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Abstract: To improve people’s communication experience
on high-speed trains, this study proposed a time-varying
channel prediction (TVCP) method based on an improved
polynomial basis extension model and backpropagation
neural network. The improved polynomial-basis expansion
model proposed in this study extracts the optimal basis
function by constructing a channel correlation matrix
and performing singular value decomposition to adapt to
high-speed mobile channel changes. By using these basis
functions and pilot signals to estimate historical basis coef-
ficients as training data for back propagation neural net-
work, future channel states can be predicted to improve
the accuracy of TVCP in high-speed mobile communication
systems. The results showed that when the training sample
of the prediction method was 2,000, the maximum mean
square error before improvement was close to 0.01, the max-
imum after improvement was 4.0 × 10−4. After increasing the
normalized Doppler frequency shift to 0.5, the mean square
error of the improvedmethodwas around 0.0001, while other
methods were above 0.001. The improvement of the TVCP
method effectively reduced the mean square error of TVCP,
the prediction accuracy of the improved prediction method
was much superior than that of traditional channel predic-
tion methods. The designed method can greatly perfect the
prediction accuracy of time-varying channels and enhance
people’s communication experience on high-speed trains in
high-speed mobile scenarios.

Keywords: 5G communication, communication system,
P-BEM, channel prediction

1 Introduction

With the continuous emergence of application scenarios
such as the Internet of Things (IoT), intelligent transporta-
tion, and virtual reality, people’s performance require-
ments for communication systems are also increasing [1].
The deployment and application of 5G communication sys-
tems have become an important reason for promoting the
development of digital society. 5G technology can not only
achieve faster data transmission rates, but also support the
connection of large-scale IoT devices and low latency, high
reliability communication services [2,3]. The transmission
signal of the communication system may undergo channel
changes during the transmission process due to factors
such as the movement of the mobile end. Channel changes
can continuously alter the state of signal transmission in
communication systems, which can have a significant impact
on the communication system performance [4,5].

If the channel changes in the transmission signal can
be accurately predicted, the signal transmission perfor-
mance of the communication system can be improved.
Xu et al. developed a channel extrapolation scheme built
on deep learning to reduce pilot overhead and obtain time-
varying cascaded channels. The network was segmented
into time-domain and antenna-domain extrapolation net-
works, and differential equations were used. The results
showed that this scheme could effectively extrapolate the
cascaded reconstruction of intelligent surface channels in
high-mobility scenarios [6]. Xu et al. designed a three-stage
joint channel decomposition and prediction framework to
mitigate the effects of shadow fading and obstacle obstruc-
tion. This framework utilized the time scale characteristics
of the channel, combined with full duplex technology and
sparse connection long short-term memory algorithm,
to achieve intelligent surface structure capture with low
pilot cost and high accuracy [7]. Huang et al. put forward a
deep learning-based multi-input multi-output radar-
assisted millimeter wave channel estimation scheme to
improve the robustness in time-varying channels (TVCs),
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especially in vehicle for object communication. The design
of transmission frame structure for joint radar and com-
munication modules was divided into two stages: arrival/
departure and gain estimation. In the face of incomplete
array elements, a two-step angle estimation algorithm and
a gain estimator based on residual denoising auto-encoder
were adopted. Simulation showed that this scheme could
efficiently estimate high mobility millimeter wave chan-
nels with fewer resources [8]. The application of existing
channel prediction and estimation methods in communica-
tion systems has certain limitations, mainly manifested in
insufficient adaptability to high-speed mobility scenarios,
high complexity in processing incomplete array elements,
limited prediction accuracy in complex multipath environ-
ments, and challenges in computational complexity and
resource consumption. Therefore, in order to improve
the overall performance of communication systems, new
technologies and methods need to be developed to over-
come the shortcomings of existing methods, especially in
modern communication environments with rapid channel
changes and complex and changing channel conditions.

There are various methods for time-varying channel
prediction (TVCP), and polynomial-basis expansion model
(P-BEM) is one of them. Lefebvre proposed an alternative
method using P-BEM and three effective strategies for cal-
culating high-order moments to evaluate the statistical
characteristics of the model output while considering the
statistical characteristics of uncertain model inputs. This
method could support users to make wise choices [9]. Yu
et al. proposed an uncertainty propagation method grounded
on P-BEM to estimate the possibility density and cumulative
distribution function of fatigue life of rolling bearings, con-
sidering the uncertainty of material parameters. This method
could accurately predict the probability fatigue life of rolling
bearings under constant and variable loads [10]. Pan et al.
proposed a sparse solution scheme based on Bayesian regres-
sion to overcome the over-fitting and high computational
complexity of P-BEM in the estimation of failure probability
in geotechnical engineering, combining sequential learning
and important sampling techniques. This scheme effectively
improved computational efficiency and accurately estimated
the probability of small faults using fewer samples [11].

In summary, TVCs with uncertain communication system
transmission signals can reflect the signal transmission quality of
the communication system. However, the uncertainty, time-
varying nature (TVN), diversity, complexity, and dynamism of
TVC make TVCP more difficult, and high-speed mobile commu-
nication (HSMC) systems further increase the difficulty of pre-
dicting TVC in communication systems. In HSMC environments,
the acquisition of channel state information (CSI) faces challenges
of accuracy, low latency, and low pilot overhead, especially in

intelligent surface assisted systems. Due to the large number of
passive elements in intelligent surfaces, accurate, low latency,
and low pilot overhead CSI acquisition becomes evenmore diffi-
cult. P-BEM is a commonly used method for channel prediction
and modeling, which uses polynomial function fitting to capture
the nonlinear and TVN of the channel, thereby achieving accu-
rate prediction of TVC. Therefore, to enhance TVCP accuracy in
HSMC systems, this study proposes to combine back propagation
neural network (BPNN) with P-BEM, and use the combined
model to predict TVCP in HSMC systems.

The innovation of the research lies in proposing a
TVCP model that combines BPNN and P-BEM. By using
P-BEM to obtain the base coefficients of the channel,
BPNN is trained for TVCP in HSMC systems. The main con-
tribution of the research is to improve the prediction accu-
racy of TVC in the HSMC system and improve the signal
transmission quality of the HSMC system. This study is
conducted from four aspects. Part 1 is a survey of the cur-
rent research status of TVCP, and Part 2 is a study of TVCP
methods combining BPNN and P-BEM. Part 3 is an experi-
mental validation of the constructed method. Part 4 dis-
cusses and summarizes the research content of this study.

2 Methods and materials

In this section, this article will provide a detailed introduc-
tion to the TVCP method that combines improved P-BEM
and BPNN. First, the time-varying characteristics of wireless
channels will be analyzed, which is the main reason for the
time-varying of channels. This article will explore ortho-
gonal frequency division multiple access (OFDMA) and
OFDMA technologies, and how they combat interference
and signal fading in communication networks. In addition,
the design of pilot structures and how to estimate CSI from
pilot symbols will also be discussed. Second, this article will
construct an OFDMA communication systemmodel for high-
speed mobile scenarios and use P-BEM to model wireless
channels. In addition, it is necessary to extract basis func-
tions, estimate the basis coefficients at historical moments,
and construct the training dataset for BPNN. Subsequently,
the BPNN will be trained and the trained model will be used
to predict future time-domain channel coefficients.

2.1 Analysis of TVN of wireless channels in
HSMC systems

The TVNs of wireless channels are the main cause of
channel variability. Orthogonal frequency technology is a
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technique that can combat interference and signal fading
in communication networks, but its application range is
limited due to the low efficiency of spectrum resource uti-
lization [12,13]. OFDMA is a multi-access technology proposed
by combining orthogonal frequency technology and fre-
quency division multiplexing technology. This technology
divides the signal transmission bandwidth into multiple
orthogonal subcarrier sets and allocates resources according
to user needs, making it the current mainstream multiple
access solution. The structure of the transmitting and
receiving ends of this scheme is shown in Figure 1 [5,14].

At the transmitting end, communication participants
are assigned to different sub-carriers, and then adaptive
modulators are selected based on user needs to select the
pairing method with the highest compatibility between
sub-carriers and user channel conditions. The matched
sub-carriers are first subjected to high-order modulation,
and then, consistent with traditional orthogonal frequency
techniques, the signal is transmitted. The operation of the
receiving end and the transmitting end is opposite.
Channel prediction is the process of predicting future
states through the historical state of a channel during
signal transmission. The core content of channel prediction
is the acquisition of historical states, which rely on the CSI

estimated by pilot symbols. The pilot symbols of different
pilot structures are different, and channel prediction is
directly related to the number and position of pilots.
Pilot structures can reflect the number and position of
pilots. The pilot structure includes comb shaped pilots
inserted at intermediate intervals in the frequency
domain, block-shaped structures distributed at inter-
mediate intervals in the time domain, and lattice struc-
tures inserted at intermediate intervals in the time and
frequency domains, as shown in Figure 2 [15,16].

In a comb-shaped pilot structure, the pilot is continu-
ously distributed in the time domain. In a block like struc-
ture, pilots are continuously distributed in the frequency
domain. The pilot in the lattice structure is discontinuous
in both domains. In comb-like structures, signals have
strong resistance to time selective fading and have better
performance in HSMC scenarios [17,18].

In block like structures, signals have strong resistance
to frequency selective fading. When obtaining signal state
information in HSMC scenarios, this structure requires
more pilots, which can increase computational complexity
and reduce system efficiency. The lattice structure has
weak resistance to signal fading, but when obtaining his-
torical CSI using this structure, intelligent algorithms can
be used to calculate the position of data symbols,
improving the performance of communication systems.
The TVNs of wireless channels include multi-path effects
and Doppler frequency shift (DFS) effects, as shown in
Figure 3.

Multi-path effect refers to the change in the transmis-
sion path of electromagnetic waves caused by the reflec-
tion or refraction of signals in contact with obstacles
during transmission, resulting in the signal received by
the terminal being a multi-path superimposed signal.
After the superposition of signal paths, the amplitude
and phase of the signal change, resulting in channel
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Figure 2: Pilot structure design.
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attenuation. The DFS effect is a phenomenon where the
phase and frequency alter because of the difference in
propagation distance when the wave source moves in a
certain direction at a constant rate. The DFS can be calcu-
lated using Eq. (1).

= =f
v

λ
θ

vf

c
θcos cos ,d

c (1)

where fd represents DFS. v represents the relative move-
ment speed between the transmitting end and the
receiving end. c is the light speed. fc denotes the carrier
frequency. θ represents the angle between the direction of
movement of the transmitting end and the receiving end.
In high-speed mobile scenarios, the DFS effect is the main
cause of channel changes. The communication scenario
during high-speed rail operation is the most common
HSMC scenario in daily life. The wireless communication
channel (WCC) model in this scenario is the Rice channel of
the scenic spot. The signals of this type of channel has two
types: sight line and non-line of sight propagation. The
latter component is a constant with Doppler frequency
offset, which is complex fading under the influence of
Doppler. In communication systems, the channel represen-
tation for transmitting signals is given in Eq. (2).
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where i represents the signal transmission sub-frame
index. m represents the symbol index on the sub-frame. n

represents the channel sampling point index. ci represents
the line-of-sight propagation component of the channel. εi m,

represents normalized Doppler frequency offset. N repre-
sents the length of Fourier transform and inverse Fourier
transform. L is the number of channel paths. τlp

is the nor-
malized delay of the lpth path. NS represents the sum of the
loop length and N . δ represents a constant. ( )a m n,i l, p

repre-
sents the scattering path. The normalized Doppler frequency
offset can be calculated using Eq. (3).

=ε f f/Δ ,i m d, (3)

where fd represents the DFS between the transmitter and
receiver in the communication system. fΔ represents the
sub-carrier spacing. There are two different expressions
for the Rice factor of the Rice channel. The first one repre-
sents the entire channel, as shown in Eq. (4).

∣ ∣=k c P/ ,i s
2 (4)

where k represents the Rice factor. Ps represents the sum of
the covariance of the scattering components. The second
method is the ratio of the line-of-sight propagation compo-
nent to the non-line-of-sight propagation component on the
first path, as shown in Eq. (5).

∣ ∣ [ ]=k c α/var ,i i
2

,0
(5)

where [ ]⋅var represents the covariance of the scattering
component. [ ]αvar i,0 represents the component of non-
line-of-sight propagation on the first path.

2.2 TVCP combining P-BEM and BPNN

In HSMC systems, the prediction of TVCs faces the com-
plexity of rapid signal changes and multipath effects.
Although the traditional P-BEM method can capture the
nonlinear and time-varying characteristics of the channel
through polynomial function fitting, its fixed basis function
may not accurately reflect the dynamic changes of the
channel in high-speed moving environments. The advan-
tage of P-BEM lies in its ability to use polynomial functions
to fit and capture the nonlinear and time-varying charac-
teristics of the channel. However, traditional P-BEM has
limited predictive ability when facing rapid channel
changes in high-speed mobile environments. BPNN can
learn and extract the characteristics of channel changes
from a large amount of historical data, which can be
used as parameters for polynomial fitting in P-BEM,
enabling the basic function of P-BEM to dynamically adapt
to channel changes. Therefore, the study proposes to
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Figure 3: Multi-path effect and the DFS effect. (a) Multipath effect. (b) Frequency shift benefits.

4  Yuechao Hui



combine P-BEM with BPNN to improve the accuracy of
TVCP. This model includes receiving antennas Nr and trans-
mitting antennas Nt , and different antenna pilots need to
maintain orthogonality. The pilot structure is a comb like
structure. The oth symbol received by the system receiver is
given by Eq. (6).

= +R H S W ,o o o o (6)

where o represents the symbol index. R represents the
symbol received by the receiving end. S represents the
symbol of the transmitting end. W represents a Gaussian
white noise vector. H represents the frequency domain
channel matrix. The expression of H is given by Eq. (7).

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=

⎡

⎣

⎢
⎢
⎢
⎢

⋯ ⋯
⋮ ⋱ ⋮ ⋱ ⋮

⋯ ⋯
⋮ ⋱ ⋮ ⋱ ⋮

⋯ ⋯

⎤

⎦

⎥
⎥
⎥
⎥

H

H H H

H H H

H H H

.o

o o
t

o
N

o
r

o
r t

o
r N

o
N

o
N t

o
N N

1,1 1, 1,

,1 , ,

,1 , ,

t

t

r r r t

(7)

The [ ]( )Ho
r t, in Eq. (7) can be calculated using Eq. (8).
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where h represents the sampling point channel, and r is the
receiving antenna index. t represents the index of the trans-
mitting antenna. l represents the path index. BEM can simu-
late wireless channels using basis functions. Therefore,
when conducting prediction research on WCCs, BEM is
used to model the wireless channels. The solution based
on the BEM principle is calculated using Eq. (9) [19,20].
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where bp q, represents the qth element of the pth basis func-
tion. c represents the basis coefficient corresponding to the
basis function. ε represents the error in channel modeling
by BEM. When modeling wireless channels using BEM, the
frequency domain channel matrix Ηo

r t, can be expressed
using Eq. (10).
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where { }⋅diag is the operation of converting a vector into a
diagonal matrix. Μq represents a matrix of ×N N dimen-
sions. F represents the Fourier transform matrix. c is the
basis coefficient vector. The method of using P-BEM com-
bined with BPNN for TVCP is to model the channel using
P-BEM, and then calculate the estimated base coefficients
of the past channel based on the received signal at the pilot
using the least squares method. Using the estimated value
of the base coefficient to construct the base coefficient

sample as the training data of BPNN. Finally, using the
estimated values of the past base coefficients of the
channel as input for the trained prediction model, the
future time-domain channel coefficients are predicted.
The specific process can be divided into three steps. First,
the historical basis coefficients for wireless channels based
on P-BEM are estimated. Second is the training of neural
networks. Finally, the wireless channel information are
predicted. Traditional P-BEM is fixed in practical applica-
tions and cannot reflect the changing wireless channels in
high-speed mobility. This study proposes to improve P-BEM
and optimize its channel modeling [21,22]. The improve-
ment of P-BEM is mainly reflected in the acquisition of
wireless channel matrix. The improved P-BEM constructs
a channel correlation matrix based on past channel infor-
mation, and then extracts basis functions from the channel
correlation matrix to model the wireless channel. In the
improved P-BEM, assume that the ideal frequency domain
channel information at time t is Ηo and the channel corre-
lation matrix is Po, to perform singular value decomposi-
tion Po, as shown in Eq. (11).

∧∧ ∨∨=P J ,o o o o (11)

where ∧∧o represents a diagonal matrix composed of the
eigenvalues of Po in descending order. Jo represents the
eigenvector matrix. At this point, the optimal basis function
matrix Bo is the first Q column of Jo. Using Bo, the wireless
channel is modeled and the base coefficients are estimated,
as shown in Eq. (12).

( )= −Γ Γ Γĉ R̃˜ ˜ ˜ ,o o
H

o o
H

o
1 (12)

where R̃o represents the pilot signal received on the fre-
quency domain OFDMA symbol. Γ̃o represents the sub-
matrix of Γo at the pilot position. After obtaining the basis
coefficients based on the optimal basis function matrix Bo,
the training of BPNN can begin. When training BPNN, it is
necessary to obtain the estimated base coefficients of past
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Figure 4: Improvement of the TVCP process of P-BEM with BPNN.
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moments according to Eq. (12) and construct a training
sample set, as calculated using Eq. (13).

{( ) ( )}( ) ( ) ( ) ( )= ⋯Ω X Y X Y, , , , ,
U U1 1 (13)

where U means the quantity of training samples. ( )X 1

denotes the input sample constructed by past base coeffi-
cient estimation. ( )Y 1 represents the output sample. After
constructing the training set, the BPNN can be trained
using the conventional training method. After completing
the training, the estimated base coefficients of any of the
first G moments in the WCC are used as inputs for pre-
dicting the future channel. Figure 4 shows the TVCP pro-
cess of the HSMC system constructed by combining
improved P-BEM and BPNN.

The steps to predict the WCC of the HSMC system are
as follows: Step 1 is to obtain the channel correlation
matrix based on the historical information of WCC. Step
2 is to perform singular value decomposition on the
channel correlation matrix to obtain the optimal basis
function for P-BEM. Step 3 is to model WCC using P-BEM
based on the optimal basis function. Step 4 is to use the
pilot signals received in the past and the optimal basis
function to calculate the estimated base coefficients at his-
torical times. Step 5 is to calculate the ideal channel basis
coefficient at time t . Step 6 is to construct a training dataset
for BPNN based on the estimated base coefficients and
ideal base coefficients. Step 7 is to set the training para-
meters for BPNN and train it. Step 8 is to input the esti-
mated base coefficients from any of the first G moments
and predict the CSI for future moments.

3 Results

3.1 Experimental environment and
parameter settings

A TVCP method for HSMC systems based on P-BEM and
BPNN was studied and improved. To verify the feasibility
of the designed channel prediction method (CPM) and its

improvements, a simulation experimental environment
was established. Simulation tests were conducted on the
improved and unimproved CPMs. The experimental oper-
ating system is Windows 10 Professional, with Intel Core i9-
10900K CPU, NVIDIA GeForce RTX 3080 GPU, and 32.0GB
system memory. In the HSMC system, the symbol length,
cyclic prefix length, carrier frequency, sub-carrier spacing,
train speed, channel model, and number of basic functions
of the transmitting antenna, receiving antenna, and
OFDMA are important parameters. The number of hidden
layer neurons, training error, and maximum number of
iterations are important parameters of BPNN. Wang et al.
and Ma et al. conducted research and analysis on TVCP
schemes in different network environments, and achieved
certain results. Therefore, the study referred to the rele-
vant research of these scholars to design simulation test
network parameters, as shown in Tables 1 and 2 [23,24].

In the BPNN model, the study selected 5 hidden layer
neurons (improved) and 20 hidden layer neurons (pre
improved) to balance the model’s learning ability and com-
putational efficiency. Fewer neurons reduce model com-
plexity and training time, while an appropriate number
of neurons ensure the ability to capture channel changes.
The maximum number of iterations and training error are
set based on the model convergence speed and prediction
accuracy, respectively, from 3,000 to 1,000 iterations, and
from 1,000 to 3,000 iterations to achieve finer training stop-
ping conditions. The sample size has been increased from
100 to 2,000 in order to improve the model’s generalization
ability and prediction accuracy, especially in high-speed
moving scenarios where the effect is significant. These
choices take into account data diversity, training efficiency,
and prediction accuracy. This study compared the perfor-
mance of two improved CPMs from five aspects during
simulation testing. The first method is the mean squared
error (MSE) of two methods at different training sample
sizes. The second type is the training time at different
numbers of training samples. The third type is MSE with
different training methods. The fourth type is MSE for dif-
ferent prediction methods, and the fifth type is analysis of
computational complexity.

Table 1: Communication system parameter settings

Name Value Name Value

Sending antenna 2 Receiving antenna 2
Symbol length for OFDMA 128 Loop prefix length 16
Carrier frequency 2.35 GHz Sub-carrier spacing 15 kHz
Train speed 500 km/h Channel model 5-channel Rice channel
Rice factor 5 Number of basic functions 4
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3.2 Analysis of channel prediction
simulation results

The training samples have a significant impact on the
training effectiveness of the model. This study compared
the MSE of the two improved CPMs before and after the
improvement under different training sample numbers, as
shown in Figure 5.

Figure 5(a) shows the MSE of the pre-improved predic-
tion scheme under different training samples. When the
signal-to-noise ratio (SNR) was the same, the higher the
training samples, the lower the MSE of the model. When
the training samples were 100 and 2,000, the maximum
MSE was close to 1 and 0.01. As the training data increased,
the prediction accuracy would also gradually increase.
Figure 5(b) shows the MSE of the improved prediction
scheme under different training samples. The impact of
training samples on the improved CPM was consistent
with the original scheme, and the model MSE increased
with the increase in training samples. Table 3 shows the
training time of the two CPMs before and after improve-
ment under different training sample sizes.

In Table 3, the pre-improved CPM significantly
increased training time as the number of training samples
increased. When the training sample increased from 100 to
2,000, the training time increased from about 10 s to over
780 s. After improvement, the training time of the CPM
would also increase with the rise of the training samples,
but the rise speed would significantly decrease. When the
training sample increased from 100 to 2,000, the training
time increased from about 2 s to about 30 s. Figure 6 shows
the impact of different training methods on channel pre-
diction performance.

Table 2: BPNN parameter settings

Name Before improvement After improvement
Value Value

Number of hidden layer neurons 20 5
Maximum number of iterations 3,000 1,000
Training error 10−4 10−4
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Figure 5: Effect of the training samples on the model training. (a) The impact of sample size on the pre-improved CPM. (b) The impact of sample size
on improved CPMs.

Table 3: Effect of the number of training samples on the time-con-
suming cost of the model training

Before improvement After improvement

Sample size Time (s) Sample size Time (s)

100 9.22 100 2.30
500 143.81 500 8.68
1,000 466.71 1,000 16.63
2,000 787.44 2,000 30.69

Application of improved P-BEM in TVCP in 5G high-speed mobile communication system  7



Figure 6(a) and (b) shows the impact of different
training methods on the pre-improved and improved
CPM. In Figure 6(a), when training with fixed SNR and
training-based SNR, the MSE of the CPM was highest at
around 0.01 and 0.009. The training-based SNR was slightly
lower than the fixed SNR training method, and as the SNR
increased, the difference between the two would also
become larger. In Figure 6(b), as the SNR increased, the
MSE of the two training methods gradually tended to be
consistent. When the SNR was low, the MSE value of the
training-based SNR method was smaller. To further ana-
lyze the feasibility of the proposed CPM, the improving
path channel estimation (IPCE) in the research by Li and
Mitra [21] and the membership filtering (MF) in the
research by Zhao et al. [22] were compared with the

research method. Meanwhile, this article also compared
it with the dual channel transferable RUL model proposed
by Guo et al. [25]. Figure 7 shows the comparison results of
MES performance under normalized DFS using different
prediction methods.

In Figure 7, as the normalized DFS increased, the MSE
of all methods increased. When the normalized DFS was
0.1, the MSE of all methods was below 0.001. After
increasing the normalized DFS to 0.5, the MSE of the
improved method was around 0.0001, while the MSE of
other methods was above 0.001. As the Doppler shift con-
tinues to increase, the MSE values of different methods also
increase slightly, but it can still be observed that the MSE
value of the improved P-BEM model designed in the study
remains at a low level. This indicates that the model designed
for research is recognized to maintain good basic perfor-
mance under the continuous increase of DFS. The normalized
DFS had the least interference on the designed CPM, and the
improved CPM performed the best in HSMS. The analysis of
complexity was calculated. The complexity of historical infor-
mation obtained, model training complexity, and prediction
complexity were expanded into three dimensions.

Figure 8 shows the complexity comparison of
obtaining historical information. In Figure 8(a), the com-
plexity of the historical information obtained by the
research method was much higher than that of the
methods in the research by Li and Mitra [21] and Zhao
et al. [22]. As the number of sub-carriers increased, the
complexity of obtaining historical information would gra-
dually increase. The changes in Figure 8(b) are consistent
with Figure 8(a). Figure 9 shows a comparison of model
training complexity.
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Figure 6: Effect of different training methods on the channel prediction performance. (a) The impact of sample size on the pre-improved CPM. (b) The
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Figure 9 showed the comparison of training com-
plexity between MF and the improved and pre-improved
P-BEM-BPNN methods. In Figure 9(a), the training com-
plexity of the P-BEM-BPNN method did not increase with
the increase in the quantity of sub-carriers, which is
always below 1 × 10−7, while the training complexity of
MF would continue to increase with the increase in the
number of sub-carriers. In Figure 9(b), the training com-
plexity of both methods increased with the increase in the
number of sub-carriers. When the number of sub-carriers
was higher than 20, the training complexity of the P-BEM-
BPNN method was lower. Figure 10 shows a comparison of
model prediction complexity.

Figure 10 showed the comparison of prediction com-
plexity between IPCE, MF, and P-BEM-BPNN methods
before and after improvement. In Figure 10(a), the IPCE

method had the lowest prediction complexity, followed
by the improved P-BEM-BPNN method. The prediction
complexity of these two methods did not increase with
the number of sub-carriers. In Figure 10(b), the prediction
complexity of the IPCE method was basically 0, while the
prediction complexity of the other two methods increased
with the number of sub-carriers.

The study further compared the prediction complexity
of three models, IPCE, MF, and IP-BEM-BPNN, with the
variation in device computing resources. The results are
shown in Figure 11. Figure 11(a) shows the change in model
prediction complexity with the increase in device com-
puting resources before model optimization. As can be
seen, with the continuous increase in device computing
resources, the complexity of model prediction will gradu-
ally decrease. Figure 11(a) shows that after model
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MF

IP-BEM-BPNN

200150100500
0

2

4

6

8
*10

7

Number of subcarriers

(a)

F
lo

p
s 

200150100500
0

1.0

1.5

2.5

3.5
*108

Number of subcarriers

(b)

F
lo

p
s 

3.0

2.0

0.5

MF

IP-BEM-BPNN

Figure 9: Training complexity comparison. (a) After improvement. (b) Before improvement.

Application of improved P-BEM in TVCP in 5G high-speed mobile communication system  9



optimization, with the continuous increase in device com-
puting resources, the prediction complexity of the IP-BEM-
BPNN model remains basically unchanged and at a lower
level.

4 Discussion

The improved time-varying CPM proposed in this article
has achieved significant results in HSMC systems. First,
regarding the improvement of training time, when the
number of training samples increased from 100 to 2,000,
the training time of the improved CPM model increased
from about 10 s to about 30 s, while the training time of
the original model increased from about 10 s to over 780 s.
This significant reduction in training time means that our

model has significantly improved training efficiency while
maintaining prediction accuracy. Compared with the
improved atomic norm based time-varying multipath
channel estimation method proposed by Li and Mitra
[21], the training time significantly increases with the
increase in sample size. The improved CPM model pro-
posed in this study has a significant advantage in training
efficiency. This improvement is particularly important for
HSMC systems that require rapid deployment and real-
time model updates, as it reduces the system’s waiting
time for channel prediction model updates. Second, the
improved CPM model studied maintains an MSE of around
0.0001 when the normalized Doppler shift is increased to
0.5, while the MSE of other methods is above 0.001. The
decrease in MSE represents a significant improvement in
prediction accuracy. According to Lefebvre’s (2020)
research [10], the P-BEM method proposed by him has an
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MSE value close to 0.001 when evaluating the statistical
characteristics of the model output. Compared to this, the
MSE value of the improved CPM model in this article is
lower, indicating a significant improvement in prediction
accuracy. A low MSE value means that the difference
between the predicted channel state and the actual
channel state is smaller, which is crucial for the design
and optimization of communication systems as it directly
affects the transmission quality of signals and the relia-
bility of the system [26,27]. In addition, the reduction in
MSE also means that our model is more effective in dealing
with complex channel changes in high-speed mobile sce-
narios. In these scenarios, the rapid changes in channels
place higher demands on prediction models. The model in
this article provides more accurate prediction results by
dynamically adapting to channel changes, which is of great
significance for improving communication quality in
mobile environments such as high-speed trains.

The model of this study is based on the combination of
P-BEM and BPNN, which assume that channel changes can
be effectively predicted through historical data. However,
this assumption may not apply to all channel environ-
ments, especially in the presence of extreme interference
or atypical channel conditions. The performance of the
model may be affected by the complexity of channel
changes, such as in highly dynamic urban environments
where rapid changes in buildings and other obstacles can
lead to inaccurate model predictions. Although the model
performs well under laboratory conditions, it may face
scalability issues in practical deployment. As the scale of
the network expands and the number of users increases,
the model may require more computing resources to main-
tain prediction accuracy. In a multi-user environment, the
model needs to process more data and more complex CSI,
which may lead to an increase in computational com-
plexity and energy consumption, limiting the application
of the model on resource constrained devices.

In summary, the improved CPM model proposed in this
article not only demonstrates its superiority in theory, but
also has significant advantages in practical applications.

5 Conclusion

The TVCP method proposed in this article, which combines
the improved P-BEM with BPNN, has important practical
application significance in 5G HSMC systems. The key
achievements are summarized as follows: First, by con-
structing channel correlation matrices and performing sin-
gular value decomposition, the optimal basis functions were

extracted, effectively adapting to the changes in high-speed
mobile channels. Second, using these basis functions and
pilot signals to estimate historical basis coefficients as
training data for BPNN, accurate prediction of future
channel states has been achieved. The experimental results
show that the improved method reduces the maximumMSE
from nearly 0.01 to 4.0 × 10−4 when the training samples are
2,000. After increasing the normalized Doppler shift to 0.5,
the MSE remains at around 0.0001, far lower than other
methods, demonstrating excellent predictive performance.

In terms of potential applications, the method pro-
posed in this article can significantly enhance the commu-
nication experience in high-speed mobile scenarios such as
high-speed trains, improve signal transmission quality,
and is of great significance for improving the performance
of 5G and future 6G communication systems. In addition,
this method also has broad application prospects in high-
speed data transmission in fields such as intelligent trans-
portation, telemedicine, and virtual reality.

Future research can further optimize algorithms based
on this, reduce computational complexity, improve real-
time performance, and make them more suitable for prac-
tical HSMC systems. Meanwhile, it can be considered to
apply this method to a wider range of channel environ-
ments and different communication standards to verify
its generalization ability and robustness. In addition, com-
bining the latest artificial intelligence technologies such as
deep learning and machine learning to further explore and
improve the accuracy and efficiency of TVCP is also a direc-
tion worthy of in-depth research.
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