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Abstract: This article presents an online speed estimation
method for cooling fans in resource-limited embedded sys-
tems, considering modeling uncertainties and measure-
ment noise. In the current thriving information technology
era, monitoring the state of cooling fans is crucial, particu-
larly for high-performance artificial intelligence server
cabinets. Accurate fan speed estimation can be used not
only to detect fan abnormalities but also for speed control-
related applications. Several challenges arise in developing
speed estimation algorithms, including state-dependent measure-
ment noise variance, errors in nonlinear fan dynamic modeling,
and uncertainties in parameter estimation. To address these
issues, this study employs the unscented Kalman filter (UKF)
algorithm, incorporating state-dependent noise modeling and
mathematical modeling of parameter uncertainties. An UKF-
based parameter update mechanism is developed to compensate
for model uncertainties and estimation errors, improving the
speed estimation accuracy. Simulation results indicate that the
root-mean-square errors are reduced from 1.3393 with the tradi-
tional UKF to 0.7485 with the parameter update mechanism.
Experimental verifications further validate the effectiveness of
the proposed methods and strategies in addressing the challenges
associated with speed estimation in cooling fans under uncertain-
ties and noise interference.
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1 Introduction

In this era of artificial intelligence and technological advance-
ment, the density of high-performance servers and informa-
tion technology-related equipment is constantly increasing,
placing critical stability demands on these devices. The unin-
terrupted cooling requirements for servers have become a
focal point of attention, leading to a sharp increase in the
demand for stable, high-performance cooling fans [1,2].

The cooling fan system, composed of a motor and sev-
eral rotor blades, represents a popular configuration in
cooling systems [3]. The utilization of cooling fans not
only optimizes the cost in the development phase but
also significantly enhances the heat dissipation efficiency.
Therefore, it is often regarded as the primary solution for
ambient temperature control [4,5].

In the industrial field, cooling fans are widely employed
as heat-dissipation devices for equipment such as computers
[6], vehicles [7], and server electronics [8]. Cooling fan systems
often require extended operational periods; however, pro-
longed operation may result in system failures. The primary
causes of fan system failures often stem from losses or defects
in both electrical and mechanical components, or defects in
the manufacturing process [9,10].

These failures in cooling fans could result in equip-
ment overheating or more severe damage, consequently
causing server shutdowns and data loss. In light of this,
the integration of real-time health monitoring and anomaly
detection technologies for fans has become an indispensable
component of modern industrial operations [11,12]. It pro-
vides an intelligent and proactive approach, ensuring the
continuous and efficient operation of fans in critical appli-
cations. This approach thereby offers robust support for
system stability and reliability.

Recent studies have proposed methodologies for dynamic
modeling of cooling fan systems, parameter identification, and
online monitoring of fan speeds [13,14]. This is achieved by
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establishing a virtual fan system, enabling sensor-less online
monitoring of fans.

To achieve precise monitoring of fan operations, the
measurement of the fan’s state and subsequent data pro-
cessing are crucial [15,16]. However, this measurement pro-
cess is often accompanied by noise interference, leading to
uncertainties in fan monitoring. These uncertainties result
in reduced accuracy, increased risk of false alarms, nega-
tive impacts on diagnosis and prediction, and greater com-
plexity in data processing. Therefore, obtaining a clean
state signal in real time despite measurement noise is a
crucial technological challenge in nonlinear cooling fan
systems.

Estimating the internal state of dynamic systems based
on a set of noisy observational data has been a significant
challenge encountered across diverse fields. For linear sys-
tems with known Gaussian white noise, Kalman filter (KF)
offers the optimal solution for state estimation mean square
error [17]. However, real-world dynamic systems are almost
invariably nonlinear, which poses a significant challenge.
Nonlinear filters can be broadly categorized into two types
[18]. The first type involves linearizing the process and obser-
vation models around the previous estimate, treating this
preceding estimate as the true state. This approach is exem-
plified by the extended Kalman filter (EKF) model [19,20]. As
indicated in previous research papers [21,22], the EKF can be
regarded as providing a first-order approximation, thereby
offering suboptimal estimates that may lead to state diver-
gence in certain circumstances. Another type of nonlinear
filter employs a set of samples to approximate the distribution
of the state. Particle filter is a sequential Monte Carlo algo-
rithm that propagates weighted random particles through a
nonlinear system and resamples them based on the likelihood
weights of the particles [23,24].

Utilizing a greater number of particles can yield higher
precision; however, the computational expenses increase.
Additionally, Julier et al. introduced the unscented Kalman
filter (UKF) in which they employed the unscented trans-
form (UT). This method involves the propagation of several
sigma points through nonlinear functions, reconstructing
the Gaussian distribution foundation for a more accurate
estimation of nonlinear system behavior [25,26]. Consid-
ering the impact of outliers in polluted distributions and
the influence of time-varying noise, the performance of the
classical UKF significantly deteriorates. Recent research [27]
has proposed an adaptive and robust UKF approach using
Gaussian process regression-assisted Variational Bayesian to
enhance the traditional UKF estimation performance. Zhu
and Fu, by integrating UKF with the improved unscented
PF algorithm, enhanced the accuracy of assessing the state
of health for lithium-ion batteries [28].
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Research related to cooling fans has been explored in
previous studies [3,13,14]. However, these studies did not
deeply address the issues of online fan speed estimation in
the presence of both noise and model uncertainties. Addi-
tionally, the model parameters of the fan systems in these
studies were considered constant. In real-world scenarios,
the model uncertainties may not be exactly known, and the
associated fans may vary slowly due to changes from long-
term use in the environment and operating conditions.
Acquiring accurate fan speed is crucial in the process of
implementing speed control and online diagnosis.

It is worth noting that recent studies have demon-
strated the feasibility of KF techniques in various fan appli-
cations, including speed estimation [29], precise control
[30], and fault detection [31]. However, there is still a lack
of research specifically focused on online speed estimation
for nonlinear industrial cooling fans. Therefore, this work
aims to develop a framework for accurate online speed
estimation of industrial cooling fans, addressing the issues
of noise and model uncertainties.

This study utilizes UKF estimation techniques to con-
duct a detailed case study on online speed estimation for
cooling fan systems. We proposed specialized design and
improvement strategies for UKF in fan speed estimation to
address the fast dynamics and parameter uncertainties
often overlooked in previous research [13]. The objective
is to achieve real-time state estimation of the fan speed,
tackling challenges arising from measurement noise with
state-dependent variance, errors in fan nonlinear dynamic
modeling, and uncertainties in parameter estimation. The
experimental results demonstrate the practical value of the
proposed methods in engineering applications.

The specific contributions of this article include: (1)
comparative analysis of model derivation and dynamic beha-
vior of cooling fan systems, (2) comparison between non-
linear model speed estimation via EKF and UKEF, respectively,
(3) analysis and modeling of fan speed measurement noise
distribution characteristics, and (4) establishment of a para-
meter update mechanism under the UKF framework to com-
pensate for parameter estimation errors and model
uncertainties, which involves a detailed examination
of the dynamic model of cooling fans and provides stra-
tegies for setting Q and R in fan speed estimation.
Finally, (5) validation of the proposed methods through
both simulation and experimental cross-verification, con-
firming the effectiveness of real-time fan speed estimation
in the presence of measurement noise. Concisely, the pro-
posed method is scientifically valid and technically sound.

The remaining sections of this article are organized as
follows: In Section 2, a comprehensive introduction to the
cooling fan system is provided, accompanied by a complete
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derivation of the dynamic model. In Section 3, two non-
linear state estimation methods are reviewed, including an
introduction to the EKF and UKF (an analysis of their advan-
tages and disadvantages is presented). Section 4 delves into a
case study and numerical simulations of cooling fan speed
estimation. This includes noise modeling, a review of fan
dynamic models, and an exploration of time-varying para-
meter uncertainties. Based on these conditions, a parameter
update mechanism based on UKF is proposed to enhance the
accuracy of online fan speed estimation. The implementation
of the proposed method is demonstrated on an experimental
platform in Section 5, and the accuracy of speed estimation is
compared between the traditional UKF and the proposed UKF
with a parameter update mechanism. Experimental results
confirm the effectiveness of the proposed method. Finally,
Section 6 provides the conclusion of the study.

2 Model description of motor-
driven cooling fan

A general industrial cooling fan system consists of a driving
circuit, a mechanical rotary structure, and a blade. Suppose
that the driving system can be simplified as a DC motor, then
the overall system can be briefly illustrated in Figure 1, which
contains an electrical driving part, a mechanical rotary part,
and an external load part.

The governing equation of the electrical driving circuit
and the motor mechanism is described as

LS ki) + (0 = Vit Q0

where L refers to the inductance, R stands for the resis-
tance, i(t) is the driving current, and Vi, (t) represents the
applied input voltage. V;,(t) symbolizes the back emf vol-
tage, proportional to the angular velocity w(t) of the rotor
in the motor, given as Vi(t) = Kew(t), of the back electro-
motive force (emf) constant K.

Figure 1: Industrial cooling fan driving system [13].
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The motor mechanism can be expressed as

dw(t)
J de

+ Bnw(t) = Tn(t) - Ti(0), 2

in which ], is the rotor motor inertia, By, is the frictional
coefficient, and Tj, is the external load. The motor generates
a torque T (t) proportional to the armature current, which
is Ty (t) = Kii(t), where K; is the torque constant. Based on
the property that the electric power is equivalent to mechan-
ical power, one has

Kew) - 1= (Kid) -, (&)

where the left-hand side and the right-hand side represent
the electric power and mechanical power, respectively.
Based on Eq. (3), it reveals that K, = K; = K.

Since the mechanical dynamics is much slower than
the electrical dynamics, the transient response of the elec-
trical circuit can be ignored. As a result,

Vin = IR + Kew. 4

Based on Eqgs. (1)-(3), the system can be simplified to
K K?
Em—[?+Bmw—TL. (5)

dw
]ma -

According to the fan blade aerodynamics in the study
of Peng and Li [3], the external load mainly contributes to
the drag force induced by the cooling fan. Therefore, T, can
be modeled by

TL = dez, (6)

where C; refers to the lumped aerodynamic drag coeffi-
cient. Substituting Eq. (6) into Eq. (5) and assuming
T = Vip, one can obtain the following equivalent system
representation for the cooling fan dynamics [14]:

Jox(®) + aw(t) + Cow?(t) = T(0), )

in which the equivalent coefficients are defined as follows:

R R
By, G =—Cy, 8)
K D K d (

R
JE g a=K+
Eq. (7) represents the complete cooling fan dynamics,
where 7 stands for the applied torque generated by the
pulse width modulator (PWM), J is the lumped moment
of inertia, and a refers to the lumped viscosity coefficient.

For simplicity, rewrite Eq. (7) as
w(t) = —aw(t) - ayw’(t) + br(t), 9

in which the equivalent parameters are denoted as

a=—, ay=—, b=-. 10)

NP
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Therefore, the physical model of the cooling fan driving
system can be described by a nonlinear state equation.

Based on the known physical model of the cooling fan
driving system, relevant literature [13] has proposed a
recursive low-pass filtering method for parameter identi-
fication. This method can accurately estimate the physical
model parameters represented by Eq. (10) in real-time.

In the following section, the reduced order model Eq.
(9) will be taken as the plant for online speed estimator
development. Based on the modeling described in this sec-
tion, it can be observed that the system involves para-
meter-dependent as well as parameter-independent model
uncertainties. Therefore, the purpose of this article is to
estimate the fan speed online in the presence of these
modeling errors and measurement noise.

3 Review of Kalman filtering for
nonlinear systems

In the process of modeling the cooling fan system, it
becomes evident that the physical model of the fan exhibits
nonlinear dynamic characteristics. To address the chal-
lenges posed by this nonlinearity, this section introduces
two commonly used techniques for nonlinear estimation:
the EKF and the UT presented with the UKF. Subsequently,
a comparative study between the EKF and UKF is presented.
To address the problem of the biased estimates resulting
from the model uncertainties appear in both the EKF and
UKEF, a state estimate refinement strategy of UKF is proposed
to generate high precision speed estimates.

3.1 EKF

The EKF is a commonly used technique for estimating the
state of a nonlinear dynamic system [20]. It extends the
traditional KF to handle nonlinearity by linearizing the
system dynamics with the Taylor series expansion.

Consider a nonlinear stochastic process model defined
by a state transition model and an observation model

Xy = f(Xp-1, W) + Wi, Zge = h(xp) + v, 11

where x; € R" represents the state vector at time step k
and ux € R™ is the system input. Here, f() € R" and
h(-) € R! represent the nonlinear transition and measure-
ment functions, respectively. The process and measurement
noise wy € R™ and v € R! are also assumed to be indepen-
dent of each other, with zero-mean Gaussian distributions:
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P(‘Nk) - N(O’ Qk)r P(Vk) - N(Os Rk): (12)

where Q, and Ry are covariance matrices signifying system
model uncertainty and observation model measurement noise,
respectively. The zero-mean Gaussian distribution assumptions
are valid in this research topic based on the prior work [14].

In the EKF, these nonlinear functions are approxi-
mated through linearization around the current state esti-
mate, enabling the application of KF principles. The EKF
algorithm can be summarized as follows:

Algorithm 1 EKF

Time update (prediction):

I % = f(Rye-1, W)

2 Py = BPaF + Q;
Measurement update (correction):
3 Ky = P{H{(HP;H] + Ry

4 Ry = Xy + K[z - h(Zp)]

50 Py = (I - KeHp)Py

where F, and Hy, are the Jacobian matrices defined as

_ &) . WD)

X (13)
[0):¢ [0):¢

Fi

In the prediction step, the algorithm estimates the next
state Xx and updates the associated uncertainty Py using
the nonlinear transition function f(-). The correction step
refines the prediction by assimilating measurement informa-
tion zy, adjusting the state estimate based on the Kalman gain
K, and refining the uncertainty estimate. This EKF algorithm
provides a systematic approach to handling nonlinearities,
extending the KP’s utility in estimating states for dynamic
systems.

The EKF utilizes Taylor series expansion to approxi-
mate the KF, replacing system matrices with Jacobians.
Notably, the EKF is suitable for differentiable models, as it
relies on the existence of Jacobians. However, this approach is
limited, as it may not work well with non-differentiable or
highly nonlinear models, where Jacobians are hard to com-
pute or involve high computational costs. In such cases, line-
arization may result in larger errors in mean and covariance,
potentially leading to divergence of estimates. To better
address these issues, UT and UKF will be introduced in the
following section.

3.2 UKF

For state estimation of nonlinear models, EKF merely uses
one single point to approximate the Gaussian distribution.
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If the function is highly nonlinear in this local region, lin-
earization may lead to poor estimates. The UKF handles
this problem with UT, which uses a set of sample points
to describe the Gaussian model and propagates them
through the nonlinear system [26].

To utilize the UKF, the weights of the sigma points need
to be determined in advance. For every new-coming mea-
surement z, based on the given control input ux and the
previous state X, and covariance Py._;, the sigma points are
then generated. Next, similar to the KF and the EKF algo-
rithms, the UKF has prediction and correction steps. In the
prediction step, the sigma points are propagated through the
transition model.

X = £y, w), (14)

and the predicted mean (or the prior estimate of state) X,
and covariance P; can be calculated by the propagated
sigma points with their weights

2n 2n
&= Y, Py = Y wlG - 20 - 20T+ Q. (15)
i=0 i=0
In the correction step, the sigma points are trans-
formed through the observation model,

7 = h(x), (16)

then the predicted measurement mean and covariance can
be calculated as

2n ) .
7 = ZW,EPZQ),
i=0 (17)

2n
P = Y wiZy - )2 - BT + Ry
i=0
Note that the predicted covariance Eq. (15) and pre-
dicted measurement covariance Eq. (17) are made up of
the uncertainty of the UT and the process noise Q, and
measurement noise Ry, respectively.
The cross-covariance matrix between the state space
and measurement space is given as
2n
Pux = 2 wOEY - %)@Y - 2" (18)
i=0
Based on the definition of the error covariance matrix,
P, x can be expressed as

P = El(zk — 2)(zx - 2)7] = HPRHE + Ry (19)
Similarly, Py, x can be written as
Py = E[(Xx - R)(zi = 2¢)7] = PiHJ. (20)

Recalling the Kalman gain in EKF,
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Ky = PiH](HPHL + R, )

one can find out that Egs. (19) and (20) compose the ele-
ments in Eq. (21), therefore yielding the Kalman gain as

Ky = sz,kP;,lk- 22)
The state update equation is given as
)A(k = )A(; + Kk(Zk - 2%) (23)

Substituting Eqs. (20) and (22) into the covariance
matrix update in EKF gives the covariance matrix update

of UKF
Pr = (I - K Hp)P; = Py - Ki P, KE. (24)

The algorithm of the UKF is summarized as the pseu-
docode in Algorithm 2.

Algorithm 2 UKF

Initialize:
1: Determine the initial conditions for the state
Xo € R™ and covariance Py € R™",
2:  Set the parameters for generation of sigma points ),
a, and S.
3:  Set the weights of sigma points

0 V0 Y
Wy < W« TS+ - a?+ )

WD, w® . 2n

Input: New-coming measurement z, control uy, Xx-; and
Py, from the previous recursion.
Output: Xy, Py
Begin interrupt routine
Sigma Point Generation:

x0 = R &£ 0+ PP
Time update (prediction):

53 = £l wo

& = Zouifx

S PEDTATCHES WIEHES WU
Measurement update (correction):

8 2 = neef)

% g = Tz

10: P = SEwWOEZY - 2)(ZY - )T + Ry

Bk = TG - 0@y - 27

12: Ky = sz,kP;,lk

13: }A(k = )’\{; + Kk(zk - 2;)

14 Py = Py - KB, K

End of interrupt routine
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In summary, the EKF is suitable for systems with mild
non-linearity, while the UKF is more robust and suitable
for systems with strong non-linearity. The UKF introduces
sigma points to not only directly reflect the system evolu-
tion but also comprehensively capture system characteris-
tics. Therefore, when dealing with nonlinear systems, the
UKF holds a distinct advantage over the EKF, allowing for
more accurate estimation by better capturing the character-
istics of system nonlinearities. Therefore, this work integrates
the UKF to deal with the modeling nonlinearity in the indus-
trial cooling fan and also proposes a state-dependent mea-
surement covariance update mechanism to enhance the fan
speed estimation online.

4 Industrial cooling fan speed
estimation

The following simulation is conducted in MATLAB using
the Runge—Kutta solver, with a numerical time step size set
to 0.0005s.

To apply the UKF algorithm to the cooling fan model,
recall the cooling fan dynamic model in Eq. (9). Now, con-
sidering an external disturbance 74(t) and measurement
noise v(t), the model can be rewritten as

(25)
(26)

a(t) = —aw(t) - ayw*(t) + blz(t) + (t)],
z(t) = w(t) + v(t),

where 74(t) and v(t) are assumed to be Gaussian noise, with
zero-mean and standard deviation o, and o,, respectively.

72~ N(0,02), v~ N(,dd). V)

To utilize the UKF, the forward difference method is
applied to derive the discrete-time model
_ Xkr1 ~ Xk

).(k'*' 5

T (28)

where T is the sample interval.
Based on Eq. (28), the discrete-time model can be
written as

(29)
(30)

W1 = (1= aT)wi = ayTwi + BT (T + Tq),
Zx = Wk t Vg.

The model for UKF can be constructed as follows:

(1) State transition equation:
wWis1 = (1 - aT)wy - ayTw? + bTx. (3D

(2) Observation equation:
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Zx = W. (32)
(3) State and noise covariance:

Xy = [wg],

Qy = Efwywj} = E{b*T%3,} = b*T%d2,

Ry = E{vivi} = E{v} = oy

(33)

For Eq. (33), the covariance matrices Q and R play a
crucial role in affecting the performance and accuracy
of the state estimation. Q represents the uncertainty in
the system’s process model. On the other hand, R
represents the noise level in the measurements. The
ratio between Q and R determines how much the filter
relies on the model prediction versus the measure-
ments.

For comparative analysis, the model for EKF is also
derived as follows.

(4) The prior estimate:

@r = (1 - aT)@x-1 - ayTdL, + bTT. (34)
(5) The Jacobians:
of(Ry-
F = MR (1 - aT) - 2anT@x-1,
ox (35)
oh(Xj)
k= o =1
ox

The input signal applies a stair-like excitation signal, as
described in the study of Peng and Chen [13], and the
sample interval T is 0.01s. The cooling fan parameters
are set as J =0.15, a = 0.012, and Cp = 0.25 (i.e., a = 0.08,
ay = 1.6667, and b = 6.6667), of which the value of the
lumped drag coefficient Cp is slightly larger to increase
the nonlinearity in this model.

The system starts from rest, thus wy = 0, and both pro-
cess and measurement noise are Gaussian white noise
to verify the feasibility of the algorithms. The variance
of external disturbance and measurement noise is set as
02 = 2 and 62 = 2. The covariances for UKF and EKF are set
to Q =1 and R = 2, respectively. For UKF, the relevant
parameters for sigma point generation are empirically
set as k = 10, a = 0.25, y = -0.3125, and § = 2. The number
of sigma points equals 2n + 1, where n represents the
system dimension [25].

To highlight the superiority of the UKF in estimating
cooling fan system speed, the parameters of the nonlinear
terms in the physical model were intentionally increased
to emphasize the performance of both methods in state
estimation under conditions where nonlinear effects are
more pronounced. Figure 2 illustrates the speed estimation
results using the EKF and UKF algorithms. As magnified in
Figure 2 inset, taking a closer look at the transient response
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Figure 2: Comparison of speed estimates: EKF vs UKF, with partial
enlargement (inset).

as an example, one can observe that the EKF algorithm
provides a relatively poor estimation, while the UKF yields
a more precise speed estimate. In Figure 3, the estimation
error between the results and the ground truth is further
presented, with root-mean-square (RMS) errors of 0.5608
and 0.3661 for EKF and UKF, respectively. This clearly
demonstrates that when the nonlinearity is significant,
the local linearization of EKF fails to fully capture the sys-
tem’s nonlinear behavior, and the UKF exhibits superior
state estimation ability in the presence of nonlinearities.
Figure 2 highlights the impressive estimation perfor-
mance, achieved through meticulous adjustment of Q and R
in UKF, when the system model has high nonlinearity. How-
ever, real-world scenarios introduce complexities, leading to
the emergence of non-uniform Gaussian perturbations in the
fan system. Factors such as modeling errors, inaccuracies in
parameter identification, and parameters’ slow time-varying
property contribute to uncertainties in the fan system model.
These uncertainties result in a non-Gaussian distribution of
process noise, causing estimation errors that deviate from a

3 300

=]

5]

2,200+
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]

&

= 100 -

n
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S

=N ‘ ‘ | ‘
0 30 60 90 120 150

Applied torque 7

(a)

Online speed estimation of nonlinear industrial cooling fans

----- UKF

w— & (rad/s)

time (s)

Figure 3: Comparison of the speed estimation error: EKF vs UKF.

normal distribution and significantly impact the traditional
UKF’s performance.

To enhance the accuracy of fan speed estimation in the
presence of non-uniform Gaussian perturbations, this article
proposes strategic approaches. First, a modulation technique
for the measurement noise covariance R of the UKF is intro-
duced in this section, acknowledging the inconsistency of noise
levels in practical scenarios. Second, a parameter update fra-
mework is presented, aiming to address prescribed errors in
both parameter variations and modeling uncertainties.

The ensuing discussion will explore errors related to sensor
noise, modeling, and parameter identification, offering valuable
insights into strategies for setting Q and R within the specific
context of fan speed estimation using the UKF.

4.1 Measurement noise modeling

In the previous sections, the observation disturbance is assumed
to be homoscedastic, that is, the variance remains constant
throughout the rotation speed, as shown in Figure 4(a). How-
ever, based on the practical experiment observations, it is
revealed that the amount of noise becomes larger with a higher
fan speed. In this case, the noise of the cooling fan should be
assumed to be heteroscedastic, which means that the variance
depends on the value of the speed. Figure 4(b) demonstrates that
as the value becomes larger, the data points are more widely

3 300
=]
5
2,200
wn
ol
&
2 100+
n
S
S
=R | ‘ ‘ |
0 30 60 90 120 150
Applied torque 7
(b)

Figure 4: Noise behavior statistical analysis. (a) Homoscedasticity. (b) Heteroscedasticity.
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distributed due to its larger variance, showing the heteroscedas-
ticity of the noise.

Assume that the standard deviation is a function of
speed

Oi(wy, @) = Qg + ay, (36)

where a = [&1 @]7 are the parameters to be determined,
and oy is the standard deviation at time step k.
The fitting problem is fitted into

arg minf(a) = arg min(oy — 6x(wy, a))%.
a a

@37

Monitoring different values of the fan speed, collecting
the measured data, and calculating the standard deviations
yield
Cfl a.)1 1 a

ol (38)

Ok

wy 1
The parameter vector a can be solved using the well-

known least-squares solution. Finally, the modulation of R
can be established by

Ry = 6f(wy, @), (39)

with a time-varying noise covariance Ry; the degree of
belief in measurements can be adjusted and give a better
approximation.

4.2 Cooling fan modeling error discussion

In a recent study on the estimation of cooling fan para-
meters [13], the real-time parameter estimation results
show that for every stair change in the given input, the
estimated values exhibit sharp fluctuations, which mainly
results from the error of modeling. Recalling the cooling fan
model Eq. (9), the transient response of the electrical dynamics
is neglected since its time constant L/R is much smaller in
magnitude than the mechanical time constant j, /By If the
electrical dynamics is reconsidered, the overall real system
can be described as a second-order system:

di(t)

L=4; * RUO + Ka(®) = Vi(0), (40)
L"% = —Bhw(t) — Caw¥(t) + Ki(t). (41

The system in Eqgs. (40) and (41) become relatively
complex and, unfortunately, the information of current i
is not available for general industrial cooling fan sys-
tems. Thus, parameter identification for Eq. (40) cannot
be conducted.
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As a result, the second-order system is reduced by a first-
order nonlinear dynamic equation, where the equivalent
equation is expressed as Eq. (7). Note that the equivalent
parameters Eq. (8) are based on the fact that the driver
dynamics is completely ignored. The model reduction process
is described in Section 2.

Since only the fan speed output is available, this work
attempts to use Figure 5(b) to replace Figure 5(a) as a
reduced-order model for equivalent parameter identifica-
tion. Note that the equivalent first-order model reduction
assumes that the electrical dynamics is much faster than
the mechanical fan dynamics. This assumption is reason-
able and is going to be illustrated by the following simula-
tion and experimental comparison.

To demonstrate the model mismatch behavior caused
by the electrical dynamics, L = 0.01,R =1,K =1, J, = 0.15,
By, = 0.012, and C; = 0.0025. Based on the output speed, Eq.
(7) was further considered to approximate the responses
Eqgs. (40) and (41), the associated estimated equivalent para-
meters are J = 0.1635, a = 1.0106, and Cp = 0.0025, respec-
tively. The corresponding simulation is shown in Figure 6(a).

Based on the given stair-liked excitation input signal,
the simulation results considering Eqgs. (40) and (41) show
that for an abrupt change in the applied input, the speed
response possesses a relatively smooth rising speed within a
short period of time. However, the simulation result using Eq.
(7) illustrates a sharp rising speed. This slight difference comes
from the model reduction or the so-called modeling errors. The
qualitative behavior can also be observed from the experi-
ment, as illustrated in Figure 6(b), which further validates
the assumption. Consequently, the mismatches between the
real system and the equivalent system leads to fluctuation of
estimates whenever the applied input changes abruptly.

In conclusion, the main reason this work considered a
model reduction is that the current output, generated from
Eq. (40), for the general industrial fans in the market is not
available. To avoid the use of the current information for
cooling fan modeling and fan speed prediction, this work

it
V,t ——— Electrica'l (‘iljcuit
R Dynamics (40)

(@

Equivalent 1%t order Fan

— 1
Dynamics (42)

t —

(b)

Figure 5: Cooling fan system representation and model reduction. (a)
Electrical-circuit-derived second-order fan dynamics. (b) First-order
equivalent cooling fan model reduction equivalent representation.
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applied a modeling reduction. Figure 6(a) and (b) verify the
reasonability of this consideration.

To address this issue and further amend the estimated
biases identified in the UKF, the parameter update method
with UKF is introduced to refine the speed estimates and to
pursue unbiased estimates, and the equivalent system Eq.
(7) and the proposed parameter update mechanism are
used to make up for the model discrepancy and the para-
meter identification error.

4.3 UKF with parameter update mechanism

Recalling the cooling fan model in Egs. (25) and (26),
through diverse scenarios encompassing different environ-
ments, time frames, and operational conditions, it has been
observed from experience that the model parameters of
the fan system may undergo slight perturbations, sug-
gesting the potential for time-varying characteristics.

Consequently, we attribute the effects of model uncer-
tainty or disturbances in the fan to the variation of system
parameters. Based on this assumption, an online para-
meter estimation mechanism to enhance unbiased estima-
tion of fan speed is conducted.

Consider the formulation of these time-varying para-
meters as follows.

a(t) = a+ a(),
an(t) = ay + an(t),
b(t) = b + b(0),

(42)

T T y
145 - J
140 1

=z 135 1

3

g

— 130 1

3
125 1
120 - - - —

Electrical-drived fan dynamics
115 — — —Reduced order fan dynamics
3 3.2 34 3.6 3.8 4
Time (sec)

(a)

Online speed estimation of nonlinear industrial cooling fans == 9

where @, dy, and b are the estimated values obtained from
the identification results by the low-pass filtering method
[13] and d(t), dy(t), and b(t) are the time-varying para-
meter uncertainties, describing the effects of the modeling
errors and external perturbations. The main strategy in this
section is to consider the parameter uncertainties as vari-
ables, whose change rates d, dy, and b are assumed to be
Gaussian distributions with zero means and standard devia-
tions gy, d,,, and gy, respectively. That is, the dynamics of the
parameter uncertainties satisfy

a = wy, wy ~ N(0, 62),
dy = Way, Way ~ N(0, 02), 43)
b = wy, wy ~ N(O, a?).
Thus, the overall system can be described as follows:
(1) Process model:

@) = -[a + a®]w®) - [ay + dv(O]w*(t)
+ [b + b@][r(t) + (D],

act) = w(t), 44
an(t) = Way(t),
b(t) = wi(0).
(2) Observation equation:
z(t) = w(t) + (), (45)

of which w, @, dy, and b are the states of the system, and
Td, Wa, Way, and wy are the perturbations.
Similarly, to utilize the UKF algorithm, the discrete-

600 - ]
550 1 1
&=
B 500 ]
N
3
450 , 1
I
,' Measured Output
400 = = —Estimated Output| |
20 22 24 26 28 30
Time (sec)

(b)

Figure 6: Cooling fan system transient speed response comparison between the electrical-circuit-derived second-order fan dynamics and the reduced
order cooling fan representation. (a) Simulation observation. (b) Experimental validation.
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time model representation of Eq. (44) is derived through
the forward difference, given by

Wiet = [1 = (@ + @)T]wk = (v + v k) Tw}

+ (b + b)T(w + Tax)

Qg+ = A + TWa,k (46)
Gy k+1 = Ay + TWey
brs1 = b + Twy,
and
Zx = Wi t Vi. 47

Concerning the discrete-time model Eq. (46), the
actual change rates of uncertainties are unknown in
the real world. Fortunately, based on practical experi-
mental statistics, parameter uncertainties can be
assumed to be slowly time-varying. Therefore, the prac-
tical framework of the UKF for online realization can be
modeled as the following transition equation.

(3) State transition equation:

Wiet = [1 = (@ + @)T]wk = (Ay + k) Tw}
+ (b + b,

ak"'l = dka (48)
Gy je+1 = AN ks
by+1 = by,

where the initial condition of the parameters can be
obtained from the estimation algorithms [13,14].
(4) Observation equation:

Zyx = Wg. (49)

(5) The state vector, the process, and measurement noise
are expressed as follows:

Wi (b + BTy
ak TWa k
Xk =g |, Wk= ' , o Vie=[wd, (50)
a}:[’k TWaN,k
bk TWb,k
and
Q = E{Wkwlz}
(b + b)*T%? 0 0 0
0 T%6} 0 0
- 252 g D
0 0 Tcog,
0 0 0 T2

Ry = E{vivi} = 02 (w, ).

Note that 74, Wak, Way,k, and Wy i are assumed to be
statistically independent.

DE GRUYTER

The simulation condition is mainly given the same as
in the previous instance, where the simulation signal is
obtained by the nominal parameters given by ] = 0.15,
a = 0.012, and Cp = 0.0025 (i.e. a = 0.08, ay = 0.0167, and
b = 6.6667). Based on the studies of Chen and Peng, Li
et al, and Peng et al [32-34], the parameters utilized
in UKF are assumed to have 10% uncertainty. That is,
d=0.9a, dy = 09ay, and b = 0.9b, and their variances
oz = 0.1a, o, = 0.1ay, and of = 0.1b are applied to con-
struct Q, in Eq. (51). For the comparison of estimation
performance, the covariance values for the standard UKF
aresettoQ=2andR = 2.

Figure 7 shows the speed estimating results for the
general UKF and the proposed method, which evidently
shows that with the parameter update mechanism, the
biased estimate issue from the parameter uncertainty is
eliminated, and the effect of noise is attenuated as well.
Figure 8 provides the numerical errors between the esti-
mation results and the ground truth. One can observe that
the error of the traditional UKF is not zero-mean and is
noisier, while the proposed mechanism alleviates the bias
phenomenon and efficiently filters out the noise. The RMS
errors are quantified as 1.3393 for the traditional UKF and
significantly reduced to 0.7485 for the UKF with the para-
meter update mechanism.

Based on simulation results, the conclusion is drawn that
under the influence of time-varying uncertainties in pertur-
bation, the traditional UKF, while adjustable through tuning
Q to modify estimation performance, still exhibits inherent
biases in state estimation regardless of the adjustments made.
In comparison, the UKF with a parameter update mechanism
offers a more versatile solution, preventing biases in state

400 I
- = =ground truth
measurement
UKF
300 - para. update UKF 1
o
= 350
< 200 -
B 345
3 z
g 340
3
100 335 ]
330
52 54 5.6 5.8 6
time (s)
0 : ‘ ‘ ‘
0 ) 4 6 8 10

time (s)

Figure 7: Speed estimate by UKF with the parameter update mechanism.
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Figure 8: Speed estimation error by UKF with the parameter update
mechanism.

estimation and effectively reducing the interference of mea-
surement noise.

5 Experimental validation

To examine the feasibility of the proposed methods, the
algorithms are implemented in an embedded platform
for validation. The module of the multi-fan embedded
platform is illustrated in Figure 9. The printed circuit
board connects the microprocessor Teensy 3.6 with other
components, as shown in Figure 9(b) and (c). These com-
ponents include eight industrial cooling fans, eight knobs
for users to manually set the desired speed or control inputs
for each fan, eight LEDs indicating the status of each fan,
an OLED display showing detailed system information, and
two buttons that switch the experiments to different modes.
An USB port allows for communication between the PC
and Teensy 3.6, which is also the power supplier for the
microprocessor.

System identification is realized through the application
of the low-pass filtering method, as established in the recent
research [13]. The equivalent model parameters in Eq. (7) are
identified as J = 0.4083, a = 0.3151, and Cp = 7.02 x 1074,

5.1 Experiments on R modulation

In preparation for applying UKF algorithms to the cooling
fans, the modulation of the covariance R must be carried
out first. As hypothesized, the variance R is a function of
fan speed as described by Eq. (39). To determine the rela-
tionship between R and the speed, a series of different
speed values should be collected, then the standard devia-
tions at different speed levels can be calculated. However,
the data collection is memory-requested. Aiming at this
issue, the recursive mean and recursive standard deviation
are applied [35].

Online speed estimation of nonlinear industrial cooling fans

-—_ 1"

Fan

Power Supply
Teensy 3.6

OLED Display

Switch

Power Supply

for Fans 12V

ORI GNDVEE
OLED
Display

[ switch 182
©

Figure 9: Prototype of the developed cooling fan tray system. (a) Front
view of the fan tray system. (b) Microprocessor used for the proposed
algorithm realization. (c) PCB layout.

k-1 1
Auk = k [’lk—l + Ewk) (52)
— 1 )
Var, = X Var_; + %(wk = i)
(53)

k-1
+ T(#k—l - )

then gy = /Vary.

Applying a fixed step input, the speed will reach a
steady state after 3 s, and the recursions start at this point.
The embedded system only needs to store the final value of
the recursion and repeat this process for several different
levels of fixed input voltages. The relationship between R
and the speed can therefore be obtained by Eq. (38) using a
considerably smaller memory size. Figure 10 demonstrates
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Figure 10: Recursive mean and recursive standard deviation.

Table 1: Statistical data of fan 1

PWM (%) Speed (rps) Std. Variance R
9.9992 13.4706 0.0514 0.0026
23.3326 38.9528 0.1599 0.0255
36.6659 78.5468 0.3203 0.1026
49.9992 110.2039 0.3951 0.1561
63.3326 137.407 0.5812 0.3377
76.6659 163.9589 0.6823 0.4656
89.9992 189.3101 0.7070 0.4998

the recursion process at PWM = 80%, and the overall sta-
tistical data are recorded in Table 1.

Based on the assumption of heteroscedasticity and the
prescribed formulation, the parameters describing the rela-
tionship between the speed and standard deviation can be
derived by the least-squares solution, as shown in Figure 11.

5.2 Experiments on UKF with parameter
update mechanism

The experiments on speed estimation were conducted
using two input scenarios: (i) a stair input PWM (Figure 12)
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Figure 11: Fitting line for speed and standard deviation of fan 1 with
a; = 0.0039 and a, = 0.0045.

and (ii) manual modulation using knob 1 (Figures 13 and 14).
In the case of the traditional UKF, a tradeoff arises where a
smoother speed requires higher confidence in the mathema-
tical model. However, inherent model and parameter uncer-
tainties in the system lead to a biased speed estimate, as
depicted in Figure 12(b) and (c). Conversely, prioritizing an
unbiased estimate places greater emphasis on trusting the
measurements, which can lead to a decrease in filter effec-
tiveness. As seen in Figure 13(b), the traditional UKF estimate
(red line) closely aligns with the measured value (gray line).

In contrast, the proposed UKF with a parameter update
mechanism demonstrates the ability to achieve an unbiased
estimate while simultaneously filtering out undesirable noise
for both types of input PWM. Figure 13(c) illustrates the corre-
sponding speed estimation errors. Furthermore, Figures 12(c)
and 13(c) highlight the proposed method’s capability to mitigate
modeling errors that arise from neglecting the electrical driver
model. A comparative analysis between Figures 12(b) and 13(b)
leads to the conclusion that, for the traditional UKF, the adjust-
ment of Q and R can be a cumbersome process. An undersized

R UKF ——para. update UKF‘

para. update UKF

e WP

73

3 74
time (s)

75
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i
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Figure 12: Speed estimates by UKF and UKF with parameter update for
enlargement. (c) Speed estimation errors.
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Figure 13: Speed estimates by UKF and UKF with parameter update for manual modulation input. (a) Speed estimation comparison. (b) Responses -

partial enlargement. (c) Speed estimation errors.

Figure 14: Manual modulation of fan input commands.

Q and R ratio results in biased estimation states, while an
oversized Q and R ratio causes the estimated states to resemble
noisy signals. In contrast, the proposed UKF with a parameter
update mechanism adeptly avoids such issues.

6 Conclusions

This article conducts a detailed case study on real-time
speed estimation for cooling fan arrays in source-limited
embedded systems, considering modeling uncertainties
and the presence of measurement noise. With a focus on
practical applications in fan systems, the study proposes a
set of strategies to enhance fan speed estimation using the UKF
state estimation technique. The discussion encompasses the
effect of model reduction, nonlinear model speed estimation,
characteristics of speed measurement noise, and the time-
varying parameter-dependent uncertainties in fan system
models. To address noise during fan measurements, the study

utilizes noise modeling to enable automatic modulation of the
covariance R related to speed. Concurrently, the study con-
ducts a thorough analysis of the impact of modeling errors
in fan systems and the non-uniform Gaussian disturbances
caused by parameter identification errors. The article con-
cludes by introducing a UKF with a parameter update
mechanism for fan speed estimation, validated through simu-
lations and experiments to showcase the method’s effective-
ness. The proposed UKF framework with a parameter update
mechanism exhibits outstanding performance in real-world
fan speed estimation applications, demonstrating superior esti-
mation accuracy compared to the traditional UKF. The esti-
mated states effectively achieve a balanced representation of
the model and measurement values. Moreover, the estimated
speeds are much smoother than the raw measurements. From
the control point of view, the fused speed can avoid serious
control chattering and thereby the proposed method can
further attenuate control energy loss.
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