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Abstract: This article presents a non-linear mathematical
model that captures the dynamics of drinking prevalence
within a population. The model is analyzed under an
optimal control framework, dividing the total population
into four compartments: susceptible, heavy drinker, drinker
in treatment, and recovered classes. The model’s validity is
affirmed through considerations of positivity, boundedness,
reproduction number, stability, and sensitivity analysis.
Stability theory is employed to explore both local and global
stabilities. Sensitivity analysis identifies parameters with a
significant impact on the reproduction number (Ry), with
maximum sensitivity observed in parameters related to
drinking transmission and transitions from heavy drinking
to treatment stages. These parameters exhibit sensitivity
indices of (0.538, 1), indicating that a 10% increase in these
parameters would result in a (5.38,1) increase in the
threshold quantity. The study introduces an optimal control
strategy that involves awareness campaigns and treatment
as control variables. These controls aim to minimize the
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number of heavy drinkers while maximizing the number
of recovered individuals. Pontryagin’s maximum principle
is used to solve optimal control problems. Additionally, the
research explores various parametric settings for each com-
partment, enriching the study environment. The effective-
ness of the proposed control scheme is evaluated through
rigorous numerical simulations, highlighting its competitive
edge. The results, validated using MATLAB simulations, are
detailed throughout the article.

Keywords: drinking model, stability, sensitivity, optimal
control theory, numerical simulations

1 Introduction

The ever-evolving research literature nominates the asso-
ciation of several physical, psychological, and socio-eco-
nomic issues with the access use of alcohol. For example,
Lees et al. [1] provided an enlightened account docu-
menting the linkages of excessive alcohol and brain func-
tioning ranging from compromised decision-making to
memory loss. Similarly, World Health Organization [2,3]
endorsed an intriguing association between chronic alcohol
use and the development of medical complications,
including a higher risk of liver disease, increased odds of
cardiovascular issues, heart problems, high blood pressure,
weakened immune system, and an increased risk of certain
types of cancer. Furthermore, a thought-provoking investi-
gation of Ferrari et al. [4] found vivid links connecting
alcohol use with the streaming of negative emotions, such
as depression, self-harm, suicidal attitude, anxiety, and
alcohol dependence or addiction. Heavy drinking can also
impair cognitive function, leading to difficulties with memory,
attention, and decision-making. The main factors of alcohol
drinking include income levels, education, employment
status, and social norms. Research has found that individuals
with lower incomes and lower levels of education are more
likely to engage in heavy drinking [5]. Unemployment and
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job instability have also been associated with increased
alcohol consumption [6]. Social norms and peer pressure
can also influence drinking behaviors, as alcohol consump-
tion is often seen as a way to fit in or cope with stress. The
negative impulses of alcohol consumption are known to have
drastic effects on more fragile groups of society, i.e., children.
Excess drinking in mothers during pregnancy is found to be
related to fetal alcohol spectrum disorders in children. More-
over, in a wider perspective, WHO Global Status Report [7]
reported an astonishing estimate of 30% of absenteeism asso-
ciated with alcohol, in Costa Rica. However, in the UK, the
share of alcohol usage in fatal accidents is found to be 60%.
The degree of burden of alcohol consumption on the health
care systems can be witnessed from the documentation of
Johnson et al. [8] reporting a 47% increase in the rate of all
alcohol-related emergency visits from 2006 to 2014. From a
global perspective, the unchecked use of alcohol is found to
be related to the instigation of more than 200 medical com-
plexities, including liver cirrhosis, malignancies, and cardio-
vascular disease [9,10]. The resulting number of deaths is
counted as higher as 3.3 million fatalities per annum, con-
tributing to a notable share of 6% of all deaths, globally [3].
More alarmingly, excessive alcohol consumption is becoming
an emerging trend in adolescents aged 15-19 years [11].
Almost 46% of the world’s adolescents aged 15-19 years
reported having overused alcohol. In 2016, the National
Survey on Drug Use and Health reported that 85.6% of people
aged 18 and older drank alcohol, in the USA.

Dynamic modeling, employing mathematical frame-
works such as differential equations, unveils the temporal
evolution of systems, articulating variable interactions for
precise predictions and analysis across diverse fields.
Mathematical representations unravel patterns, identify
parameters, and enhance our understanding of complex
systems. The impact of dynamic modeling spans scientific
progress and technological innovations, underscoring its
significance across disciplines [12]. Chen has made signifi-
cant contributions to dynamic modeling, particularly in
integrated energy systems and natural gas dynamics [13].
His work involves developing robust state estimators and
Kalman filter-based approaches to enhance the accuracy
and reliability of state predictions [14]. Focusing on complex
energy networks and pipeline systems, Chen’s research
addresses critical challenges and offers insights for advan-
cing dynamic modeling methodologies in the energy sector.

Mathematical studies serve as invaluable tools for
evaluating, testing, and implementing strategies on both
short- and long-term scales, particularly in addressing
chronic relapsing diseases such as alcoholism. There has
been limited research on mathematical modeling methods
for social problems such as alcohol and drug use, despite
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these issues often being referred to as epidemics, in con-
trast to research on other epidemic problems. However, in
recent years, an increasing number of mathematicians
have dedicated their efforts to developing mathematical
models aimed at understanding and addressing alcohol-
related concerns. Khan and Khan [15] proposed a mathe-
matical model for drinking using numerical analysis of
fractional order. Chinnadurai et al. [16] focused on employing
mathematical modeling to analyze strategies for controlling
alcohol consumption, particularly examining their impact
on socioeconomically disadvantaged populations. Through
the optimal control approach, Imken and Fatmi [17] intro-
duced a novel mathematical model to investigate alcohol
consumption within the diabetic population, especially
under antidiabetic drug treatments. ur Rahman et al. [18]
proposed a fractional mathematical model for drinking
under Atangana—-Baleanu Caputo derivatives. Bunonyo et al.
[19] research focused on using the eigenvalue method to
develop a mathematical model for the time-dependent con-
centration of alcohol in the human bloodstream, contri-
buting to a deeper understanding of alcohol metabolism
dynamics and potentially informing strategies for alcohol-
related risk assessment and management. Huo and Wang’s
nonlinear mathematical model [20] illustrated the impact of
awareness campaigns on binge drinking, demonstrating
their effectiveness in mitigating alcohol-related issues. Ma
et al. [21] tested a mathematical model of alcoholism as a
communicable disease, incorporating awareness campaigns
and a time delay, using optimal control techniques. Wang
et al. [22] proposed and investigated a nonlinear model of
alcoholism with optimal control to prevent interactions
between susceptible and infected individuals. Sharma et al.
[23] established a mathematical model of alcohol consump-
tion, examining the stability and existence of an endemic
equilibrium without drinking, and analyzing the sensitivity
of Ry [24,25]. Manthey et al. [26] proposed a mathematical
model to study the dynamics of campus drinking as an epi-
demiological model. Huo et al. [27] proposed a new social
epidemic model of alcoholism with media coverage aimed at
encouraging people to abstain from drinking. Huo and Song
[28] distinguished between heavy drinkers who admit to
drinking and those who do not, developing a two-stage
model for problematic drinking that accounts for the shift
in drinkers’ status from susceptible individuals to admitting
drinkers. This article discusses optimal control analysis of
disease transmission within a community, as presented in
the study by Anjam et al. [29].

In recent times, there has been a growing emphasis on
employing optimal control strategies to improve viral trans-
mission management. These applications extend beyond
medical contexts and encompass various areas such as
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policy development, engineering risk assessment, emergency
preparedness, and control program refinement [30,31].
Optimal control strategies are designed to identify effective
protocols for addressing complex problems, utilizing math-
ematical techniques such as dynamic programming, Pon-
tryagin’s principle, or model predictive control [32]. Utilizing
optimal control techniques in mathematical models offers
benefits by enabling the identification of efficient control
strategies to achieve desired outcomes, including improved
system performance, maximized benefits, or reduced costs
[33]. Verma et al. proposed a mathematical model to inves-
tigate coronavirus dynamics, considering the impact of lock-
down as an epidemiological measure [34]. They also studied
a nonlinear smoking model to analyze interactions between
smokers and smoking quitters [35]. Moreover, optimal con-
trol strategies have been introduced for coronavirus disease
2019, human immunodeficiency virus, and Dengue through
mathematical models that capture relationships among these
infectious diseases [36]. For further insights, references such
as Omame et al. [37] sightsee backward bifurcation and
optimal control in a co-infection model for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and zika
virus, while Omame et al. [38] delve into SARS-CoV-2 and
HBV co-dynamics modeling.

Motivated by the importance of the aforementioned
issue, this study delves into the application of optimal con-
trol theory to devise a new mathematical framework cap-
able of illustrating drinking prevalence trends in a community.
The goal of the optimal control scheme is to establish
feasible control laws that optimize specific performance
metrics. This article introduces a proposed mathematical
model for a drinking epidemic, categorizing the entire
population into four classes: susceptible drinkers, indivi-
duals in treatment, heavy drinkers, and recovered drinkers.
Initially, we validate the proposed model by examining
fundamental properties such as boundedness, positivity,
reproduction number, equilibrium points, stability, and con-
ducting sensitivity analyses. We conduct comprehensive
stability analyses at equilibrium points to assess both local
and global stabilities, outlining the legitimacy of the model
through detailed sensitivity analysis and documenting
local and global features. Subsequently, we develop the
drinking epidemic model using control variables derived
from qualitative optimal control principles, aiming to
maximize susceptible and recovered drinkers while mini-
mizing heavy drinkers and optimizing the aforementioned
compartments. The optimal control involves two control
variables: a social awareness campaign u(t) and treatment
assistance for reducing the drinking population uy(t).
Employing Pontryagin’s maximum principle (Pontryagin
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et al. [39]), we establish a proof for the existence of the
developed optimal control problem and analyze it to iden-
tify the necessary optimality conditions. The parametric set-
ting covers a range of scenarios.

This article is organized into the following sections.
Section 2 concentrates on model analysis, while Section 3
delves into sensitivity analysis. Section 4 discusses the sta-
bility aspects of the model under consideration. Section 5
elaborates on the integration of optimal control, empha-
sizing the implementation of more effective health inter-
ventions. Finally, Section 6 summarizes the key findings of
this study.

1.1 Model formulation

Understanding the transmission patterns of diseases and
creating effective control strategies heavily relies on math-
ematical models. Therefore, it is essential to focus on
delineating the epidemiological facets of the disease and
pinpointing crucial, adjustable parameters to bolster dis-
ease control measures.

This study delves into exploring a mathematical model
aimed at understanding the drinking epidemic within the
human population [40]. It highlights several key limitations
in the model analysis, including simplification of real-world
complexities, potential oversights in parameter selection,
reliance on assumed relationships, and the absence of
dynamic external factors. These constraints may limit the
model’s ability to fully capture the complexities of human
behavior and societal dynamics, potentially impacting the
generalizability of the findings. Therefore, caution is advised
in interpreting the predictions, as real-world applicability
may be constrained by the inherent simplifications in the
modeling approach. Additionally, certain assumptions were
made in developing the proposed drinking epidemic model.
The epidemic occurs within a closed environment, where
factors such as sex, race, and social status do not influence
the likelihood of developing heavy drinking habits. Mem-
bers interact homogeneously, meaning they have an equal
degree of interaction with one another. Heavy drinking
behavior can be transmitted to non-drinkers when they
come into contact with individuals who regularly consume
large amounts of alcohol. Individuals undergoing treatment
for their drinking habits may transition through stages of
recovery and susceptibility, potentially leading to a return to
heavy drinking. Conversely, those who have successfully
stopped drinking enter the recovery compartment.

At any time t > 0, the mathematical model divides the
entire population N(¢) into four compartments, enhancing
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accuracy and applicability by systematically categorizing
individuals based on shared characteristics related to
drinking behavior. This structured approach allows for
a more nuanced analysis of diverse factors influencing
alcohol consumption within specific subgroups. By recog-
nizing and delineating distinct patterns and tendencies,
the model can provide targeted insights into the dynamics
of drinking behavior, offering a comprehensive under-
standing of the population’s heterogeneous nature. This
segmentation facilitates precision in research, interven-
tion strategies, and policy development, contributing to a
more tailored and effective approach to addressing alcohol-
related issues at a population level. This division not only
improves the model’s accuracy in representing the hetero-
geneous nature of drinking behavior but also enhances its
applicability by providing a framework for understanding
how different factors contribute to the overall dynamics of
alcohol consumption in a population.

Therefore, the model classes include the susceptible
compartment S(t), encompassing individuals who either
abstain from alcohol or engage in moderate drinking
without compromising their physical health. The heavy
drinker compartment H(t) represents individuals who
engage in binge drinking, resulting in severe adverse
effects on their physical health. The drinker in treatment
compartment T(t) represents individuals undergoing ther-
apeutic interventions, such as medication, following a bout
of alcoholism, and the recovered compartment R(t),
signifying individuals who successfully recover from alco-
holism through treatment and subsequently maintain sus-
tained abstinence from alcohol. This structured approach
enables us to account for the varying levels of susceptibility,
severity of drinking habits, treatment interventions, and
recovery rates within the population. It allows us to model
the transitions between these compartments over time,
reflecting the real-world complexities of drinking behavior
and recovery processes. By incorporating specific para-
meters such as recruitment rates, transmission rates, death
rates, and recovery rates into the model, we can simulate
and analyze the interactions and flow patterns between
these compartments more accurately. Moreover, the model
formulation incorporates specific parameters such as the
recruitment rate of the susceptible class b, the transmission
rate from the susceptible class to the heavy drinker class a,
the transmission rate from the recovered class to the sus-
ceptible class 5, the natural death rate y, the drinking-
induced death rate in the class of heavy drinkers 6;, the
drinking-induced death rate in the treatment class &,, the
proportion of individuals entering the drinker in treatment
class ¢, and the recovery rate y. Considering the aforemen-
tioned factors, the schematic diagram in Figure 1 depicts the
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Figure 1: The schematic diagram elucidates the dynamics of transmis-
sion in drinking behavior.

flow pattern of interactions between different states related
to drinking behavior.

Hence, the total population at any given time t is
expressed as:

N(t) = S(t) + H(t) + T(t) + R(?).
Therefore, the fundamental model for the drinking epi-

demic is governed by a system of nonlinear differential
equations, which include:

(:1—?=b—a8[l-l - uS + R,
H
—=aSH - (u+ 6+ o)H,
dt
@
dr
E=¢[H - (u+ &+ Y,

d;R—TI—( + R
a Y g R,

subject to the initial conditions,

$(0)=0, HO)=0, TO)=0, and R(0)=0.

The specifics of each term that impact the system, as out-
lined in Model (1), are identified in Table 1.

2 Qualitative analysis of the
proposed model

In the forthcoming section, our analysis will focus on the
mathematical formulation encapsulated in Model (1). Our
examination will delve into the aspects of boundedness
and positivity within the model. Additionally, we will
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Table 1: Explanation for each term in the equations of Model (1) is presented

Terms of each equation Explanation

b Recruitment rate of the susceptible people

aSH The rate of transmission from the susceptible class to individuals with heavy drinking habits
nR Transmission rate of recovered people

us The rate of natural mortality among individuals in the susceptible population.

6H The mortality rate caused by drinking among individuals in the heavy drinker population
oH Proportion of drinking people of heavy drinker class

Al The mortality rate attributed to drinking among individuals in the drinker in treatment population
yT Recovered rate of drinker in treatment people

uH Mortality rate among heavy drinkers

ut Natural death rate of drinker in treatment people

UR Natural death rate of recovered people

determine the equilibrium points and compute the basic
reproduction number.

2.1 Positivity

Positivity constraints are imposed on both the initial con-
ditions and parameters in the devised model, ensuring that
their values remain non-negative or greater than zero
throughout the modeling process. This imposition enhances
the model’s reliability by minimizing the occurrence of
unrealistic outcomes, thereby improving its applicability
and making it more representative of real-world scenarios
and behaviors. Consequently, we rearrange Model (1) in
accordance with these constraints.

Y(t) = GY()),

where Y(t) = (¥, ¥y, ¥, )7 = (S, H, T, R)T, (0) = (S(0),
H(0), T(0), R(0))TeR%, and

G1(¥) b-aSH - uS + nR

Gx(¥)| |aSH - (u+ 6 + ¢)H

Gs(W)| | oH - (u+ S+ T

Gy(¥) yT = (u+nR

G(Y) =

In a stress-free scenario, Gi(y)|); =020 for i =1,..., 4.
Consistent with the seminal discovery by Nagumo [41], the
solution of Model (1) with an initial condition y, € R+,
denoted as Y(t) = Y(t;y,), ensures that P(t) € R+* for
allt > 0.

2.2 Boundedness

Boundedness in the drinking model refers to inherent con-
straints within the study, such as the exclusive focus on

specific demographics or contexts. These limitations risk
compromising the model’s reliability by narrowing its per-
spective and potentially overlooking broader behavioral
patterns. As a result, reduced generalizability restricts
the model’s applicability to specific circumstances and
populations, which may compromise its ability to capture
the nuanced complexity of real-world drinking behaviors.
To understand the aforementioned model, we need the
bounds on the dependent variables involved. To achieve
this, we must determine the feasible region of attraction as
outlined in the following theorem.

Theorem 2.1. There is a positive Y for nonzero such that all
solutions meet Y > (S(¢t), H(t), T(t),R(t)) for a long time t.

Proof. The solutions of System (1) are greater than zero,
now in the first compartment of System (1) as

ds(t
%=b—aS[H -uS +nR <b-us.
das(t) b .
Thus, o <1+ u for undue time ¢, let us say ¢ > ¢, for an

excessive time t. Define Ry(t) = S(t) + H(t) + T(t). Now,
differentiating of R, with the respect to the solution of
Model (1) yields

dRy(t
O - s - s 50 - @ b,
<-hR(t) + b,

where h = min(y, (4 + &1), (u + &2)). Remember S(t) <1
b i .

o for any t > ty. ¥, exists, reliant merely on the para-
meters of the considered model, such that Ry(t) <, for
eventually ¢ > t; and H(t) and T(¢) are bounded above.
Subsequently, the second and third compartments of Model
(1), R are eventually bounded above, and let ¥ be the max-
imum. This displays that Model (1) is destructive.
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Q=

b
(S,[H,WT,[R)‘1+EZSZO,[H > 0,9 = R}.

Clearly, Q is convex. O

2.3 Equilibrium points

Equilibrium points denote the stable-state prevalence of
individuals engaged in drinking behavior, wherein the
influx of new drinkers is counterbalanced by the rates of
recoveries and mortality. There exist two equilibrium
points: the drinking-free equilibrium point, and the drinking-
present equilibrium point. For the computation of the drinking
model, the process involves setting the left-hand side of Model
(1 equations equal to zero.

0=b-aSH - uS + 1R,
0=aSH - (u+ 6+ ¢)H,
0=¢H - (u+ &+ T,

0=yT - (u+nR.

@)

2.3.1 Drinking-free equilibrium point (Ey)

In the modeling of drinking behaviors, a drinking-free
equilibrium point (E,) represents a stable state with sustained
absence of alcohol consumption, offering insights into effec-
tive prevention or mitigation measures. Understanding the
dynamics around this equilibrium enhances comprehension
of influential factors governing the spread of drinking beha-
viors. Analyzing these points is crucial for devising precise
strategies in public health and intervention efforts. Therefore,
the drinking-free equilibrium point (E,) is derived by setting
H=0,T =0,andR = 0 in Model (1) as follows:

b
Ey = (S% HO TR = [E 0,0, 0]-

2.3.2 Drinking endemic equilibrium point (E;)

An endemic equilibrium point (E;) in the modeling of
drinking behaviors is a stable state characterized by per-
sistent alcohol consumption prevalence, providing insights
into long-term influencing factors. Examining the dynamics
around this point enhances understanding of the complex
interplay governing the sustained spread of drinking beha-
viors. Analysis of endemic equilibrium points informs stra-
tegic interventions for addressing prolonged patterns of
alcohol consumption in public health initiatives. The drinking
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endemic equilibrium point is written as E; = (S$*, H*, T*,R*)
# 0. Upon solving the equations from Model (1), we arrive at
the following outcomes:

_u+tht e
=,
o M+ 8+ ¢)-ab
aln - (u+ 8+ P’
w__ Oluu+ 8+ ¢) - ab]
au+ &+ y)n -+ &+ @l
. yoluu + 61 + ¢) - ab]
au+ M+ S+ y)n - W+ é+ )l

S*

andp =u+6+y,y=p+n.

2.4 Reproduction number

The basic reproduction number Ry is a significant metric
for assessing the transmission potential of heavy drinkers.
It quantifies the total number of secondary heavy drinkers
generated from the introduction of a single drinker indivi-
dual into a susceptible population. In biological terms, it indi-
cates the infectiousness and transmissibility of a pathogen.

We utilize the next-generation matrix method [42,43]
to calculate the reproduction number. The matrices F and
V are employed to represent the recruitment of new drin-
kers and the internal and external transmission terms
associated with compartments of individuals engaged in
drinking behavior, one obtains,

e[
~(u+ 8+ M

V:

OH — (U + S+ YT

The Jacobian of F and V matrix are given as

(u+6+0¢) 0
(0 “(u+68+y)

a 0

F=10 o

and V= [_ ] ©)]
The basic reproduction number R, is calculated as the
spectral radius of the next-generation matrix FV-., defined
as follows:

a
Fvl=|u+é6+¢ 0,
0 0

Hence, the basic reproduction number R, is obtained
through the following derivation:
a

R0=7M+51+¢)'
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If Ry < 1, it indicates that the disease is unlikely to propa-
gate extensively in the population and might eventually
diminish. Conversely, if Ry > 1, the disease can spread,
potentially causing an outbreak.

3 Sensitivity analysis

Sensitivity analysis plays a crucial role in assessing the
impact of input parameters on the dynamics of the epi-
demic drinking model. The parameters selected for sensi-
tivity analysis in this study align closely with the model’s
objectives, which aim to understand the dynamics of drinking
behavior and its transmission within a population. These care-
fully chosen parameters represent key factors influencing the
spread of drinking behaviors, including the transmission rate
of heavy drinkers, natural death rate, drinking-induced death
rates, and the proportion of individuals entering treatment.
The sensitivity indices used in the drinking model to cal-
culate the reproduction number (R;) are derived using
the methodology proposed by Chitnis et al. [44]. We spe-
cifically compute the normalized forward sensitivity
indices of the parameters m in relation to Ry. Let us delve
into this analysis further

Ry m

Ap = :
m om Ry

The sensitivity estimation for the reproduction number
concerning various parameters is presented as follows:

dR, a ORy 1

ARo= 2202 g ARo= —2 = = -0192,
a oa Ry “ ou Ry
6R0 61 R, aRO ¢

AR = 2020 - o970, A= =22 - (538,
b1 961 Ry ¢ a¢ Ry

Sensitivity analysis is commonly used to identify para-
meters significantly impacting the reproduction number
Ry. A positive value indicates a direct proportional rela-
tionship with the reproduction number, while a negative
value indicates an inversely proportional relationship. In
Table 2, the parameter (a) has a positive sign, indicating a

Table 2: Indices of sensitivity and parameters affecting the reproduction
number R,

Parameters Sensitivity indices
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directly proportional relationship with the reproduction
number. Thus, an escalation in the reproduction number
corresponds to an increase in parameters like the trans-
mission rate of heavy drinkers (a). Reducing the parameter
(@) can effectively control drinking in the population. Con-
versely, the reproduction number is negatively associated
with parameters such as the natural death rate (u), the
proportion of drinkers entering treatment at the heavy
drinker stage (¢), and the drinking-induced death rate of
heavy drinker individuals (6;). Increasing either the nat-
ural death rate of the population (u), the drinking-induced
death rate of heavy drinker individuals (6,), or the propor-
tion of drinkers entering treatment (@) is neither ethical
nor practical. Considering the sensitivity of Ry to the
drinking transmission rate of heavy drinkers (a), it is sen-
sible to prioritize efforts on reducing this rate due to its
direct impact on reproduction. In essence, this sensitivity
analysis highlights the efficacy of prevention over cure.
Enhancing preventive measures proves more effective in
curbing the proliferation of habitual drinking compared to
expanding access to treatment for individuals.

A notable revelation from this sensitivity analysis is
the substantial influence of the transmission rate of heavy
drinkers on the reproduction number (Ry). This discovery
underscored the pivotal role that heavy drinkers have in
propagating drinking behaviors within the population.
Moreover, the sensitivity analysis underscored the signifi-
cance of treatment interventions and their ability to lower
heavy drinking rates, highlighting the importance of focused
intervention strategies in addressing alcohol consumption.
In simpler terms, this analysis suggests that prevention is
more effective than trying to fix the issue later. Prioritizing
prevention efforts is better for controlling the spread of
drinking than solely focusing on increasing treatment num-
bers. The initial conditions for the model compartments,
such as $(0) = 0.50, T(0) = 0.15, H(0) = 0.25, and R(0) =
0.1, as well as the values of compartmental parameters,
are provided in Table 3 for numerical simulations and gra-
phical representation of the model’s dynamic behavior.

The effect of different significant model parameters on
the value of Ry is shown graphically in Figure 2. Figure 2(a)
describes the reproduction number R, sensitivity versus
drinking transmission rate (@) and drinking including
death rate (6;). The influence of the drinking transmission
rate (@) on the reproduction number is positive, whereas
the impact of the drinking-related death rate (6;) is nega-
tive. Although the effect of the drinking-related death rate
is almost negligible, the influence of the drinking transmis-
sion rate (a) is quite significant, so it increased the value of
Ry by almost 0.8. A similar interpretation can be seen in
Figure 2(f) for (a) and () on Ry. Figure 2(b) depicts the
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Table 3: Parameters and its value of Model (1)

Parameters Description Value Sources
b Recruitment rate of the susceptible people 0.25 Estimated
a Transmission rate from susceptible class to heavy drinker people 0.7 [40]

n Transmission rate from recovered people to susceptible people 0.1 [40]

u Natural death rate 0.25 [45]

61 Drinking-induced death rate of heavy drinker people 0.35 [45]

0] Proportion of drinking entering of drinker in treatment class 0.7 [40]

8, Drinking-induced death rate of drinker in treatment people 0.3 [45]

y Recovered rate of drinker in treatment people 0.09 [40]

sensitivity of the reproduction number (R,) concerning the
drinking-related death rate (6;) and the natural death rate
(). Both parameters are decreased since they negatively
impact the reproduction number (Rg). Therefore, both (6;)
and ¢ have a similar effect on Ry, reaching a value close to
0.25. Figure 2(c) illustrates the impact of the parameters (a)
and (¢) on Ry. It is observed that R, increases significantly
with these parameters, reaching a maximum value close
to 0.8 or less than 1. This implies that the disease is unlikely
to occur. Figure 2(d) illustrates how variations in the
drinking-related death rate (§;) and the proportion of
heavy drinkers in the treatment group (@) influence the
reproduction number (Ry). Both values decrease because
they have a negative impact on R,. So, both (§;) and (¢)
have a similar effect on R, making it approach a value
near 0.5. Similarly, interpretation can be seen in Figure
2(e) for the proportional of heavy drinkers in the treatment
compartment (@) and natural death rate (1) on (Ry).

4 Analysis of stability

In this segment, we explore the local stability and global
stability of the developed model at equilibrium points. The
local stability is assessed by analyzing the eigenvalues of
the Jacobian matrix at the equilibrium point. An equili-
brium point is deemed locally stable if all eigenvalues
have negative real parts. Global stability entails studying
the system’s behavior across its whole range, frequently
necessitating progressive mathematical techniques such as
Lyapunov analysis.

4.1 Local stability

A locally stable system tends to revert to its equilibrium
state after experiencing minor disruptions, showcasing resi-
lience and a tendency to maintain its original configuration

near the equilibrium point. Conducting a local stability ana-
lysis within a drinking model aims to assess how minor
disturbances can affect the persistence or reduction of
drinking behavior. In the context of drinking models, the
concept of local stability at equilibrium points becomes a
crucial framework for understanding the complex dynamics
of alcohol consumption and its spread within a population.
In this discussion, we explore the locally stable drinking-free
equilibrium point and the endemic equilibrium point in the
devised model, utilizing the following theorem [29].

Theorem 4.1. The drinking-free equilibrium point E, is
locally asymptotically stable with the condition Ry <1,
whereas unstable with the condition Ry > 1.

Proof. The Jacobian matrix of drinking-free equilibrium
point Ey = (S°, HO, T° R?) = (%, 0,0,0) for the purposed
model is given as

J(Eo) =
-(aH + p) -as 0 n
aH asS - (u+ 6 +9¢) 0 0
0 (0 “(u+8&+y) 0
0 0 y ~(u+n)

Evaluating the Jacobian matrix at the drinking-free equili-
brium yields

—u -a 0 n

|0 a-(u+si+¢) 0 0

JE =1 ¢ “W+&h+y) 0
0 0 y “(u+n

The resulting eigenvalues are A4 =-u<0 and A =

-(u + 8, + ¢)< 0, whereas

a-(u+6&+¢)-2 0

@) -arp=|* T
¢ U+ 8ty -2

:0’
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Figure 2: Fluctuation of different compartmental parameters and their effect on the basic reproduction number Ry: (a) Ry vs a and &1, (b) Ry vs 8; and
U, (©) Ry vs a and ¢, (d) Ry vs ¢ and &, (e) Ry vs ¢ and g, and (f) Ry vs a and .
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Ay =—(u+ 6, +y) <0.4, A, and A4 are real and negative.
Thus, i3 = a - (u + §; + ¢) < 0 if and only if Ry < 1. Using
the Routh—-Hurwitz criterion [46,47], we confirm that each
eigenvalue of the polynomial equation possesses a non-
positive real part when R, < 1. Consequently, Ej is locally
asymptotically stable. O

Theorem 4.2. The endemic equilibrium point E; in Model (1)
exhibits local asymptotic stability under the condition
Ry > 1; otherwise, it is unstable.

DE GRUYTER

A+ (Cy + Cpp + Ca3 + Cag)A + (CoCt — C33Cay = CuiCag
= CpCuy = CuuCs3 = CppCsz = CuCop)

+ (CCs3Cay + CaC33Can + CiCpCag = CroliCs
= CppCnCa)!

+ (C12CnC33Cas + CralnC3rCa3 = CuCraC33Cas) = 0.

The aforementioned equation can be written as

2%+ D23 + DyA% + DA + Dy = 0,

where
Proof. The Jacobin matrix is computed as
+ 6§, + -ab + 6 +
| fuu b+ @) u gttt e 0 "
aln = (u+ 6, + ¢)] a
JE)=| QHETATO ) HBEOl s o 0o b @
aln = (u+ 6+ ¢)] a
¢ “Ww+&+y) 0
0 y “(u+n)
Dy = (Cy + Cyp + Cg3 + Cpa),
where
Dy = (CioCot = C33Cyy = CpaCay — C22Cyy
Cu = -la pu + 61+ ¢) - ab + .U] - CuCx = CG3 — CuCp),
aln = @+ 61+ 9 D3 = (CuCs3Cyy + CppC33Cay + CryCrpCyy (7
Cp = -a uroto ,Ci3=0,Cu = 1, = C2lnCs3 = CiolCaa),
a
W+ 6+ 6) - ab 5+ 6 Dy = (Cp2CnC33Ca4 + C1aCnC3iCu3
Ug+o +9)-a U+o+
= = q|——— = C11CC33Cy4).
Ch=a an =L+ 6+ )] ,Cpn=qa 11C22C33Ca4)
- (u+ 8+ ), Cuz=0,Cy=0, Applying the Routh-Hurwitz criterion to fourth-order poly-
Cn=0,Cp=¢, Ci=-(U+8+Y),Cau=0 nomials [46], we ensure that D; > 0, D > 0, D1D, — D3 > 0,
3 b bl b _ _ 2 .
Cu=0,C=0,Ci=y,Cu= -+ and (Dll?% D.g)Dg D{D, >0 holq Frue only 1.f Ry > 1. The
non-positive eigenvalue of the auxiliary equation confirms
Substituting C; into equation (4), we obtain the local asymptotic stability of E; as per the Routh-Hurwitz
Cu Cb 0 Cu criterion. O
|C1 G 00
JE) =1, Co Cu O 5)
0 0 Cy Cu 4.2 Global stability

The auxiliary equation of (5) can be calculated as follows:

Ci Cp-2 O 0
E) - AD)| =
| (ED) - AD) 0 Co Co-2 0 | @
0 0 Ciz  Cu—2A

Global stability in a drinking model investigates whether,
under various conditions, the system converges to a stable
state regarding drinking behavior across its entire range.
Global stability analysis in the drinking model is essential
for understanding the sustained, long-term dynamics of
population drinking behavior. By examining the system’s
equilibrium conditions and considering the influence of
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broader societal factors, this analysis provides a compre-
hensive understanding of how the population’s drinking
patterns evolve over an extended period. Such insights
are crucial for developing enduring public health strate-
gies and policies tailored to address persistent trends and
dynamics in alcohol consumption within the population.
Global stability analyses offer a holistic framework for
effective long-term planning and management of drinking
dynamics. In this discussion, we investigate the globally
stable equilibrium points for both drinking-free and endemic
states in the proposed model, employing the methodology
outlined in the study by Anjam et al. [29].

Theorem 4.3. The drinking-free equilibrium point E, is glob-
ally asymptomatically stable with the condition Ry < 1 and
unstable with the condition R, > 1.

Proof. The global stability of the devised model at point E,
is instigated through the construct of the Lyapunov func-
tion such as

W) =(S"-S)+H +T. 8)

Upon computing the time derivative of equation (8) and
applying it to the system of equations in (1), the following
result is obtained:

dw dS dH dT
= + — +
dt

A dt A’
dd—V:/=b—yS—(y+81)[l-l—(y+62)T, 9)
aw

qp = IS =S+ @t SH + (u+ 8)T] <0

It is verifiable that - < 0if Ry < 1. Also, 47 = 0 if § = §°
andH =T = 0. The Lyapunov LaSalle’s invariant principle
[48,49] indicates that E, achieves global asymptotic stabi-

lity. O

Theorem 4.4. The endemic equilibrium point E; of Model (1)
exhibits global asymptotic stability when R, > 1; otherwise,
it is unstable.

Proof. The global stability is established by formulating the
Lyapunov function at the endemic equilibrium points
E; = (S§*,H*, T* R¥) in the following manner:
1

Z= E[(S =$) + (H - H*) + (T - TH]. (10
Upon calculating the time derivatives of the aforementioned
equation and utilizing Model (1), the resulting expression is
as follows:
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Y s -89+ 0 -9+ (T -]

<Ib- S -+ S - (0 + ST
L (5= + M -1+ (1 - T
X [uS*Ry — uS — (u+ SH — (u+ 8)T],

dz * —M* — Tr*
e (R R R TR U b/ B

x [u(S = S*Ro) + (U + S)H + (u + 5)T].

As a consequence, % < 0 for each value (S$*, H*, T* R*),

whereas% = 0 holds only for$ = $*,H = H*,and T = T*.
Consequently, the endemic equilibrium E; is the only positively
invariant set contained in [(S,H, T,R),S = S*,H = H*,
T = T* R = R*]. As a result, the positive E; exhibits global
asymptotic stability. O

4.3 Results from numerical stability analysis

Runge—Kutta (RK) method is highly favored in epidemiolo-
gical modeling because of its accuracy and robustness in
solving the differential equations that govern disease
dynamics. These models typically involve a system of
coupled differential equations that describe interactions
among different population compartments. The fourth-
order RK method is particularly noteworthy for its high
accuracy in approximating solutions to these equations,
guaranteeing reliable and precise numerical results. Its
robust convergence properties enhance both stability and
efficiency, making it highly effective in solving diverse
mathematical problems, especially those involving intri-
cate and dynamic infectious disease dynamics. In this con-
text, we employ the RK method to solve our proposed
deterministic model, leveraging its ability to compute solu-
tions through a series of approximations based on weighted
function evaluations. Notably, the fourth-order RK method
delivers accurate results with minimal model evaluations,
making it a preferred choice for obtaining numerical solu-
tions in Model (1). Hence, we obtain

i+l _ i
w =h - aSHHI - HSHI + r][Ri,
[Hi+1 - [Hi o )
T = aSHY - (o S+ PHI,
‘[ri+1 — ‘[ri (12)
T = OH - Gy )T,
[Ri+1 — [Ri ) )
S T e R
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To numerically solve the proposed model, we initially
focus on the equation for the susceptible compartment S in
Model (12). This process results in

Si*l - §i = b - laSHIH! - WS + IR,
S+ [aS™H! + [uS™*! = §T + b + IR,

mo_ S, B 13
1+laH' + 1y 1+ IlaH" + [u
1+ laH" + lu

Similarly, the remaining compartments of the pro-
posed model are solved, respectively, and give,

Hi*l — H
l
H*1 - H = laSTH™ - I(u + 8 + $)H™,

= aSH™ = (u + 8+ pH™,

|Hi

H*! = . .
1-1aS'+1(u+ 6 +9¢)

Tf“l - ‘[rl'
l
T = TE=IgHT = I(u + 6 + T,

=PH - (u+ &+ YT,

T! .\ IPH!
1+lu+6+y) 1+lu+8+y)

‘IIiJrl -
[Ri+1 — [Ri ) )
=V R
R™ = RU= yT! = I(u + MR™,

Ri AR

R = + .
T+lu+n) 1+1lu+n)

4.3.1 Algorithm

Step 1: S(0) = H(0) = T(0) = R(0) = 0.
Step 2: fori=1,2,3,..,n-1

. $i Ib InR!
$i* = : + : + : ,
1+laH'+ly 1+laH'+lu 1+ IlaH'+lu
H™* = e
1-1aS'+ I(u+ & + ¢)’
T T . IpH!
T+lu+&+y) 1+lu+&+y)
i1 = Ri N y‘[[l' -
T+lu+n 1+lu+n

Step 3:fori =1,2,3,...,n — 1, write $*(t;) = S*, H*(t;) = H¥,
T*(t;)) = T* and R*(t;) = R*.
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For the graphical depiction of the stability analysis,
MATLAB software is utilized to run the aforementioned
findings. The graphs presented in the figures below are
generated using compartmental initial conditions for the
devised model: $(0) = 0.50, T(0) = 0.15, H(0) = 0.25, and
R(0) = 0.1, along with the parametric values specified in
Table 3. These graphs serve to visually characterize the
dynamics and stability characteristics of the model under
varying initial conditions and parameter settings. More-
over, the time is taken between 0 and 30 units in terms
of days with the initial population of susceptible indivi-
duals S(t), drinkers in treatment individuals T(¢), heavy
drinkers individuals H (), and recovered individuals R(t).

Figures 3-6 depict the stability dynamics of all popula-
tion classes under various initial conditions. The suscep-
tible class varies in magnitude with values of 0.5, 0.35, 0.2,
and 0.05, showing a direct relationship among the size of
the susceptible population and the time required to achieve
stability (Figure 3). Similarly, Figure 4 illustrates stability
achievements across different sizes of the heavy drinker
class, with values of 0.25, 0.20, 0.15, and 0.10. The heavy
drinker population decreases over time, stabilizing after
10 days. The population in the drinkers in treatment class
is shown for various prevalence levels, represented by
values such as 0.15, 0.13, 0.11, and 0.09 in Figure 5. The
number of individuals in treatment for drinking initially
rises over time, followed by a rapid decline as time pro-
gresses. Figure 6 illustrates the correlation between stability
and the varying extent of the recovered population, consid-
ering values such as 0.1, 0.09, 0.08, and 0.07. The population
experiences an initial rapid decrease, stabilizing with con-
stant numbers after 15 days.

—S(0)=0.5
S(0)=0.35 | T
S(0)=0.2
~ 5(0)=0.05 | T
)
[ =
S
kS|
e |
Q
[=]
o
()]
g
a
[7]
[&]
[72]
=
1%
0.1}
| . . . ‘ .
0 5 10 15 20 25 30

time t (Days)

Figure 3: Simulation results illustrate how changes in the susceptible
class S(t) manifest their impacts.
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Figure 4: Simulation results depict how variations in the heavy drinker
class H (t) manifest their effects.
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Figure 5: Simulation results depict how variations in the drinker in
treatment class T (t) manifest their effects.

5 Optimal control theory

This section delves into the application of the drinking
model with regard to optimal control strategies. Optimal
control is utilized to intercede in the transmission of
drinking within a specific community. The integration of
an optimal control strategy, focusing on awareness cam-
paigns (w(t)) and treatment (uy(t)), enhances the model’s
effectiveness in reducing heavy drinking rates by orches-
trating a coordinated and targeted approach. Awareness
campaigns play a pivotal role in educating the population
about the risks and consequences of heavy drinking,
promoting healthier behaviors, and reducing the social
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Figure 6: Simulation results illustrate how changes in the recovered class
R(t) manifest their impacts.

acceptability of excessive alcohol consumption. This can
lead to a shift in social norms and attitudes towards
drinking, thereby influencing individual behaviors and
reducing heavy drinking rates over time. On the other
hand, treatment interventions target individuals who are
already engaged in heavy drinking behaviors. By providing
access to effective treatment options, such as counseling,
therapy, or medication, the model can help individuals
reduce their alcohol consumption, manage cravings, and
address underlying issues contributing to their drinking
habits. This approach not only aids in reducing heavy
drinking rates but also promotes overall health and well-
being among affected individuals. Furthermore, the combi-
nation of awareness campaigns and treatment interventions
in the optimal control strategy allows for a comprehensive
approach to addressing heavy drinking rates. Awareness
campaigns create a supportive environment for individuals
seeking help, while treatment interventions offer practical
solutions for those struggling with heavy drinking. Together,
these strategies work synergistically to reduce heavy
drinking rates and promote healthier behaviors within the
population. Moreover, the control variable w(t) pertains to
the implementation of a public awareness program tar-
geting susceptible and treated individuals. This program
aims to safeguard them against excessive alcohol consump-
tion and facilitate successful avoidance. On the other hand,
the u,(t) control variable represents the treatment applied
to heavy drinker individuals. Therefore, heavy drinkers
represent the proportion of individuals transitioning from
regular alcohol consumption. Upon applying the u,(t) vari-
able, they transition to the group of those permanently
abstaining from alcohol. This control variable determines
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the optimal values for decision variables, representing the
adjustable action variable to achieve the desired result. By
selecting the optimal value for the control variable, the best
course of action can be determined. For emerging a control
strategy, we bring into usage the optimal control theory
[50-52]. The adaptation of the control scheme interning sus-
ceptible drinkers class S(t), drinkers in treatment class T (t),
heavy drinkers class H(t), and recovered class R(t) is dis-
cussed in next lines. The differential formulation of the
model’s equation (1), incorporating the control variable, is
now expressed as follows:

d
d—§=b - (1 -u)aSH - uS + 1R,
dH
—=1-w)aSH - (u+ 8+ ¢ + wH,
dt
(14)
dr
G =OH - Sy T,
dR
E=y1r -+ R +uH + T,
whereas the initial conditions are,
$(0)20, H()=0, T(0)=0, and R(0)=0.

Therefore, we consider an optimal control problem, wherein
the objective function is specified as

J (1), up(t))

t
= AXS AFH AXT AR
{‘1 O+ AMO + ATO + ARO

1 1
+ SATWHD) + SASu (D),
where Af, A, A, Af, A, and A¢ represent the weight
constant allied with each class. The objective function is
minimized with respect to control pairs such as

Jiu, w't = min{] (w(0), ux(1)), wi(t), up(t) € UL (16)

Here, U = {(iy(t), uz(t))\u;(t)} is a control set with Lebesgue
measurable onto [0,1] and permissible range such as
0 < u(t) <1, wherei = {1, 2}.

Furthermore, Pontryagin’s maximum principle [53,54]
is used to find the optimal control strategy u that mini-
mizes (or maximizes) the objective functional J by consid-
ering the behavior of the Hamiltonian function H at each
point in the state variables.

Theorem 5.1. For the optimal control Problem (14), there
exists a u*(t) = (u'(t), u(t)el) such that

J i (0), up(t)) = J(wa(t), uy(1)).

min
(w(t),uz()EV)
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Proof. A variety of techniques are considered to quantify
the effectiveness of the control scheme [55,56], and conse-
quently, nonnegative values are witnessed for control vari-
ables along with state variables. The convexity and the
closeness of control variables describe the degree of solidity
necessary to validate the control system. Moreover, it is
noteworthy that the integrand exhibits a convex nature,
representing an objective function in the form of A;*S(t) +

ATH(D) + AFT(6) + AFR() + SAZuf(6) + JAZU(e) as cer-
tification of the proof, where A, i =1,2,3,..., 6 represents
the weight constant. We employ the Pontryagin maximum
principle [39,53,54] to address our proposed problem. The
Hamiltonian function is provided as

H = L(S(t)y H (t)y —[r(t)’ [R(t)) ula uZ)
ds() dH (t) dr(t) drR(t) 7
YAty Y thTa T

Moreover, the presence of non-trivial vector functions like
A(t) = (A(t), A(B), A3(t), A4(t)) becomes apparent, particu-
larly when (y*, u*) is regarded as the optimal procedure
for the implemented control problem:

dy _0H(t,y,u,A)

dt ou ’
OH(t,y, u, A
0= M’ a18)
ou
.o OH( Y, u,A)
AN(t) = 76)} .

The outcomes are achieved by the employment of the
required condition to the Hamiltonian function. (I

5.1 Existence of the optimal control problem

In this section, we establish the existence of optimal con-
trol by ensuring that all conditions of the control system
are met at the initial time ¢t = 0. To achieve this, we main-
tain a bounded Lebesgue measurable control [56,57] with
initial conditions and an upward bounded solution of the
system. The problem of optimal control is tackled through
an exploration of Lagrangian and Hamiltonian methods.
The optimal control problem in Lagrangian formulation is
represented by the following equation:
L{S(6), H(®), T(), R(2), wa(1), up(t)}
= AS(t) + AYH(t) 19)

1 1
+ AFT() + AfR(D + JASWH(D) + SASuf(D).



DE GRUYTER

The minimum optimal control value is determined by for-
mulating the Hamiltonian function H in the following
manner:

ds(e)
dt

H= L(S(t)) H(t): —W(t)x R(t)i u, uZ) + /‘{1

KLIGI

dr@ . dr(p)
+ A dt + A4 .

dt dt

A3

The resultant system, in terms of adjoint variable 4, A, As,
A4, and optimal control variable u; and uy, is written as

N =—{AF - (1 - w)aHW - &) - A},
A = —{Ay - (1 - w)aS - &)
-+ 6+ ¢+ w) + A4y + 303,
M= —{AF = MU+ 8+ Y+ u) + A(y + )},
A = ~{Af + An - Aa(n + )},
_ + -
W (t) = X 11)0@['15* (A /14)“’
AF

(20)

U(t) =

Theorem 5.2. Given an optimal control u;, uy and solution

S*(t), H*(t), T*(t), and R*(t) of the equivalent state system

(14), there exist adjoint variable Ap(t), m = 1,..., 4 such as,

A =—{Af - (1 - w)aH M - &) - A,

A=A - - uw)aSh - &) — b+ 8+ ¢ + up)
+ Aglly + X304,

A=~{A5 =B+ S +y+w)+ Ay +

A =—{AF + hn - A + W},

using the transversality criterion An(t), m = 1,..., 4.

(VAY)

Proof. Let us assume that S(t) = S$*(t), H(t) = H*(t), T(¢)

= T*(t),andR(t) = R*(t), and let also describe Hamiltonian

respecting state variables such as S(t), H(¢), T(t), and R(?).

The altered adjoint system under the condition of transvers-

ality is now given as

A =={A7 = A - w)aH A - &) - Ay},

A =—{AF - A -u)aSh - &) - hu + 8 + ¢ + up)
+ A4y + 30},

A =—{AF - R+ & +y+w) + A4y + w)},

Aj= 1AL+ a0 = Aa(n + 03 .

(22)
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Theorem 5.3. The optimal control pair (u;'(t), u;'(t)) over the
region U is given by

u(t) = max{min =
As

o= J)aSH+0s = M) T 1]’ 0]’
23)

u(t) = max[min[ -
Ag

H - Ay) 1] 0]

Proof. The application of optimal conditions provided out-
comes such as

o0H
- = A5*u1(t) + /11a[HS - /12a|HS + /141]' - Ag-ﬂ—,

Z;‘; 4)
a_uz = Aékuz(t) - AH + A4H.
The control variable is also solved such as
A — A H+ A3 - AT
ul*(t)=(2 1)G§A* () ’
5
(25)
HQ, - A
w(e) = (A 4)_

Ag

One may note that the condition of control space remains
expressible as under

A = A)aSH + (A3 — A)T
0, if(z a As:(s 4) <0,
A = A)aSH + (A3 = AT A = A)aSH + (A3 = AT
wie) = (& — A)a A:(s 4) ) if0<(z a A:(s 1) <1,
5 5
A = A)aSH + (A3 = Ay), T
1, if(z j)a A:(s 4) >1
5
o H( - Ay)
0, lfiAg‘ <0,
H - A) H* - Ag)
*(t) = f 1
w(t) Ar , 0< A <1
o H(L - Ay)
1 if AF 21

In simplification, the control variables are documented as
follows:

u(t) = max{min =
A;

Uo = J)asH + O = AT 1’, Ol’
26)

u(t) = max[min[w, 1], 0]_
6
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The optimal system is now given as:

as*
a P

1 - max e

. !(Az—al)aS[H + (s = AT ] ”
min ,14 0

aS*H* - uS* + nR*,

dH* | (e — A)aSH + (A - AT
= [1 - maxjmin - , 15,0
dt As
. . |H( - A
aS*H* = |u+ 8 + ¢ - maxmmT,l,O H*,
6
dr*
= *
ac =M @
A = A)aSH + (A3 — AT
—lu+S+y- maxmin(2 1) A*(3 1) ,1’,0 T*,
5
drR*
FTERRA TR
HA, - A
+|max{min (27*4),1’,0 H*
A6
A = A)aSH + (A3 = AT
+maxmin[(2 1) A*(3 ) ,1’,0 L
5

The state variable and control variable in the optimal for-
mation are achieved by the employment of an adjoint vari-
able, the optimal system along with the initial conditions.
The positivity of the second-order derivative of the objec-
tive function with respect to control variables is obvious.
Therefore, the resultant Hamiltonian is documented as

H* = AFS*(t) + AyH*(t) + AFT*(t) + AFR*(t)

1 1

+ SAFU(O) + AU

2 2
4

+ ) Ang,(S*, H*, T* R¥).

m=1

5.2 Computational simulation and
discussion

In this section, we aim to validate the proposed control
strategy through numerical evaluation. We enrich the stra-
tegic framework by integrating a wide range of parametric
settings. The numerical analysis commences with initializing
the compartmental initial conditions from the study by Adu
et al. [40] for our proposed model, comprising S$(0) = 0.50,
T(0) = 0.15, H(0) = 0.25, and R(0) = 0.1. Furthermore, we
ensure consistency by adopting literature-based parameter
values as outlined in Table 3. We address the optimization
problem by employing the RK fourth-order technique and
applying the transversality criterion within the time interval
of [0,25]. Additionally, we assume the weight constants to be
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Figure 7: Dynamics behavior of susceptible individual $(t) with and

without control are depicted in the graph.
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Figure 8: Dynamics behavior of heavy drinker individual H (t) with and
without control are depicted in the graph.

A; = 0.6610000, A, = 0.54450, A3 = 0.0090030,A, = 0.44440,
As = 0.3550, and Ag0.5560. Figures 7-10 illustrate the
dynamic effectiveness of our model under both controlled
and uncontrolled scenarios across all four compartments
over time in days. The advantages of the optimal control
strategy are evident across all population compartments.
The steeper rise of the susceptible population with respect
to control is obvious in Figure 7. Similarly, the class of
heavy drinkers is noted to be reduced more sharply with
control as compared to without control in Figure 8. More-
over, the effectiveness of employed control can be seen for
the compartment of drinkers in treatment from Figure 9.
Finally, Figure 10 depicts the utility of the control scheme
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Figure 9: Dynamics behavior of drinker in treatment individual T (t) with
and without control are depicted in the graph.
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Figure 10: Dynamics behavior of recovered individual R(t) with and
without control are depicted in the graph.

for the class of recovered drinkers. Moreover, Figures 11
and 12 provide insights into the effectiveness of control
variables, namely, the social awareness campaign u(t)
and treatment for reducing the drinking population uy(t),
both with and without control interventions over time
in days.

6 Conclusion

This study is related to the development of a novel deter-
ministic mathematical model elaborating the dynamics of
the drinking epidemic model under the launch of an
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Figure 11: Dynamics of control variable u; are depicted in the graphic.
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Figure 12: Dynamics of control variable u; are depicted in the graphic.

optimal control scheme. The investigation focuses on stra-
tifying the population into four compartments: the suscep-
tible class, heavy drinker class, drinkers in treatment class,
and recovered drinker class. To ensure generalizability, a
wide range of parametric settings are employed, encom-
passing the recruitment rate of the susceptible class, trans-
mission rates from the susceptible class to the heavy
drinker class, and from the recovered class to the suscep-
tible class, natural death rate, drinking-induced death rates
in the heavy drinker and treatment classes, the proportion
of individuals entering the treatment class, and recovery
rate. Throughout the investigation, a comprehensive ana-
lysis is provided, covering aspects such as positivity, bound-
edness, equilibrium points, basic reproduction number,
stability, and sensitivity. The model ensures boundedness
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and positivity by incorporating constraints and selecting
appropriate functional forms. This precautionary approach
prevents unrealistic growth of variables, aligning the model
with real-world constraints and enhancing its reliability. The
careful management of these aspects improves the model’s
applicability, offering policymakers an accurate representa-
tion that supports well-informed decision-making within prac-
tical limitations. The analysis of stability in the model indicates
that when Ry < 1, the system is both locally and globally
asymptotically stable at the drinking-free equilibrium E.
Conversely, if Ry > 1, the system exhibits an endemic equili-
brium E;, at which point it is locally and globally asymptoti-
cally stable. Furthermore, the sensitivity analysis to see the
impact of different compartmental parameters on the repro-
duction number is discussed. The sensitivity analysis showed
that the drinking transmission rates of heavy drinkers (a) are
highly sensitive to Ry, indicating their significant influence
on the spread of drinking behaviors. This suggests that
these parameters could be considered appropriate for
inclusion as control variables in optimal control analysis.
Furthermore, this finding underscores the critical role of
heavy drinkers in driving the spread of drinking beha-
viors within the population. Additionally, the sensitivity
analysis underscores the importance of treatment interven-
tions and their potential to reduce heavy drinking rates,
emphasizing the value of targeted intervention strategies in
curbing alcohol consumption.

We initiate the optimal control process by integrating
two time-dependent variables: a social awareness cam-
paign and treatment, both acting as control variables. An
optimal control problem is formulated by defining an
objective function aimed at determining the optimal values
for these control variables to minimize overall costs. By
applying Pontryagin’s maximum principle, we derive sig-
nificant conditions for the optimal solution. Our research
investigates the viability of two different optimal control
methodologies. Numerical simulations conducted using
MATLAB validate the effectiveness of the proposed control
strategies. Graphical results reveal that the simultaneous
use of both control variables is more effective in reducing
the transmission flow of drinking behavior. These findings
are extensively discussed, considering scenarios with and
without optimal control. Through rigorous analytical pro-
cedures, we establish the utility of the control strategy in
achieving optimal conditions across all four compart-
ments. The susceptible population is estimated to show a
gradual increase with control implementation, while a
notable decrease in the proportions of heavy drinkers
and individuals in treatment is observed with optimal con-
trol. Additionally, the recovery rate is significantly faster
with the use of optimal control. Furthermore, our research

DE GRUYTER

advocates that simulations incorporating time-dependent
controls are supplementary cost-effective equated to those
utilizing time-independent controls.

In future endeavors, extending the model to include
fractional-order dynamics alongside optimal control remains
an intriguing avenue. This approach is expected to provide
deeper insights into the dynamics of drinking behavior in
society by leveraging available information more effectively.
Additionally, there will be a strong emphasis on assessing the
proposed scheme’s applicability across diverse geographical
regions, socio-economic strata, and varying healthcare access
levels. Understanding how these strategies interact or coun-
teract each other will help formulate more effective plans for
disease control on a global scale. Moreover, future research
may also focus on integrating real-time data and advanced
machine-learning techniques to enhance the accuracy and
predictive capabilities of the model.
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