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Abstract: In response to the shortcomings of insufficient
efficiency in calculating geometric nonlinear features and
high environmental impact in the current construction,
this study explores the control of nonlinear geometric
structures based on an updated Lagrangian model function
in the construction. In this method, the change in the geo-
metric nonlinear stiffness is analyzed using generalized
stiffness parameters and a displacement increment
method, and the iteration step size and loading/unloading
directions are adjusted in the iteration process to achieve
the convergence of the solution. In the simulation experiment,
the proposed method took 126 s to calculate the incremental
iteration steps 700 times in a conventional environment, which
is 28.8% more efficient than the cross-sectional method. In the
simulated disaster environment, the model took 1,615 s to cal-
culate the ultimate load of 84 contact elements, which is 43.1%
more efficient than the section method and 62.6% more effi-
cient than the discrete analysis method. Experimental results
showed that the displacement judgment calculation efficiency
of the method proposed in this study is higher than that of
othermodels under different loading and unloading conditions
and even in geological disaster states. This method had high
environmental adaptability in solving nonlinear building struc-
tures and could improve the efficiency of solving general non-
linear building results.

Keywords: incremental iteration, geometric nonlinearity,
building structure, displacement control method, ortho-
gonal constraint, generalized stiffness parameter

1 Introduction

With the advancement of building materials, equipment,
and technological processes, the structural design of
modern buildings is increasingly demonstrating flexible
characteristics. Although the development of flexible struc-
tures in modern architecture has improved the environ-
mental adaptability and natural disaster resistance of
buildings, geometric nonlinearity issues such as deflection
and curvature involved in flexible structures cannot be
ignored [1]. The geometric and load parameters of build-
ings have a significant impact on flexible structures,
making it difficult to control the deformation, fracture,
and other behaviors of flexible buildings [2]. The solution
of geometric nonlinear problems in flexible buildings is
beneficial for optimizing the prefabrication and assembly
methods of building structures. While reducing the labor
costs and improving the construction efficiency, it can also
shorten the construction project cycle. The application of
geometric nonlinear problems in architecture is highly in
line with the current market demand for resource conser-
vation and environmental sustainability and therefore has
broad application prospects. In architectural structural
design, geometric nonlinear analysis can more accurately
predict the actual behavior of the structure under load.
Due to the complex geometric shapes and connection
methods of building structures, traditional linear analysis
may not accurately reflect the actual response of the struc-
ture. The method proposed in the study can simulate the
buckling and instability phenomena of structures under
large deformations through numerical analysis of flexible
structures, which is crucial for ensuring the safety of
the structure. The contribution of the research lies in
improving the efficiency of displacement increment calcu-
lations by introducing orthogonal constraints, thereby pro-
viding a high-precision and efficient analysis method for
the geometric nonlinearity of current flexible structures.

Due to the promising market prospects of geometric
nonlinear structures, academic fields and research projects



* Corresponding author: Ling Li, Business School, Shanghai Jian Qiao
University, Shanghai, 201306, China, e-mail: 18487241812@163.com

Nonlinear Engineering 2024; 13: 20240047

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/nleng-2024-0047
mailto:18487241812@163.com


have long been of interest. Touzé et al. proposed a geo-
metric nonlinear structural model reduction method based
on an invariant manifold theory, emphasizing the differ-
ence between nonlinear mapping and linear techniques.
On the basis of discussing the discretization of the finite
element method and the implicit condensation technique,
recent developments allowing direct computation of reduced-
order models relying on invariant manifolds theory are
detailed [3]. Deng et al. proposed a new geometrically non-
linear planar beam element. The proposedmethod was based
on the corotation process and stability function, using the
same direction rotation program method and differential
method to handle displacement transformation and estab-
lishing the overall balance equation and tangent stiffness
matrix. This method had been proven to have accuracy and
efficiency in instance verification [4]. Ma et al. introduced the
latest progress of nonlinear electromagnetic response in
detecting and controlling quantum phases based on material
classification methods using quantum geometry and topolo-
gical properties and analyzed the application of this method
in device architecture [5]. Xu et al. investigated the influence
of geometric nonlinearity on large-span bridge structures and
analyzed the coupled vibration response of wind turbines
and bridges using a full process iterative calculation
method. When the train speed was 200 km/h and the
wind speed was greater than 35 m/s, the wheel unloading
index exceeded the safety threshold [6]. Zhao et al. used a
shooting method to solve the nonlinear control equations
of gradient shallow spherical shells, thereby obtaining the
influence of geometric parameters, material properties,
and other parameters on shell buckling and critical load.
In experiments, this method provided numerical values
and curves to assist in the design of nonlinear structures
[7]. Wen et al. reviewed three types of methods for material
nonlinearity, geometric nonlinearity, and boundary non-
linearity and explored their numerical accuracy, computa-
tional efficiency, and nonlinear dynamics problems in
nonlinear continuum topology optimization [8].

Huang et al. conducted nonlinear modal analysis on
axially functionally graded truncated cone microscale
tubes to improve the vibration response of the microstruc-
ture. In the experiment, the influence of material combina-
tion changes on the frequency was analyzed through the
homotopy perturbation method and the generalized differ-
ential quadrature method [9]. Yang et al. improved the
prediction accuracy of interpretable neural networks by
using orthogonal constraints and performed parameter
estimation through an improved small batch gradient des-
cent method. In the experiment, this method improved
the interpretability of the model while also making the
predictive performance comparable to those of multiple

benchmark models [10]. Wu et al. proposed an orthogonal
constrained least squares regression model for preserving
more discriminative information in feature selection. This
method could effectively reduce the feature dimension and
improve the classification performance [11]. Maghami and
Schillinger proposed an improved truncation error cri-
terion for incremental iterative path tracking step size
adaptation in large deformation structural mechanics pro-
blems by calculating scalar stiffness parameters. In the
experiment, the number of points in the incremental iteration
path of the model was significantly reduced, improving
the efficiency [12]. Jouneghani and Haghollahi analyzed
the seismic requirements and bearing capacity of ellip-
tical braced moment resisting frames using an incre-
mental iteration method and determined the ductility
and response correction factors of modern steel braced
structural systems. The response correction factors of 9.5
and 6.5 were applicable to the performance of the struc-
tural system under different stress states [13].

In summary, in the current research on geometric non-
linearity of building structures, most methods are based on
finite element analysis. In the application of finite element
analysis, the Lagrangian formulation and the section method
occupy the majority. However, the cross-sectional method
and the single Lagrangian formulation have the characteris-
tics of high computational complexity and complexity.
Therefore, to optimize the numerical calculation methods in
flexible structural engineering, the study uses orthogonal con-
straint conditions to optimize the incremental iteration
method based on generalized displacement control (GDC).
The purpose of this study is to improve the applicability
and efficiency of existing numerical analysis methods for
flexible structures in dealing with complex structures. This
research contributes to improving the accuracy of solving
current geometric nonlinear structures and enhancing the
computational efficiency. The innovation of the research
lies in the use of updated Lagrangian equations to construct
stiffness matrices and the adoption of GDC methods to calcu-
late increments.

2 Methods

Aiming at solving the parameter sensitivity problem for
the geometric nonlinear characteristics of flexible struc-
tures, a displacement control method based on incre-
mental iteration is studied. The GDC method is applied
and combined with orthogonal constraint conditions to
optimize the calculation method. In the incremental itera-
tion method, the N + 1-dimensional method is used to
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determine the load increment coefficient and the displace-
ment increment of the structural unit.

2.1 GDC method for nonlinear geometric
elements

In nonlinear analysis, incremental theory is used to gradu-
ally solve the response of structures under nonlinear
forces (such as material nonlinearity, geometric nonli-
nearity, etc.). When applying the incremental theory for
nonlinear analysis, it is necessary to decompose the
loading process of the structure into multiple equilibrium
states for step-by-step analysis, as shown in Figure 1.

As shown in Figure 1, the loading process is usually
divided into three stages: the initial state, the deformation
state calculated in the previous step, and the deformation
state currently being solved. The initial state and the defor-
mation state calculated in the previous step are known
as equilibrium states, and a new equilibrium state is solved
by analyzing the known equilibrium states [14]. Incremental
stiffness can be calculated from the four parameters of struc-
tural displacement, elastic stiffness, geometric stiffness, and
the force that generates displacement. The state changes of
non-linear geometric structures are decomposed into linear
problems through incremental stiffness, and the conver-
gence of calculation errors is achieved through iterative
increments. In the linear iteration process, the incremental
equilibrium equation is expressed as:
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In Eq. (1), i represents the number of incremental
steps; j represents the number of iteration steps. [ ]−Sj
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represents the overall stiffness matrix of the − -j 1 th incre-
mental step of the structure. DΔ represents the displace-
ment increment in the iteration; L represents the vector
formed by the node forces caused by external loads; F

represents the vector formed by the node forces caused
by internal loads. The parameter L is obtained by calcu-
lating the load vector and the load increment coefficient.
The unbalanced force represented by { } { }− −L Fj

i

j

i

1 in Eq. (1)
is a limiting condition for the number of incremental itera-
tions. Therefore, Eq. (2) is rewritten as follows:
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In Eq. (2), λ represents the load increment coefficient;
L̂ represents the initially set load vector; U represents the
unbalanced force. Under the rigid body criterion, the initial
displacement vector of the structure multiplied by the stiff-
ness matrix equals the external load vector, while the dis-
placement increment of the structure multiplied by the
stiffness matrix equals the unbalanced force vector. There-
fore, the calculation equation for the displacement incre-
ment can be derived, and the displacement equation for
incremental steps can be obtained by iterating all displace-
ment increments, as shown in Eq. (3)
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According to the structural incremental equilibrium
equation of Eq. (2), N equilibrium equations can be con-
structed, but there are N + 1 unknowns in the equations,
namely N unknown displacement quantities and one load
increment coefficient. Due to the presence of more
unknowns than equations, an additional constraint equa-
tion needs to be introduced to solve this problem. The
general form of the constraint equation is expressed as:

{ } { } + =χ D κλ CΔ .T
j j j (4)

In Eq. (4), χ represents the parameter that determines
the displacement change of the object; κ represents the
parameter that determines the magnitude of the object
load; C represents the limiting parameter of the object
displacement system.T represents the transposition opera-
tion, which is used to swap the rows and columns of a
vector or matrix. To obtain all unknowns, the constraint
equation of Eq. (4) and the incremental equilibrium equa-
tion of Eq. (2) are combined to form the following equation:
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Figure 1: Deformation of building structural units in three-dimensional
space.
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In order for the iterative algorithm to converge to the
correct solution, the constraint equation needs to satisfy
the stability and boundedness conditions. To ensure the
boundedness of load increment parameters and displace-
ment increments, the determinant of the generalized stiff-
ness matrix must be non-zero to avoid mathematical
singularities. The expression for the determinant of the
generalized stiffness matrix is shown in the following
equation:

[ ] ( ( ) { }) [ ]= +− −S κ χ D Sdet ˆ Δ ˆ det .j
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In Eq. (6), κ and ( )χ T are both sub-terms of the stiffness
matrix, so the load increment coefficient can be expressed as:
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In the conventional incremental iteration method, it
mainly includes the prediction stage that affects the speed
and efficiency of algorithm convergence, as well as the calcu-
lation stage that directly determines whether the algorithm
can converge to the exact solution, as shown in Figure 2.

In Figure 2, when conducting nonlinear structural ana-
lysis, the incremental iterative calculation method needs to
meet the requirement of automatically adjusting the step
size to adapt to changes in structural stiffness [15]. Mean-
while, it is necessary to ensure stable calculation in areas
where extreme values or rebound may occur. Therefore,
the GDC method is introduced on the basis of incremental
iterative calculation. The method uses the generalized stiff-
ness parameter (GSP) to determine the size of the load
increment and adjusts the iteration step size and loading/

unloading directions in the iterative process to achieve
the convergence of the solution [16]. Compared to other
methods, it has advantages in dealing with complex non-
linear problems, dynamic problems, and material non-
linear problems with multiple critical points.

In the GDC method, the constraint parameters κ is 0,
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straint parameters are substituted into Eq. (7) to obtain
the expression of the constraint equation, as shown in
the following equation:
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From Eq. (8), the calculation equation for the load
increment coefficient can be simplified as:
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In Eq. (9), PSG represents the generalized stiffness
parameter. In the GDC method, both the stability at the
limit point and rebound point, as well as the determination
of loading and unloading directions during the iteration
process, rely on GSP to achieve. GSP reflects the ratio of
structural displacement increments and is numerically
bounded and stable. The sign of GSP is related to the angle
between the displacement increment [17]. When passing
through extreme points, GSP is negative, while in other
cases it is positive. The positive and negative values of
GSP can be used to determine loading or unloading during
the iteration process, helping the iteration process
smoothly pass through the limit points. Therefore, the
role of generalized stiffness parameters in nonlinear geo-
metric problems is to adjust the value of the load incre-
ment parameter, thereby controlling the iteration step size.

When the number of iterations is greater than or equal
to 2, the constraint Eq. (8) can be simplified into the fol-
lowing equation:

{ }{ } =−
D DΔ ˆ Δ 0.
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From Eq. (10), it can be seen that in the GDC iterative
algorithm, the vector generated in the previous iteration is
orthogonal to the vector generated in the current iteration.
Therefore, the application of GSP can be used to ensure
that the calculation of displacement changes of structures
under load is carried out along new and unexplored direc-
tions, to avoid getting stuck in local minima or overfitting
problems.
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Figure 2: Incremental iterative calculation model.
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2.2 Improved GDC method based on
orthogonal constraint conditions

The convergence of traditional incremental iteration
methods depends on the initial guess value. If the initial
conditions are not properly selected, it may lead to diver-
gence or convergence to the wrong solution during the
iteration process. Meanwhile, the efficiency and conver-
gence of iterative methods may depend on the size and
distribution of load increments. Since the orthogonal rela-
tionship between iterative increments has been analyzed
in the above equation expression, the study aims to
improve the GDC method by analyzing and optimizing
the orthogonal constraint conditions. In incremental itera-
tion analysis, the purpose of defining the load increment
factor is to provide sufficient known conditions for solving
the displacement and load increments in nonlinear equa-
tions. In the first iteration, it is assumed that the structure
is in equilibrium and there are no unbalanced forces. At
this stage, the structure is subjected to external loads, and
the resulting displacement increment is calculated based
on linear analysis. Starting from the second iteration, the
iterative process gradually adjusts and optimizes to elim-
inate the unbalanced forces in the initial approximate solu-
tion, ultimately reaching an equilibrium state that makes
the calculation results more accurate and reliable, as
shown in Figure 3.

In Figure 3, 0 represents the initial position, and 1, 2, 3,
and j represent the number of iterations. In the first itera-
tion, considering the degree of nonlinearity of the struc-
ture is crucial for determining the incremental step size.
The stiffness change of a structure is an intuitive indicator
for determining the degree of nonlinearity. A large change
in stiffness means a high degree of nonlinearity, therefore
requiring a smaller incremental step size. A small change
in stiffness means a low degree of nonlinearity, and a

larger incremental step size can be used. Therefore, the
expression of the load increment coefficient should be opti-
mized to the following equation:
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In Eq. (11), ( )f x is expressed as the correlation function
of structural stiffness. Its expression is shown in the fol-
lowing equation:
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In the first iteration of the incremental iteration
method, in addition to determining the numerical value
of the load increment coefficient, it is also necessary to
determine its positive or negative sign. The current stiff-
ness parameters used may not be sufficient to accurately
describe the behavior of the structure near the limit point
and rebound point, where special measures need to be
taken to ensure the safety and stability of the structure.
In practical applications, it is necessary to adjust the stiff-
ness parameters or adopt more complex models to better
handle these issues [18]. Therefore, the study introduces
additional directional parameters to determine that
when the dot product of two displacement increments is
positive, the sign of the load increment coefficient is the
same as that of the return parameter, as shown in the
following equation:
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In Eq. (13), sign represents the return parameter of the
function, and when the dot product of two displacement
increments is negative, it indicates that the sign of the load
increment coefficient is opposite to that of the return para-
meter, as shown in the following equation:
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D D λ λ λ f x iΔ ˆ Δ ˆ 0, sign , 2.
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In Eq. (14), λ1

1 represents the preset value of the load
increment coefficient, which is determined by the stiffness
related function. In the initial iterative calculation, a sim-
plified linear model obtains an approximate structural
response of the nonlinear structure. The simplified linear
calculation may lead to errors between the calculated
results and the actual structural behavior. Therefore, the
second part of the GDC method aims to reduce these errors
through iteration. During the iteration process, a clear path
or strategy needs to be defined to guide how to gradually
adjust the load and displacement to approximate the true
equilibrium state of the structure. The iteration path needs
to be able to simultaneously adjust the load increment
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Figure 3: Two-dimensional simplification of traditional (a) incremental
iteration and (b) generalized incremental orthogonal iteration.
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applied to the structure and the displacement increment of
the structure. This adjustment is to gradually reduce the
unbalanced state of the structure, so that the internal and
external forces of the structure can reach equilibrium. In
addition, the limit point and rebound point are nonlinear
characteristic points in structural response. Inappropriate
adjustment of the iteration path near these points can lead
to divergence or inability to converge to the correct equili-
brium state. The constraint equation of the current stiff-
ness parameter method is simplified to Eq. (10), which
shows that the current stiffness parameter uses orthogonal
constraint conditions as its convergence criterion. Using
the displacement increment within the incremental step
as a reference direction vector can make the iteration
direction closer to the equilibrium path. Therefore, the
final GDC iteration path based on orthogonal constraint
conditions is represented by the following equation:
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Through this orthogonal iteration, the GDC method
can effectively handle nonlinear problems in structural
analysis. In structural analysis, a key parameter, the gen-
eralized stiffness parameter, is introduced to monitor the
stiffness changes of the structure during loading. In the first
step of iteration, the GDC method will set a step size limit to
ensure the stability of the structure during loading and to
determine whether to increase or decrease the load. In the
subsequent steps of iteration, the GDC method will set a
reference direction vector for the structure. This means
that the iterative path of displacement increment will remain
perpendicular to the reference direction vector, i.e., ortho-
gonal, to ensure the efficiency and accuracy of the iterative
process. Through the above iterative process, the goal of the
GDC method is to stabilize and converge the calculation
results to the equilibrium state of the structure. The research
process is shown in Figure 4.

In Figure 4, for the geometric nonlinearity problem of
flexible structures, the GDC method and orthogonal con-
straints constructed by the research mainly divide the
incremental iteration into two processes: the first iteration
and the subsequent iteration.

In the first iteration, the stiffness matrix of the struc-
ture is determined and the GSP is calculated, and the posi-
tive and negative directions of the load are determined
through the first iteration. The stiffness matrix of the
second iteration is updated, and the load increment and
displacement increment are calculated. Whether the

displacement increment is less than the safety standard
is judged. If yes, output the displacement increment; other-
wise, continue iterative calculation. In the calculation
and analysis of building structures, although traditional
single displacement control methods are favored for their
stability, they appear cumbersome when dealing with
structural buckling problems. To ensure computational
convergence when dealing with paths with significant cur-
vature, it is usually necessary to set the initial load incre-
ment factor very small. In order to expand the application
scope of displacement control iteration method, ortho-
gonal constraint conditions are introduced to optimize
the calculation process of the structure. By comparing
the maximum load increment factor at convergence under
different constraint conditions, the efficiency of structural
analysis and calculation has been increased.

3 Results

To verify the GDC method under orthogonal constraint
optimization constructed by the research method, the
adaptability of the method in displacement increment con-
trol calculation will be explored from the finite element
analysis model of the spatial truss structure, and the algo-
rithm control performance under simulated disaster con-
ditions will be compared.

3.1 Applicability experiment of the
orthogonal constraint optimization GDC
method

The study uses a hexagonal star-shaped spatial truss struc-
ture as the experimental simulation object. When con-
structing a finite element analysis model using the ANSYS
platform, LINK8 elements are used to construct the spatial
truss structure, as shown in Figure 5.

In Figure 5, in the finite element model constructed
using ANSYS, each member is simplified into a single ele-
ment for simulation. The contact relationship between
each particle is simulated as 132 contact units, of which
48 contact points could rotate but are not allowed to trans-
late at the connection. Additionally, 84 contact points allow
for a certain degree of translation and rotation. The spe-
cific model parameters are shown in Table 1.

In the table, the initial load factor is used to determine
the incremental step size and loading direction. The

6  Ling Li



incremental step size should be adjusted according to the
stiffness change of the structure, and the larger the stiff-
ness, the smaller the incremental step size should be.
Therefore, in order to reflect the changes in structural
stiffness and adapt to the direction changes of loads
beyond the limit point in iterative calculations, this value
of 0.00005 is studied as the initial incremental coefficient.
First, the load–displacement curve of the model is analyzed
in the experiment to verify the rationality of the proposed
orthogonal constraint optimization GDC method, as shown
in Figure 6.

In Figure 6, ANA represents the finite element analysis
method, while GDC represents the analysis and calculation
method constructed for the study. The proposed method is
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Figure 4: Algorithm flow based on GDC and incremental orthogonal iteration constraints.
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Figure 5: Model diagram and parallel simplification of the truss struc-
ture: (a) plan view and (b) discrete model diagram.

Table 1: Finite element model parameters of the spatial truss structure

Project Value Project Value

Initial load of node 1,000 N Cross sectional area of the rod 317 mm2

Initial load increment coefficient 0.00005 Torsional moment of inertia 14,110 mm4

Elastic modulus 3,030 MPa Sectional moment of inertia 8,370 mm4

Shear modulus 1,262 MPa Number of rods 24
Nodes 13 — —

Generalized displacement control method and orthogonal iteration analysis  7



very close to the theoretical exact solution in the load–dis-
placement curves of two nodes, indicating the accuracy of
the analysis method. Experiments showed that the model
constructed by the study could accurately predict and
handle the performance of spatial frame structures when
they reached their ultimate load-bearing capacity after
introducing a stiffness matrix for analysis. Afterward, the
study evaluates the efficiency of different methods, as
shown in Figure 7.

In Figure 7, ARC represents the cross-sectional method,
while GDC represents the analytical calculation method
constructed for the study. The method proposed in the
study had similar load–displacement curves and section
method curves, with a final time of 126 s in 700 incremental
iteration steps, while the section method had a final time of
177 s. The method proposed in the study had optimized the

time consumption by 28.8% compared to the cross-sec-
tional method while maintaining the same performance.

3.2 Comparative experiment of the
orthogonal constraint optimization GDC
method

First, to analyze the computational performance of the
model under different load conditions, the study will
design different load conditions and analyze the perfor-
mance of the orthogonal constraint optimized GDC method
constructed under different loads in the calculation. First,
the load is set to be uniformly applied from node 1. In the
first working condition, the load method is to apply
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external loads directly, while in the second condition, the
load is applied in a form greater than the external load.
When the load of the second working condition exceeds
that of the first working condition excessively, it will cause
significant differences in nonlinear behavior. Therefore,
the load of the second working condition in the study
area is 1.01 times that of the first working condition. The
load–displacement curves under two operating conditions
are shown in Figure 8.

In Figure 8, under different operating conditions, the
load–displacement curve of the cross-sectional method
varied greatly, while the model constructed by the study
is less affected by the change in operating conditions. From
Figure 8(a), it can be seen that under the section method
analysis, when the displacement of the contact element
reaches 2.5 cm, the calculated load difference is as high
as 97 N. In Figure 8(b), under the method of research con-
struction, after the displacement of the method reaches 2.5
in the two working conditions, the load difference between

different working conditions is only 4 N. To analyze and
study the role of the proposed optimized GDC method in
nonlinear structural deformation impact, a seismic wave
with a peak acceleration of 1.2 g is input for 14 s in the
simulation experiment. In the simulated disaster environ-
ment, the horizontal displacement of the simulated spatial
truss structure is shown in Figure 9.

The DEM in Figure 9 represents the discrete element
analysis method. In Figure 9, the horizontal displacement
results of the optimized GDC structure used in the study
had a high similarity in waveform with the horizontal
acceleration of seismic waves. The experiment showed
that the N + 1 dimension theory used in the research
method could effectively respond to and adjust the scope
of application of the calculation method. The consistency
and accuracy of calculation and analysis could also be
maintained under the influence of geological disasters.
The study analyzes the ultimate load fluctuations of con-
tact elements in spatial truss structures under the
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influence of geological disasters, and the specific results
are shown in Figure 10.

As shown in Figure 10, the difference in the ultimate
load calculation of the contact element of the spatial truss
structure between the algorithm models proposed by the
three algorithms and the section method is relatively small,
while the ultimate load obtained by the discrete element
analysis method is larger compared to the other two
methods. The average load calculation result of the dis-
crete element analysis method for 84 contact elements is
112.6 kN, while the calculation results of the section method
and the GDC method constructed in the study are 113.9 and
114.7 kN, respectively. In Figure 10(b), the constructed
method took 1,615 s to calculate the ultimate load of 84
contact elements, while the cross-sectional method took
2,840 s to calculate all contact elements. The discrete ele-
ment analysis method performed the worst in terms of
computational efficiency, with a final computation time
of 4,322 s. The time complexity of different algorithm
models is shown in Figure 11.

From Figure 11, it can be seen that with the increase of
structural degrees of freedom, the time complexity of all
three models shows an upward trend. However, the model
constructed by the research has the smallest increase in
magnitude, with a final time complexity of less than 109 T,
while the time service reading of the discrete element
model is greater than 1011 T, and the time complexity of
the cross-sectional method is close to 1010 T. Afterward,
the horizontal displacement and deformation degree of
13 nodes are compared in the study, and the specific results
are shown in Table 2.

As observed in Table 2, among the 13 nodes, the max-
imum error of the constructed method in displacement
calculation is only 0.06 cm, and the minimum error

is 0 cm. Meanwhile, in all 13 nodes, the deformation judg-
ment results calculated by the proposed method are cor-
rect. Therefore, the model constructed in the study can still
accurately determine the displacement and deformation
properties of building structures even after simulating
earthquake disasters. Finally, the study will compare the
differences between the GDC method, multi-point displace-
ment control, and traditional LDL decomposition method
constructed under different load conditions. In the com-
parative experiment, the three operating conditions are
set as static overturning load, continuously increasing
load, and reciprocating load. The specific results are shown
in Table 3.

From Table 3, it can be seen that under the static over-
turning load conditions, the proposed algorithm has a time
complexity of 0.52 × 107 T, which is lower than other algo-
rithm models. At the same time, under dynamic working
conditions such as continuously increasing loads and reci-
procating loads, the proposed algorithm has time complex-
ities of 0.32 × 108 T and 0.52 × 107 T, respectively, which are
lower than other algorithm models.
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4 Conclusions

To verify the performance of the improved incremental
iteration method constructed in geometric nonlinear
calculations, this study explored the advantages of the
method from its adaptability and performance compar-
ison. First, in the 700 incremental iteration steps of simu-
lating the hexagonal star-shaped spatial truss structure, the
final time consumption was 126 s, while the cross-sectional
method took 177 s. The method proposed in the study opti-
mized the time consumption by 28.8% compared to the
cross-sectional method while maintaining the same perfor-
mance. Meanwhile, under the influence of simulated
seismic waves, the method constructed in the study took
1,615 s to calculate the ultimate load of 84 contact elements,
while the section method took 2,840 s to calculate all con-
tact elements. The discrete element analysis method per-
formed the worst in computational efficiency, with a final
calculation time of 4,322 s. Finally, among the 13 nodes of
the spatial model, the maximum error of the constructed
method in displacement calculation was only 0.06 cm, and
the minimum error was 0 cm, while the deformation

judgment results obtained by the method were all correct.
Experimental results have shown that the model con-
structed by the study has good computational accuracy
and efficiency in conventional environments. Meanwhile,
it can maintain a good displacement increment calculation
performance even under changes in load application
methods and seismic effects. The limitation of the study
is that only one type of structure was used for simulation
in the experiment. In future research, additional building
structures can be considered for exploration.
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Table 2: Displacement and deformation of spatial truss structure nodes

Node Prediction displacement (cm) Theory displacement Deformation prediction Theory deformation

1 0.62 0.57 Undeformed Undeformed
2 0.88 0.85 Undeformed Undeformed
3 0.91 0.92 Deformation Deformation
4 0.86 0.85 Undeformed Undeformed
5 0.81 0.86 Undeformed Undeformed
6 0.86 0.86 Undeformed Undeformed
7 0.91 0.93 Deformation Deformation
8 0.25 0.19 Undeformed Undeformed
9 0.15 0.16 Undeformed Undeformed
10 0.21 0.18 Undeformed Undeformed
11 0.22 0.21 Undeformed Undeformed
12 0.23 0.26 Undeformed Undeformed
13 0.22 0.24 Undeformed Undeformed

Table 3: Load calculation and time complexity of different algorithm models under different operation conditions

Working
conditions

Static overturning load Continuously increasing the load Cyclic loading

Algorithm Average
load (kN)

Time
complexity (T)

Average
load (kN)

Time
complexity (T)

Average
load (kN)

Time complexity (T)

LDL 114.2 0.55 × 107 116.3 0.16 × 109 113.9 0.72 × 108

MDC 115.4 0.93 × 108 117.1 1.4 × 1010 114.4 1.1 × 1010

DCE 114.7 0.52 × 107 115.6 0.32 × 108 114.6 0.52 × 107
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