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Abstract: Recently, fractals and fractional calculus have
received much attention from researchers of various fields
of science and engineering. Because the said area has been
found applicable in modeling various real-world processes
and phenomena. Hybrid differential equations (HDEs) play
significant roles in mathematical modeling of various pro-
cesses because the aforesaid equations incorporate dif-
ferent dynamical systems as specific cases. For instance,
it is possible to model and describe non-homogeneous phy-
sical phenomena on using the said equations. Therefore,
this research work is concerned with studying a class of
nonlinear hybrid fractal-fractional differential equations.
We develop the existence result for the qualitative study
using a hybrid fixed point theorem. For the mentioned
goal, a fixed point theory for the product of two operators
is applied to deduce appropriate conditions for the existence
of exactly one solution. Additionally, the stability result
based on Ulam-Hyers is also deduced. The said stability
results play an important role in numerical investigations.
In addition, a numerical method based on Euler proce-
dure is utilized to approximate the solution of the pro-
posed problems. Various computational test problems are
given to demonstrate the results. Also, using various
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fractal-fractional order values, several graphical presen-
tations are given for the examples. The concerned ana-
lysis will help in investigating many real-world problems
modeled using HDEs with fractal-fractional orders in the
near future.
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1 Introduction

Calculus of non-integer order has given tremendous popu-
larity because fractional calculus and its applications have
been developed so intensively that the areas related to
fractional differential equations (FDEs) have attracted a
lot of attention [1,2]. Different problems that have studied
earlier via ordinary calculus have been generalized by the
tools of fractional calculus. For instance, Baleanu et al. [3]
have recently published a book, where they established
various numerical methods for different models using frac-
tional calculus. In addition, Kilbas et al. [4] have published
a comprehensive book on theory and applications of the
mentioned area. Rahimy [5] has studied some pertinent
applications of FDEs. Magin [6] investigated the models
of complex dynamics in biological tissues using the concept
of fractional calculus. Jacob et al. [7] have studied various
applications of the mentioned area in science and engineering.

Finally, there has been a lot of interest in hybrid dif-
ferential equations (HDEs), which are nonlinear differen-
tial equations perturbed quadratically. The investigations
of HDEs are significant since they take into account a
number of dynamic systems as special examples.
Lakshmikantham and Dhage [8] studied the given
problem:

[ £(7)
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where #, 7" : [0,b] xR = R and w : R = R are the con-
tinuous functions and % (0, f(0)) # 0. Here, it is interesting
that HDEs have significant applications in mathematical
biology, hydrodynamics, signal, and image processing pro-
cesses. While formulating the concerned phenomenon, we
obtain the system of classes of differential equations with
hybrid nature. For the mentioned study, many ideas regarding
fractional derivatives have been proposed in recent years.
Here, we highlight the most well-known varieties, such as
Hadamard, Caputo, Liouville, and Caputo-Fabrizio variants,
among others. As a result, several fractional operators have
created FDEs with distinct structures. Nonetheless, it has long
been recognized that accommodating generalized structures of
fractional operators that incorporate numerous other opera-
tors is the most effective way to discuss such a wide range of
fractional operators. Here, we refer to previous studies [9-11].

Complex geometrical structures and irregular shape
can be well explained via using a new class of derivatives
called fractals. Here, we remark some examples of complex
geometry such as shell surfaces and interface problems,
which have been studied in Gentilini et al. [12] and Lova-
dina et al. [13], respectively. In the same way, Norouzi et al.
[14] and Shamshuddin et al. [15] have studied the complex
geometry of Oldroyd-B visco-elastic fluid flow and nano-
fluid flow in pipe. Traditional or ordinary fractional deri-
vatives have inability to accurately describe a range of
real-world processes (phenomena) with irregular geome-
tries (structures) and complex geometry. In order to over-
come the aforementioned limitations of classical and fractional
calculus, academics invented the concept of fractal-fractional
derivative. In real-world applications, the mentioned operators
have been proved very powerful. Also, the area devoted to
fractal geometry is a hot area of research in the last few dec-
ades. Also, including fractals in the area of applied analysis
opens the door for understanding the recently developed
area of analysis on fractals. The said area has been focused
on the construction of a Laplacian, which devoted to the Sier-
pinski gasket and related fractals. The mentioned area has
numerous applications. Keeping this in mind, the area of frac-
tional calculus has been extended to a new calculus called
fractal-fractional calculus. Various fractional-fractional differ-
ential operators have been extended to their fractal form.
Recently, a detailed work has been carried out on the said
area [16-21].

It should be kept in mind that nonlinear hybrid fractal-
fractional differential equations (FFDEs) have not yet been
considered under the fractal-fractional calculus concept. To
investigate the aforesaid problems, we need some hybrid
fixed point results. Dhage [22] established a hybrid fixed
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point result to deal an ordinary problem. In additions,
Dhage’s results were generalized further (for which we refer
to previous studies [23-25]). Recently, Venini and Nascim-
bene [26] have studied a novel fixed-point algorithm uti-
lizing non-linear mixed variational inequalities to harden
plasticity. These discoveries have real-world implications
for establishing the existence of solutions. Even though
it is frequently difficult to compute the fixed point expli-
citly, these previously described results are acknowl-
edged as powerful tools for creating numerical methods
to estimate equation solutions and for estimating the fixed
point through computational procedures. Ben Amara et al.
[27] deduced a new result for the existence theory based on
Boyd-Wong fixed point theorem. With the help of the afore-
said result, we can establish existence results for product of
two nonlinear operators in Banach algebras as well for their
approximation.

The problem was earlier studied for ordinary deriva-
tive in the study by Dhage and Lakshmikantham [8] under
the non-homogenous initial condition. They studied only
the existence theory of the problem and some comparative
analysis. But numerical investigation of such problems has
been very rarely considered. Also, under the fractal-frac-
tional concept, such problems have not yet been studied.
Due to the significant applications of fractal-fractional
operators of integrals and differential type in various
scientific disciplines, we consider the class of nonlinear
hybrid FFDEs as:

FEpn.¢ (1)
| 7 (x (o)

£(0) = 0,

]:V(r,f(f)), nee@1

where #, ¥ : [0, b] x R —» R are continuous functions and
Z(0, £(0)) # 0. If we put n = { = 1, we obtain Problem (1).
Here, we state that the mentioned Problem (2) with initial
conditions can formulate many phenomena in various applied
disciplines. The concerned applications in analysis for such
problems have been given in the studies of Diethelm [28]
and Djebali and Sahnoun [29]. We establish the existence
results for the proposed problem by using a fixed point the-
orem for products of two non-linear operators in Banach
algebra. Also, we construct the results regarding Ulam-Hyers
(UH) stability. The mentioned stability has been deduced
around the exact or best approximate solutions for many
function equations. More studies have been carried out on
the said stability (for instance, refer previous studies [30,31]).
Also, to compute exact or analytical solutions for many non-
linear problems is a tedious job. Sometimes it is difficult to
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compute. Therefore, we search for best approximate solution
to nonlinear problems, where we fail to find the exact solu-
tion. Therefore, we will extend the usual Euler method to
compute the numerical results for our proposed problem
also. Numerous test examples are solved, and their solutions
have presented graphically using Matlab-16. For theoretical
results, we will use the study by Ben Amara et al. [27]; for
numerical results, we will extend the method developed in the
study by Khan and Atangana [32] for our problem. Here, using
the fractal-fractional concept will inform us what is the effect
of fractional and fractal calculus on the dynamics of such
problems and also what are significant applications of the
said calculus in dealing the hybrid dynamical problems.

2 Elementary tools

LetB be a Banach space with norm ||. ||z and Z(f, r) be the
closed ball. Moreover, for the bounded subset W of B, we
denote the norm of a set W by ||W||g, which is defined

by [[W|ls = sup{|lylls,y € W}.

Definition 2.1. [32] Assume that f is continuous and fractal-
differentiable on the interval (0, T) with the fractal dimen-
sion ¢, then fractal-fractional operator is defined by:

T
1 d
FEpn¢ - oV
oD (1) ) dr(oo[(r v Mydv, 0<n, <1,

(

dits) _

-
where _ > = lim ©-1v)
v

R

is the fractal derivative.

Definition 2.2. [32] Let f be a continuous function on the
interval (0, T), then

c

FE i) = ——
0+ 1 () r(n)

_[(r - V)¢ (v)d,
0

which represents the integration in fractal-fractional sense.

Lemma 2.1. [32] The solution of the given problem

FIDIée() = 2(0),
£(0) = 0

0<n,{=<1
is
f(1) = LJT-U( “I(t - v)11z(v)dv.
T(m ¢

Definition 2.3. [27] A function §$:B — B is called
C-Lipschitz if
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IS(D - S(Dlls < x(lif - flls), VL, T € B,

with a non-decreasing function y : R, — R obeying x(0) = 0.
Moreover, y is said to be C-function associated with §.
Additionally, for y(q) < g, for ¢ > 0, then S is a non-linear
contraction on B.

Theorem 2.4. [27] Let C # & C B be closed and convex set

and S,P : C — B is two operators, such that

(cy) S and P are D-Lipschitz with C-functions y and 6,
respectively,

(c1) S(C) and P(C) are bounded,

(c3) S(f) xP(f) €B, forallf €B.

IfIIS©lsx(q) + ISR S(q) < q, then there is at most
one point T € B, such that S(T) x P(f) = . In addition,
for each £, € B, the sequence {(S x P)"(fo)}nen converges
tof.

3 Main results

Here, we provide our main results.

Lemma 3.1. The solution to a class of hybrid FFDEs (2) is
given using Lemma 2.1 as

f(r) = 7 (T, f(T))I(I - )T Wy (v, f(v))dv.  (3)
0

¢
T(n)
Proof. By Definition 2.1, Eq. (2) can be written as:

1 dg o fw) B
) W!’(T T AR
which gives

1 dg . ()
T Rz )

dv = {87 (T, f(1). (@)

Now, Eq. (4) can be written as:

(1)
7 (1, (1)

n

oD7 = {57y (x, £(0)). (5)

On using fractional integral operator of order n to Eq. (5)
gives

fy _ ¢
F (i) TW)

+ aot”‘l.

{(r SO ACE O
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Using the initial condition in Eq. (2), £(0) = 0 gives a, = 0,
for which Eq. (6) becomes

f(1) = %/(r, f(T))I(T - v)1" Wy (v, f(v))dv,
0

which is the integral solution of Problem (2).

We set the following assumptions for the upcoming
existence result:
(A7) Z and 7~ are continuous.
(A2 Let g,h:J — R be two continuous functions and y

and § already defined mappings, and f, f € R, then
one has

|7 (t,f) - 7(t, D) < gox(If - £,

[7°(t, ) = 7" (t, Dl < h(®S(If - ).
Throughout this sequel, we denote the closed ball B, =
{feB :|fls <q} of CQ) by Q, such that Q # &.

Theorem 3.1. Let the assumptions (A;) and (A,) hold, if

IS )l x(q) + [IPB)lls 5(q)
Yq >0,

MsMp < q and
< q’
where Ms = (|g]ls x(|/flls ) + 117 (0, £(0))|ls) and

Mp = ===B(n, ObT(||lls 8(|Iflls) + [177(0, £(0))]ls),

F(n)

then Problem (2) has exactly one solution in Q, where B(n, {)
is the beta function.

Proof. The problem of existence of solution to Eq. (2)
can be formulated in the form of fixed point problem
f=8(f) x P(f), wheref € C(J) and S and P are the opera-
tors given by:

S(f(m) = 7 (7, f(1)

and P(f(?) = m‘l’(r - )Wy (v, f(v))dv.

Letf € Q, and #

|7 (t, {(0) - 7 (', ()]
< |7 (0, f(0) - 7, f(O)| + |7 (v, {(1) - 7 (U, /()]

which easily confirms that § assigns Q into C(J). In addi-
tion to using (4,), such that 7" < 7, and taking

be C-Lipschitzian function, so one has
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IP(£(7)) - P(f(")]

0

j(r — vy (v, £(s))dv
0

- I(r’ — vy Wiy (v, f())dv

I

< j[(r — V)1t = (T = )1 Uty (v, f(v))do

<
T

+ I(T - V)" Wy (v, f(v))dv

I

U () U (R Ly
() J;

T

+ qu‘l(r - )1l

I
I

¢ S e
sm{[(r—wﬂ—(r DU

¢

IA

|7 (v, f(v))|dv o)

(7" (v, f(v)) - 77(0, £(0))]

. ]
+ T’?);[U( Yt - pyr!

+77(0, f(0))dv

(R AT A —
T

T

— (T - vy do + qu-l(r - vy ldy

T

IN

= (Ilhlls 8(@) + 170, KOl )os BCn, Ol

()

_ T/q+{—1] .

Here, T - 7/, then |P(f(7)) - P(f(t"))| = 0. Since P is
bounded and also thus uniformly continuous. Hence, one
has ||P(f(7)) - P(f(t"))|lg — 0 as T — 7. Furthermore, we
see that T’ < T < b; therefore,

61 = n+¢-1 < pn+¢-1,
Hence, from (3), one has
[IP(£(7)) - P(£(t")ll

< (|Ihlls 8(q) + 11770, £O)Ils )7~ Bn, b1,

F()
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Obviously, P maps Q into C(J). We utilize Theorem 2.4 to
show the existence of unique fixed point for the product of
operators § x P in Q, which turns into a continuous solu-
tion of Problem (2). To achieve this goal, we need to show
that the mappings S and S are C-Lipschitzian on Q. In view
of assumption (4;), it is clear that mapping S is C-Lipschit-
zian on Q with C-function y(t) such that

X(© = llgllsx(0, T € J.

Now, it remains to show that mapping P is C-Lipschitzian.
So,letf, f € Qandlett € J; then using our assumptions,
we have

IP(£()) - P(£(0)] = J(T - V)Y (v, f())dv

- J'U{_l(‘f - v)T ¢y (v, F(v))dv

0
T

£ [0 e - oYy, £0))

<

T(m 4
- 7 (v, f(v))|dv

T b’l*’(‘l _
< T e, Ol SCIE - Tl ).

I'(n)
In a simple manner, one has
= T({)b1+1
IPCD - P(Dls < ~0p0. O 01t - T

which implies that the mapping P is C-Lipschitzian in Q
with C-function §(b), such that

(Ot
G)

Also, we can see that the operators S and P are bounded
with bounds Mg and Mp respectively. AssumingMsMp < g,
led us to that the product S x P maps Q into Q, since
IS(f(D)] = |7 (7, f(D)
< (|7 (z. (1) - 7 (0, f(0))ls
+ 170, £(0))lls )
< (llglexCliflls) + 1170, fO)]ls ) = Ms

8(b) = —=—~—Bn, Olhlls SIf - lls).

8
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and
IP(f(x)| = I (T = V)0 (o, fv))dv
. %ﬂ) {Uc-l(f O AR
= 77(0, f(0))||p dv
+ Ivf‘l(r = 0174770, £(0))||p dv
0
b n+{-1
F@F)( 5B Okl SCIfl) + 1170, O
= M[p .
Now, for

IS x P)() = (S x P)(D)lp

< IS(Dls IP(£) = P(D)ls

+ IP(D)ls [IS(H) = S(Ds.,
it can be seen that S x [P is a non-linear contraction with
C-function:

0 =Mgy(b) + Mpé(b),
ie,
IS x P)(H) - (S xP)(Dlls <O(f - flg). ,T€Q 9

Using Theorem 2.4, we conclude that Problem (2) has
exactly one solution T € Q, and for each f; € Q, one has

lim(S x P)*(fy) = T.

n—o

Remark 1. For non-decreasing mapping @ : (0, b) - R, we
have for € > 0|w(7)| < €. The solution of
f()
Fepme = /(x, f €(0,1
o~ ‘g"(T, f(T)) V(Ty (T)) + U(T), rl: ( (01 ]) (10)
f(0)=0
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is calculated as:

J’(r — )¢y (v, f))dv
0

¢

O 10”

) (1)
+ j(r - )¢l (v)dol.

Hence, from (11), one has by using (8):

¢
T

¢
F()

IN

——|7 (1, f(r))|f|w(v)|dv

IA

Ty )(||/(r f(r)) - 7(0, 1(0))|ls
T (12)
+ 170, KOl e [ (T - vy vitdy

{Mgbt
Q)

= SAI'],(,I)S)

n+¢-1

()

IA

o B, O)

where

———B(1n, ).

Apep =

Definition 3.2. Following the definition of UH stability in
[30], for € > 0, the inequality

<€

FEpn.¢ f(©
Ot | 7 (3 (o)

holds. Then, any solution of (2) is UH stable for exactly one
solution T if

’ - (1, (1))

MsAycp

- flla <
It - Tl < <

Theorem 3.3. Using Theorem 3.1, Remark 1, if the condition
0 <1 holds, the solution of (2) is UH stable.

Proof. Let f be any solution of (2), then for the unique
solution f , we have

If(7) - £()|
f(7) - %J(T, f(r))J'(r - v) 1Ly (v, T(v)dv
f(t 1y (v, f(v))dv
( ) (13)
¢ .
) ’ (v, f(v))dv
_ {5 1ty (v, F))dv |
I(n) '
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Using (9), after simplification, (13) implies that

IIf - Flls < MsAy e + O|If - Tljs. 14)

Hence, from (3), one has

MSAr],(,b
1-0

Hence, the solution is UH stable.

If = flls <

4 Numerical analysis

We establish a numerical scheme based on the numerical
algorithm given in the study by Shah et al. [21] for our
proposed Problem (2) since the integral form of (2) is given

by:

-
I(n)’

At T = Ty+1, One has (15)

f(r) = =7, f(r))ja — VLY (v, fv))dv. (15)

Tn+1

=7 f() J (Ta1 = V)70

I(n) )
x 4" (v, f(v))dv,

(1) =

n Th+1

(z,)) Z j V(g - v

F( )
x 4 (v, f(v))dv
s UV
T f(r,,))g0 7 (Tk, f(Tk)){
x VY (Tpeq — 0)TdU

= o (o ) 0 (s B

T Tk
" lf‘ ) '“”[r—; & ””

“Ln
In addition, if we put ¢ = 1 in (16), one has

n+1

T (T, f(0)) 2 7 (T, Fm)(n = ke + 1)1
k=0

f(Ths1) =

n
T(n+1)

-(n- k)”)],

where h is the step size of Euler method. In addition, we
provide some examples to demonstrate the results.
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........ 0.40,0.40)
0.50, 0.50)
0.60,0.60)

0.70,0.70)

Figure 1: Graphical presentation of numerical solution of Example 1 with respect to different fractal-fractional orders.

Example 1. Consider the given problem:

() cos(|f(0)])
FFnn,{ _
ODg[ioo (0|~ 2+ 100 0T EODS
17
€ (0,1],
£(0) = 0.

Obviously, Hypothesis 4; and A; hold, and therefore,
Problem (1) has a solution. Furthermore, using different
fractal-fractional order, we present the solution graphically
using our numerical scheme in Figures 1 and 2 for b = 10.

In Figure 3, we take larger values for fractal orders
corresponding to various fractional order values to under-
stand the effect of fractal dimension.

From Figures 1-3, we see that fractal order has a sig-
nificant impact on the dynamics of the considered pro-
blem. For larger fractal dimension, the dispersion between
the curves is more than for small fractal order.

Example 2. Consider the given problem:

(D)l
?+500

f()
500 + 3/|f(0)|
T€[0,1],n, ¢ € (0,1],
f(0) = 0.

_ cos(T) +

FFn.¢
0t

(18)

0.6 T T T T

- 03

02

01

-------- (0.80,0.40)
===+ (0.85, 0.50)
= = (0.95,0.60) 1
—— (1.00,0.70)

S o
)
~
©
©
5

Figure 2: Graphical presentation of numerical solution of Example 1 with respect to different fractal-fractional orders.
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0.9 T T T T T T T

0.7~

05

03

02

0.1

(0.80,0.75) | |
(0.85,0.80)

= = (0.950.85)
= (1.00,0.95)

----- (0.40,0.40)

3 ====(0.50, 0.50)
= = (0.60,0.60)
—— (0.70,0.70)
Py 4
=%
1 \;‘3‘?' 7
0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8 —

-------- (0.80,0.40)

-

====(0.85, 0.50)

L = = (0.95,0.60)

0.6 —— (1.00,0.70)
0.4 —
02 -

0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Graphical presentation of numerical solution of Example 2 with respect to different fractal-fractional orders.
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3.5 T T T T

25

-------- (0.80,0.75)
==== (0.85, 0.80)
= = (0.95,0.85)
== (1.00,0.95) | _ e+ et

0 0.1 0.2 0.3 0.4

0.8 0.9 1

Figure 6: Graphical presentation of numerical solution of Example 2 with respect to different fractal-fractional orders.

= = (0.60,0.60)
——(0.70,0.70)

0 0.1 0.2 0.3 0.4

0.8 0.9 1

Figure 7: Graphical presentation of numerical solution of Example 3 with respect to different fractal-fractional orders.

It is easy to verify that Conditions A; and A; hold.
Also, the requirement of Theorem 3.1 holds; therefore,
Problem (2) has a solution. Furthermore, using different
fractal-fractional order, we present the solution graphi-
cally using our numerical scheme in Figures 4 and 5
forb =1

In Figure 6, we take larger values for fractal order
corresponding to various fractional order values to under-
stand the effect of fractal dimension.

D
07T 1100 + 2/[f(0)]

n,¢€(0,1],

-_ 9

Example 3. Consider the given problem with tangent function:

_ tan(7) + {/|f(7)|

exp(t) + 100 °’

(19)

We present the numerical solution graphically for dif-
ferent fractals and fractional orders in Figures 7 and 8.
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0.35 T T T T

= = (0.95,0.60) |_|
——(1.00,0.70)

-------- 0.80,0.75)
0.85, 0.80)
0.95,0.90) |_|

1.00,0.95)

Figure 9: Graphical presentation of numerical solution of Example 3 with respect to different fractal-fractional orders.

In Figure 9, we take larger values for fractal order
corresponding to various fractional order values to under-
stand the effect of fractals dimension.

In Figures 7-9, we demonstrated graphically the approx-
imate solution of Problem (3) for taking different values of
fractals and fractional orders. The effect of fractal dimension
has been demonstrated in the mentioned figures.

5 Conclusion

Researchers have extensively studied hybrid nonlinear
problems of ordinary as well as fractional order. They
established the existence theory on using fixed point

theorems and studied some comparative results. But the
said problems were very rarely studied for numerical solu-
tions using some numerical tools. Also, the newly devel-
oped fractal-fractional calculus concepts have not been
used to investigate the mentioned area of hybrid nonlinear
problems. Therefore, it was recommended to investigate
the mentioned problems under fractal-fractional deriva-
tives using hybrid fixed point theorems. Also, a sophisti-
cated numerical method is required to studied the men-
tioned problems for their numerical solutions because the
said problems are nonlinear and it is very difficult to com-
pute the exact or analytical solution. On the other hand,
many biological problems can be modeled using HDEs.
Therefore, keeping in mind the required need, a class of
hybrid nonlinear FFDEs has been studied in this research
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work. For the mentioned problem, we have designed some
sufficient conditions under which the aforesaid problem has
exactly a solution. The tool we utilized for to obtain the
fundamental results was based on hybrid fixed point the-
orem for the product of two operators. Sufficient conditions
have established for the UH stability to the proposed problem.
Moreover, such problems have significant uses in engineering
and dynamical fields, and we have derived a numerical scheme
based on Euler method for FFDES. The said numerical scheme
has been demonstrated by testing three pertinent examples
with graphical illustrations using various fractals and fractional
orders. In the future, the said algorithm and analysis will be
exercised for more generalized complex hybrid dynamical sys-
tems with FFDEs. Also, in the future, the said analysis can be
extended to hybrid mathematical models biological tissues
using fractal-fractional calculus. The said area will open new
doors of research.
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