies the photovol-
taic power generation. Pi z t,WT ,

represents the total power
that wind power can generate. Pi z t,PWT ,

represents the total
power that can be generated by photovoltaics. Constraints
include carbon trading cost constraints, energy interaction
and transmission constraints between microgrids, power
balance constraints, etc. The carbon trading cost constraint
is presented in the following equation:

− ≤ ≤C C C0.5 0.5 .i t i i t,toc, ,all,CO ,toc,

2

(14)

8  Guoyu Li and Zekun Yin



In Eq. (14), Ci t,toc,

represents the overall operating cost.
The constraints of energy interaction and transmission
between microgrids, as well as power balance constraints,
are expressed as shown in the following equation:
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In Eq. (15), P
ij

max

and P
ij

min

, respectively, signify the upper
and lower boundaries of the power interaction between i and
j energy in the overall microgrid cluster. PΔ

ij

max

and PΔ

ij

min

signify the upper and lower boundaries of the power inter-
action between i and j energy. P i tMEG ,

is the total output of

each device in i. Pi t

ij

,

and Pi t

ji

,

represent the energy transferred
between i and j , respectively. Finally, a new PSO is applied to
solve the optimization model, as shown in Figure 6.

In Figure 6, At represents the external archive size. pbest
and gbest represent the individual and global optimal posi-
tions of the initial position, respectively. First, the particle
swarm is initialized, and the objective function is solved using
the niche technique. The non-dominated solution set (NDSS)
is added to the external archive. Then, the fitness is calculated
to determine pbest and gbest. The particle velocity and posi-
tion are updated, and the optimal gbest is saved through the
mutation operation. Whether the maximum capacity has

been reached is judged. If not, the steps of adding the NDSS
to the external archive are repeated until themaximum capa-
city is reached. Then, members are deleted and maintained,
chaotic perturbations are added to particles in At, and the
perturbed microgrid cluster target value is calculated. It is
judged whether the target value after disturbance is better
than the original value. If it is better than the original value,
the non-inferior particles in the scale are updated. If not, the
optimization objective is output as the original solution. The
non-inferior particles in the scale are output. Finally, whether
the termination condition is satisfied is judged. If it satisfies,
the multi-objective Pareto front is output. If not, the above
steps are repeated [28–30]. Based on the above analysis, a
microgrid cluster optimizationmethod based on energy inter-
action operation strategy is built, as presented in Figure 7.

In Figure 7, the operational data of the microgrid
cluster corresponding to the input is solved using a novel
PSO. During this process, the parameters and objectives of
the microgrid cluster, including wind power, photovoltaic,
and load demand, are optimized. Finally, the optimal solu-
tion obtained by the optimization model is output.

In terms of convergence speed, the proposed PSO divides
the optimization problem into multiple sub-problems and
runs a PSO on each sub-problem. Moreover, multiple groups
are searched in parallel. Each group is independent and can
transmit information, which helps the algorithm to locate the
global optimal solution faster and accelerate the convergence
process. In terms of computational efficiency, the fast conver-
gence property is utilized for global search in the early stages
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Figure 7: Double-layer optimization process diagram for a microgrid cluster.
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of PSO, while a fine search strategy is adopted in the later
stages to improve the quality of the solution. This combina-
tion helps to improve overall computational efficiency.

To address the scalability limitations of the current
framework, modular design principles are adopted in prac-
tical applications, where microgrids and energy types are
designed and implemented as independent modules. New
microgrids and energy types can be easily added to the
system as new modules. Unified interface standards and
protocols are developed to ensure interoperability and
compatibility between different microgrids and energy
types, simplify system integration processes, and reduce
maintenance costs. High-performance computing technol-
ogies such as distributed computing, cloud computing, etc.,
are utilized to improve the data processing capability and
communication speed of the system. The above methods
can solve the scalability problem of larger networks for
different energy sources.

3 Results

To validate the low-carbon economic optimization method
for microgrid clusters based on the energy interaction
operation strategy proposed in the research; an experi-
ment is conducted to verify it. The corresponding design
parameters and experimental data results are analyzed,
and the advantages and feasibility are verified.

3.1 Preparation and data statistics for the
low-carbon optimization verification
experiment of microgrid cluster energy
interaction

The experimental simulation environment used in the
study is Matlab software, version 3.6.0. Matlab, as a
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powerful simulation tool, has broad application prospects
in carbon trading and microgrid simulation. Through rea-
sonable configuration and optimization, the advantages of
Matlab in simulation analysis can be fully utilized, pro-
viding strong support for scientific research and engi-
neering applications. This article selects three multi-energy
microgrids in a certain region of Northeast China as
example objects. An energy transfer example system com-
posed of an IEEE37 node distribution system and an eight-
node natural gas system is used to simulate and verify the
energy interaction strategy between multi-energy micro-
grids. The selected multi-energy microgrids A, B, and C
are all microgrids containing load types such as electricity,
heat, and cooling. Decision variables for each type of
energy conversion device are selected based on the actual
energy conversion process within the microgrid. The spe-
cific demand is displayed in Figure 8. Microgrids A, B, and
C had the smallest electrical load demand and the largest
cooling load demand. Microgrid A had higher wind and
solar power output, and the variation ranges of cooling
load, thermal load, and electrical load were around
3,800–5,000 kW, 2,800–3,200 kW, and 1,000 kW, respec-
tively, providing energy in energy interaction. The cooling
load demand of microgrid B was particularly high, while
the electrical load demand and thermal output were rela-
tively small, with variation ranges of 2,700–5,000 kW and
500–1,000 kW, respectively. The cooling, thermal, and elec-
trical load demands of microgrid C were all high, with
varying ranges of 10,000 kW and above, 5,000–8,000 kW,
and 2,000–3,000 kW, respectively.

To effectively explore the process and optimization
effect of microgrid energy interaction, the experimental

statistics of the power supply and output of distributed
wind and photovoltaic generators in three microgrids are
shown in Figure 9. From Figure 9(a), microgrid A had a
larger distributed wind power supply, followed by micro-
grid B, with a supply and output of less than 5 MW. Micro-
grid C had the smallest supply and output, which was
below 4MW. In Figure 9(b), the output of photovoltaic
generators in three microgrids is further analyzed. The
photovoltaic generator in microgrid A had the highest
output, reaching around 4MW, while microgrids B and C
had outputs of around 3 and 2.9 MW. Overall, microgrid A
exhibits strong energy supply capabilities in both distrib-
uted wind and photovoltaic power generation, with good
energy interaction and supply performance. Microgrids B
and C are relatively weak on energy supply and output, but
still have certain potential for wind and photovoltaic
utilization.

3.2 Optimization analysis of energy
interaction and low-carbon economy in
microgrid clusters

Table 1 displays the operating costs between microgrid
clusters with and without energy interaction behavior.
For microgrids A, B, and C, when energy interaction
existed, the operating costs of microgrids A and B both
decreased by 25,400 RMB and 16,400 RMB, respectively,
while the operating cost of microgrid C increased by
5,200 RMB. In terms of purchasing electricity costs, the
purchasing electricity costs of microgrids A, B, and C all
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Figure 9: The power supply and output of distributed wind and photovoltaic generators in three microgrids. (a) Energy microgrids wind turbine
output. (b) Energy microgrid photovoltaic genset output.
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decreased in the presence of energy interaction. In terms
of purchasing gas costs, the purchasing costs of A micro-
grid slightly increased, while the purchasing costs of micro-
grids B and C decreased. Adopting the energy interaction
strategy has a positive effect on the economic costs of pur-
chasing energy.

Figure 10 shows the impact of carbon trading prices on
the optimized operation of microgrid clusters and the
results of microgrid energy interaction. Figure 10(a) shows
the operational impact. As the carbon trading price
increased, energy costs gradually rose. The carbon trading
cost increased before 18$ t−1 and then gradually decreased
to $0. The total cost increased before the price reached
36$ t−1 and then gradually decreased. Figure 10(b) shows
the energy interaction results of microgrids. After energy
interaction among these three microgrids, microgrid A

provided energy to microgrids B and C during other peak
operating periods, optimizing the overall operational sta-
bility of the microgrid cluster.

Figure 11 shows the changes in energy purchase
demand before and after energy interaction in the energy
microgrid. In Figure 11(a), before energy interaction, the
minimum purchase time for energy demand in microgrid
A was 12:00, with a purchase demand of 0 kW. During other
time periods, the purchasing demand was also lower at
22:00 and 24:00, with a maximum value of 10 h and a pur-
chasing demand of 4,000 kW. Similarly, the minimum
energy demand of microgrid B was at 2:00, 4:00, 24:00,
and the highest was at 14 h. The minimum purchase energy
demand time for microgrid C was at 2:00, 4:00, and 24:00,
and the maximum purchase demand was around
6,000 kW. Overall, the three microgrids have a higher

Table 1: Operating costs between microgrid clusters with and without energy interaction behavior

Cost type No energy interaction/
10,000 RMB

There is an energy interaction
between microgrids/10,000 RMB

A operating cost 14.89 12.35
B operating costs 15.84 14.20
C operating costs 16.12 16.64
Cost of purchasing electricity for A 5.92 4.69
Cost of purchasing electricity for B 5.29 4.45
Cost of purchasing electricity for C 6.77 4.98
Purchase cost of gas A 3.61 3.96
Purchase cost of gas B 4.21 3.79
Purchase cost of gas C 5.13 3.87
A Energy interaction cost 0 2.17
B Energy interaction cost 0 1.95
C Energy interaction cost 0 2.11
Total operating cost 77.78 75.16
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Figure 10: The impact of carbon trading prices on the optimized operation of microgrid clusters and the results of microgrid energy interaction.
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demand for purchasing energy during the day time. In
Figure 11(b), after energy interaction, the purchasing
demand of microgrid A was less than 4,000 kW, and most
of the time, the purchasing energy demand was low. How-
ever, compared with before energy interaction, the pur-
chasing demand of microgrids B and C significantly
decreased. After energy interaction, the purchase of elec-
tricity and gas energy has decreased, indicating that
adopting an energy interaction operation strategy has a
promoting effect on the decrease in purchasing demand.

Table 2 shows the operating carbon trading costs of
microgrids in three scenarios. In terms of carbon emis-
sions, scenario 1 had the highest carbon emissions of
62.55 tons, indicating that the energy use or production
process of microgrid clusters in this scenario was relatively
environmentally unfriendly. Scenario 3 further reduced
the carbon emissions of the microgrid cluster to 42.45
tons, with the lowest emissions. This indicated that the
microgrid cluster achieved better results in environmental

protection. In the carbon cost of micro online shopping, the
difference in carbon cost between micro networks A, B,
and C in scenarios 1–3 was $85.45, $36.14, and $59.96,
respectively. The cost of microgrid A increased while the
cost of other micro networks decreased. In the cost of
carbon sales on microgrids, microgrids A, B, and C
increased by $213.73, $230.02, and $415.92, respectively, in
scenarios 1–3, indicating that the carbon revenue was
highest in scenario 3.

Figure 12 shows the iteration results of the upper and
lower layers of the microgrid cluster. In Figure 12(a), at
iterations of 60 and 90, the results were close, and the
Pareto front was closest to the optimal value. As the overall
operating cost increased, the communication power of the
microgrid decreased to 1,000W. In Figure 12(b), at itera-
tions of 60 and 90, the Pareto front was closest to the
optimal value. As the operating cost increased, the propor-
tion of wind photovoltaic efficiency increased to 80%. The
research has achieved the optimization goal of minimizing
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Figure 11: Changes in energy purchase demand before and after energy interaction in energy microgrids. (a) Demand for micro-networked energy
purchases. (b) Demand for energy purchases following energy interactions between microgrids.

Table 2: Carbon trading costs of microgrid operation in three scenarios

Scenario Scenario 1 Scenario 2 Scenario 3

Cluster carbon emissions (t) 62.55 46.93 42.45
Carbon purchase cost of microgrid A ($) 90.31 112.52 175.76
Carbon purchase cost of microgrid B ($) 245.98 223.86 209.84
Carbon purchase cost of microgrid C ($) 298.21 276.92 238.25
Cost of selling carbon on microgrid A ($) 168.12 252.63 381.85
Cost of selling carbon on microgrid B ($) 134.77 315.20 364.79
Cost of selling carbon on microgrid C ($) 66.34 332.67 482.26
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communication power and maximizing wind-photovoltaic
efficiency.

To effectively and accurately evaluate the low-carbon
economic optimization operation model of microgrid clus-
ters, the Pareto optimal solution for the comprehensive
operation cost of communication power fluctuation, wind
and solar efficiency, and operation cost is shown in
Figure 13. In Figure 13(a), from Group 1 to Group 5, the
fluctuation of communication power gradually increased,
and the average fluctuation of communication power in
Group 30 was 3,247. From Group 1 to Group 5, the compre-
hensive operating cost gradually decreased, with an average
comprehensive operating cost of 154,114 RMB for Group 30. In
Figure 13(b), from Group 1 to Group 5, the proportion of wind
and solar efficiency gradually increased, indicating that the
utilization efficiency of wind and solar gradually improved.

The average wind and solar efficiency ratio of the 30 groups
was 91.17%, which was a relatively high level. From Group 1
to Group 5, the operating costs gradually increased, indicating
that as the wind and solar efficiency improved, the operating
costs also increased. The average operating cost for Group 30
was 32,569 RMB. Overall, the solution of Group 3 is the
optimal one, which can achieve a low-carbon economy and
stable operation of microgrid clusters.

4 Discussion and conclusion

In energy interconnection, reasonable energy allocation
can ensure the normal operation of microgrids. In addi-
tion, energy interconnection can improve the reliability of
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the energy supply and also reduce the operating costs. A
low-carbon economic optimization method for microgrid
clusters based on energy interaction operation strategy
was proposed. As the carbon trading price increased,
energy costs gradually rose. The carbon trading cost
increased before 18$ t−1 and then gradually decreased to
$0, while the total cost increased before the price reached
36$ t−1 and then gradually decreased. After the carbon
trading price reached a certain level, the carbon trading
cost gradually decreased to zero, and the total cost also
began to decrease, achieving effective control of energy
costs. In the energy interaction results of microgrids,
microgrid A provided energy to microgrids B and C during
other peak operating periods, optimizing the overall opera-
tional stability of the microgrid cluster. The average com-
munication power fluctuation was 3,247, and the average
operating cost was 32,569 RMB, which achieved a low-
carbon economy and stable operation of microgrid clus-
ters. At iterations of 60 and 90, the Pareto frontier of
microgrid communication power and wind-photovoltaic
efficiency ratio was closest to the optimal value. As the
overall operating cost of microgrids increased, the micro-
grid communication power decreased to 1,000W, and the
wind-photovoltaic efficiency ratio increased to 80%. By
analyzing the communication power of microgrids and
the proportion of wind photovoltaic efficiency under dif-
ferent iterations, the Pareto front closest to the optimal
value was found, providing strong support for minimizing
communication power and maximizing wind photovoltaic
efficiency. The research has achieved the optimization goal
of minimizing communication power and maximizing
wind-photovoltaic efficiency. A low-carbon economic opti-
mization method for microgrid clusters based on energy
interaction operation strategy was proposed, providing a
new theoretical perspective and solution for the rational
allocation of energy resources in microgrids in energy
interconnection. The research results can be directly
applied to the design and optimization of microgrids and
energy interconnection systems, which can help improve
the reliability of energy supply, reduce operating costs, and
achieve low-carbon economic goals. Optimizing energy
exchange strategies can help promote the openness and
competition of the energy market and facilitate the devel-
opment and application of clean energy. Although this
study has achieved significant results, there is still insuffi-
cient consideration in various aspects of energy interaction
processes such as interruption and termination. This dis-
covery provides new directions and challenges for subse-
quent research, which will help further improve and
optimize the design and operation strategies of microgrids
and energy interconnection systems.
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