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Abstract: Fractional diffusion partial differential equation
(PDE) models are used to describe anomalous transport
phenomena in fractal porous media, where traditional dif-
fusion models may not be applicable due to the presence of
long-range dependencies and non-local behaviors. This
study presents an efficient hybrid meshless method to
the compute numerical solution of a two-dimensional mul-
titerm time-fractional convection-diffusion equation. The
proposed meshless method employs multiquadric-cubic
radial basis functions for the spatial derivatives, and the
Liouville-Caputo derivative technique is used for the time
derivative portion of the model equation. The accuracy of
the method is evaluated using error norms, and a compar-
ison is made with the exact solution. The numerical results
demonstrate that the suggested approach achieves better
accuracy and computationally efficient performance.

Keywords:meshless collocationmethod, hybrid multiquadric-
cubic radial basis functions, mathematical model, fractional
derivatives, multiterm time-fractional convection-diffusion
model equation

1 Introduction

Numerous researchers have been exploring the applica-
tion of fractional partial differential equations (FPDEs) in
various scientific and technological domains in recent
years. The versatility and efficacy of partial derivatives
as a modeling tool have proven invaluable in capturing
the historical behavior and inherent characteristics of
diverse dynamic systems. Considerable efforts have been
dedicated to developing numerical and analytical solutions
for FPDEs [1–7]. However, many investigators have attempted
to derive and simulate a variety of complicated phenomena
using linear or nonlinear partial differential equations (PDEs)
of integer order, but have been unsuccessful [8].

The FPDEs often encounter a diverse range of physical
mechanisms. Despite the capability to represent numerous
complicated phenomena in diverse fields, researchers have
discovered that multiterm time-fractional PDEs, as com-
pared to the results of a single term, enhance the modeling
accuracy for characterizing diffusion processes. Nowadays,
it catches the curiosity of active researchers. The objective of
this work is to use a computationally appealing and trust-
worthy numerical technique to estimate the numerical solu-
tions of the multiterm time-fractional convection-diffusion
model equation.

The convection-diffusion PDE model holds significant
physical significance and finds extensive applications in
various scientific and mathematical domains. These PDEs
are commonly employed in modeling biological phenomena,
physical processes, and financial mathematics. Prominent
examples include the Navier-Stokes equations [9], which
describe fluid flow in various fields such as engineering,
meteorology, and oceanography, and the well-known Bur-
gers’ equation [10], which has applications in fluid mechanics
and nonlinear waves. In addition to their relevance in phy-
sical and biological sciences, convection-diffusionmodels play
a vital role in various environmental and energy-related stu-
dies [11–14]. For instance, these models are utilized to math-
ematically represent heat transport in buildings, contaminant
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transport in aquifers, air pollution dispersion, and groundwater
flow [15]. Such applications are crucial for understanding
environmental impacts, optimizing energy infrastructure,
and implementing pollution control measures [16]. More-
over, many real-world phenomena involve species trans-
portation and reaction processes that are coupled with
flow processes. In the context of energy research, this is
particularly significant when studying the transport and
diffusion of energy-related substances or quantities [17].
Furthermore, in the field of financial mathematics and
option pricing, convection-diffusion PDEs can be interpreted
as probability distributions of one or more underlying sto-
chastic processes [18–21]. This interpretation is essential for
assessing and managing financial risks, especially in the
context of option pricing and derivative securities.

Recent literature employs a wide range of meshless
techniques to numerically address complicated PDE models
in diverse fields of engineering, science, and technology.
Among these methods, a prominent approach is the utiliza-
tion of radial basis functions (RBFs). The meshless nature of
these techniques, combined with their ability to overcome
challenges associated with dimensionality, has made them
increasingly popular among researchers. In addition, their
versatility is enhanced by their capacity to compute solutions
using uniform or non-uniform node distributions in regular
and irregular domains. As a result, meshless techniques have
proven to be both practical and effective in addressing var-
ious physical problems [22–28]. However, like any numerical
method, meshless techniques have their limitations. Among
the most significant challenges are determining the optimal
shape-parameter value and handling dense, ill-conditioned
matrices. To address these drawbacks, researchers have iden-
tified the local meshless technique as a favorable choice. This
method exhibits accuracy and reliability in finding solutions
for a wide range of integer and fractional PDE models [29,30].
Compared to the global version, the local approach yields
sparse matrices that are well-conditioned and less sensitive
to the choice of shape parameters. Consequently, the local
meshless technique offers enhanced efficiency and benefits
over its global counterpart. Due to these advantages, these
methodologies are now being extensively explored and
applied in various applications [31–36]. Researchers are
actively utilizing meshless techniques to tackle challenging
problems across different domains, demonstrating the ver-
satility and potential of this numerical approach in advan-
cing scientific understanding and technological innovation.

In the current research, a hybrid meshless method
based on multiquadric-cubic RBF is suggested to compute
the numerical solution of a two-dimensional multiterm

time-fractional convection-diffusion equation, which is
given as follows:
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where ⋅Γ( ) is the gamma function.

2 Motivation

The difficulty in obtaining analytical solutions for non-
linear PDEs motivates researchers to seek efficient numer-
ical alternatives. PDEs play a fundamental role in various
real-world applications, including engineering, physics, and
finance, but exact analytical solutions are often infeasible due
to their nonlinearity and complexity. In response, diverse
numerical approaches have been developed and evaluated,
customized for specific problem characteristics and computa-
tional demands. While traditional finite difference and finite
element methods are widely used, they may encounter chal-
lenges in handling irregular geometries, complex domains,
and moving boundaries. In contrast, meshless methods offer
an appealing alternative as they do not require a predefined
mesh and efficiently handle complex geometries and unstruc-
tured domains. This adaptabilitymakesmeshlessmethodswell
suited for problems encountered in fluid dynamics, structural
mechanics, and data-drivenmodeling. This article introduces a
meshless numerical scheme for PDE models, employing RBFs
for spatial derivatives and enabling accurate representation of
unknown functions in higher dimensions. In addition, the tem-
poral direction is discretized using the Caputo derivative defi-
nition. The proposed meshless approach brings several key
advantages over traditional methods, including eliminating
the need for a structured grid, simplifying mesh generation
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for complex domains, and enabling seamless extension to mul-
tidimensional problems. Furthermore, the scheme demon-
strates high accuracy and numerical stability, vital for reliable
and robust simulations.

2.1 Fractional calculus

Fractional derivatives are essential in fractional calculus.
The following are some fundamental definitions of frac-
tional derivatives that are commonly utilized.

Definition 1. The Riemann-Liouville derivative [38,39]
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Definition 2. The Caputo’s fractional derivative [37]
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Definition 3. The Atangana and Baleanu fractional deriva-
tive [40]
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Definition 4. He’s fractional derivative [41]

∫

∂
∂

=
−

× − − < <−

U τ

τ β

τ ζ U ζ U ζ β

s

s

, 1

Γ 1

d

d

, 0 1.

β

β

k

τ

τ

β

k0

k

k

k

0

( )

( )

( ) [ ( ) ( )]

(7)

3 Analyzing the theoretical
foundations of a time discrete
scheme

Initially, we present the following preliminary concepts
from functional analysis, which play a crucial role in dis-
cretizing the time variable.

3.1 Introduction to applied functional
analysis: A preliminary overview

Consider a bounded and open domain Ω in 2� , where sd
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Next, we present the definition of the inner product
within a Hilbert space.

∫∑=
≤

U W D U D Ws s s, d ,m

γ m

γ γ

Ω

( ) ( ) ( )
∣ ∣

which induces the norm

∑=
⎛

⎝
⎜

⎞

⎠
⎟

≤
U D U .H

γ m

γ

LΩ
Ω

2
m

2

1

2

‖ ‖ ∥ ∥( )

∣ ∣
( )

The Sobolev space X Ip1, ( ) is said to be

∫ ∫=
⎧
⎨
⎩

∈ ∃ ∈ ′ = ′

∀ ∈
⎫
⎬
⎭

X I U L I g L I Uφ gφ

φ C I

; : ,

.

p p P

I I

1,

1

( ) ( ) ( )

( )

Modeling anomalous transport in fractal porous media  3



In addition, in this article, we establish the following inner
product and the corresponding energy norms in L2 and H 1:
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4 Spatial and temporal discretization
techniques for derivatives

In this section, we present the main steps involved in com-
puting the spatial and temporal derivatives. These steps
are essential for the accurate numerical approximation.

4.1 Spatial discretization techniques for
derivatives

The derivatives of U τs,( ) are approximated at the centers
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The derivative ofU can be computed by taking the deriva-
tive of the expression given in Eq. (9).
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The approximate semi-discretized form for model (1), using
hybrid meshless method, along with the initial and boundary
conditions, is
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In this context, the matrix �( ) corresponds to the sparse
coefficient matrix resulting from the hybrid meshless
method approximation. The initial and boundary condi-
tions of the problem are denoted by vectors k and b,
respectively, both of size ×N 1.

4.2 Numerical approaches for time
derivatives discretization

The time derivative in the Caputo form, denoted as ∂
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Taking into account +M 1 equidistant time levels τ τ τ, ,…, M0 1
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5 Results and discussion

The recommended hybrid meshless method is examined in
this section for its application and accuracy in estimating
the numerical solution of the two-dimensional multiterm
time-fractional convection-diffusion model equation. Different
time fractional orders, including two-term, three-term, and
five-term, are taken into consideration. Themethod is coupled
with multiquadric-cubic radial basis functions, and rectan-
gular and nonrectangular domains have been taken into con-
sideration. The temporal step size = 0.001J and spatial
domain [0, 1] are employed unless otherwise stated. The
following is how accuracy is determined:

∑

- = −
= -

=
−=

U

E

U

N

Absolute error ,

Max max Absolute error ,

RMS ,

i

N

i i
1

2

n





�

�

∣ ∣

( )

( )

(21)

where � is the exact solution.

Problem 1. The exact solution for Eq. (1) with = =α α 1
1 2

, is

= ∈−U τ e πs πr s rs, sin sin , , Ω.

τ( ) ( ) ( ) ( ) (22)

The required numerical results for Problem 1 are pro-
duced using the suggested hybrid meshless approach and
are shown in Table 1. The nodes N and temporal step size J

Table 1: Results of the hybrid meshless method for Problem 1

==N 5 ==N 10 ==N 20

J RMS MaxE RMS MaxE RMS MaxE

Two-term 0.1 ×2.0645 10

‒2 ×4.2976 10

‒2 ×1.8830 10

‒2 ×5.8860 10

‒2 ×4.2300 10

‒2 ×2.3552 10

‒1

0.05 ×9.8545 10

‒3 ×2.0585 10

‒2 ×8.4668 10

‒3 ×1.6698 10

‒2 ×3.9218 10

‒2 ×2.6484 10

‒1

0.01 ×6.7339 10

‒4 ×1.5930 10

‒3 ×8.8947 10

‒4 ×3.8580 10

‒3 ×1.5744 10

‒3 ×1.3745 10

‒2

0.005 ×1.0034 10

‒3 ×2.5963 10

‒3 ×4.0744 10

‒4 ×1.7415 10

‒3 ×3.4312 10

‒4 ×1.9687 10

‒3

0.001 ×1.1273 10

‒3 ×2.7554 10

‒3 ×4.5450 10

‒4 ×1.0197 10

‒3 ×2.2593 10

‒4 ×5.0045 10

‒4

Three-term 0.1 ×1.2273 10

‒2 ×2.3872 10

‒2 ×1.1571 10

‒2 ×2.2576 10

‒2 ×1.3246 10

‒2 ×6.1633 10

‒2

0.05 ×5.0047 10

‒3 ×1.0056 10

‒2 ×5.2538 10

‒3 ×1.0399 10

‒2 ×6.4920 10

‒3 ×3.7501 10

‒2

0.01 ×7.6508 10

‒4 ×2.1338 10

‒3 ×4.8450 10

‒4 ×1.5991 10

‒3 ×6.5136 10

‒4 ×1.7731 10

‒3

0.005 ×1.0293 10

‒3 ×2.6600 10

‒3 ×3.4650 10

‒4 ×1.0649 10

‒3 ×2.4442 10

‒4 ×8.9311 10

‒4

0.001 ×9.3642 10

‒4 ×2.3562 10

‒3 ×3.3295 10

‒4 ×7.5659 10

‒4 ×1.5284 10

‒4 ×3.5259 10

‒4

Five-term 0.1 ×7.5062 10

‒3 ×1.6352 10

‒2 ×8.3533 10

‒3 ×1.7988 10

‒2 ×8.7158 10

‒3 ×1.7987 10

‒2

0.05 ×2.8803 10

‒3 ×7.1647 10

‒3 ×3.7202 10

‒3 ×8.3322 10

‒3 ×4.0825 10

‒3 ×8.6422 10

‒3

0.01 ×7.3264 10

‒4 ×2.0263 10

‒3 ×4.3462 10

‒4 ×1.1647 10

‒3 ×5.9871 10

‒4 ×1.4234 10

‒3

0.005 ×8.3438 10

‒4 ×2.2149 10

‒3 ×2.6260 10

‒4 ×7.1538 10

‒4 ×2.4476 10

‒4 ×6.1235 10

‒4

0.001 ×7.4705 10

‒4 ×1.9230 10

‒3 ×2.2136 10

‒4 ×5.0499 10

‒4 ×8.6997 10

‒5 ×2.1623 10

‒4

Table 2: Results of the hybrid meshless method for Problem 1

Two-term Three-term Five-term

τ RMS MaxE RMS MaxE RMS MaxE

=β 0.45 0.2 ×1.1317 10

‒3 ×2.7069 10

‒3 ×8.6422 10

‒4 ×2.0603 10

‒3 ×5.5294 10

‒4 ×1.3532 10

‒3

0.5 ×8.7379 10

‒4 ×2.0429 10

‒3 ×6.7854 10

‒4 ×1.5706 10

‒3 ×4.4181 10

‒4 ×1.0485 10

‒3

1 ×5.4753 10

‒4 ×1.2573 10

‒3 ×4.3109 10

‒4 ×9.7438 10

‒4 ×2.8514 10

‒4 ×6.5925 10

‒4

=β 0.5 0.2 ×9.3456 10

‒4 ×2.1856 10

‒3 ×6.6748 10

‒4 ×1.5921 10

‒3 ×4.3410 10

‒4 ×1.0306 10

‒3

0.5 ×7.2439 10

‒4 ×1.6544 10

‒3 ×5.2471 10

‒4 ×1.2178 10

‒3 ×3.4537 10

‒4 ×8.0161 10

‒4

1 ×4.5450 10

‒4 ×1.0197 10

‒3 ×3.3295 10

‒4 ×7.5659 10

‒4 ×2.2136 10

‒4 ×5.0499 10

‒4

=β 0.75 0.2 ×3.6045 10

‒4 ×8.3755 10

‒4 ×3.5415 10

‒4 ×9.0635 10

‒4 ×3.4052 10

‒4 ×8.9625 10

‒4

0.5 ×2.7512 10

‒4 ×6.4202 10

‒4 ×2.7912 10

‒4 ×7.2251 10

‒4 ×2.8966 10

‒4 ×7.7437 10

‒4

1 ×1.6960 10

‒4 ×3.9662 10

‒4 ×1.7477 10

‒4 ×4.5473 10

‒4 ×1.8891 10

‒4 ×5.0807 10

‒4
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Figure 1: Results in terms of RMS error of the hybrid meshless method
for Problem 1.
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Figure 3: Results for the computational domain given in Figure 2 of the hybrid meshless method for Problem 1.
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Figure 4: The computational domain and results of the hybrid meshless method for Problem 1.
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varied, and the fractional orders = =β β 0.5
1 2

, = =β β
1 2

=β 0.5
3

, and = = = = =β β β β β 0.5
1 2 3 4 5

are considered
for two-term, three-term, and five-term, respectively. The
final time is set to 1, while the error norms MaxE and
RMS are utilized. The recommended meshless approach is
capable of producing better results, according to these data.
The table makes it evident that accuracy improves as the
number of time-fractional orders increases, as the number
of nodes increases, and as the temporal step size decreases.

In Table 2, the numerical results are obtained using a
range of fractional-order and final time τ values. The number
of nodes =N 10 and the fractional order = =β β β

1 2

is used
for two-term, = = =β β β β

1 2 3

for three-term, and = =β β
1

= = =β β β β
2 3 4 5

for five-term. Reasonable better accuracy
has been obtained in this scenario as well. Similarly, the
results for =τ 0.5 are shown in Figure 1, in terms of RMS
error norm for two-, three-, and five-term fractional orders.
The figure shows that the accuracy of the five-term is higher
than that of the two-term.

The ease of implementation in the irregular domain is
one of the key benefits of meshless approaches over mesh-
based techniques. The three non-rectangular domain types
that are considered in this article are shown in Figures 2, 4,
and 5. We have display the numerical results in Figure 3 for

=τ 5 and =N 31 and for the domain given in Figure 2,
using the suggested hybrid meshless technique. The value

−3 −2 −1 0 1 2 3
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Figure 5: The computational domain and results of the hybrid meshless method for Problem 1.

Table 3: Results of the hybrid meshless method for Problem 2

==N 5 ==N 10 ==N 20

J RMS MaxE RMS MaxE RMS MaxE

Two-term 0.05 ×1.0068 10

‒2 ×3.0095 10

‒2 ×1.3810 10

‒2 ×3.9711 10

‒2 ×1.5683 10

‒2 ×4.1649 10

‒2

0.01 ×3.2973 10

‒3 ×9.7357 10

‒3 ×4.2498 10

‒3 ×1.1937 10

‒2 ×4.9017 10

‒3 ×1.3112 10

‒2

0.005 ×2.3063 10

‒3 ×5.3171 10

‒3 ×2.3336 10

‒3 ×6.5874 10

‒3 ×2.7170 10

‒3 ×7.2470 10

‒3

0.001 ×2.1916 10

‒3 ×5.5077 10

‒3 ×7.5479 10

‒4 ×1.5249 10

‒3 ×6.4261 10

‒4 ×1.7481 10

‒3

Three-term 0.05 ×7.0554 10

‒3 ×2.0852 10

‒2 ×9.6667 10

‒3 ×2.7994 10

‒2 ×1.1139 10

‒2 ×3.0671 10

‒2

0.01 ×2.6048 10

‒3 ×6.2813 10

‒3 ×2.7799 10

‒3 ×7.8897 10

‒3 ×3.2173 10

‒3 ×8.8036 10

‒3

0.005 ×2.2486 10

‒3 ×5.6483 10

‒3 ×1.5563 10

‒3 ×4.3004 10

‒3 ×1.7677 10

‒3 ×4.8286 10

‒3

0.001 ×2.3497 10

‒3 ×5.8984 10

‒3 ×7.2479 10

‒4 ×1.6393 10

‒3 ×4.2981 10

‒4 ×1.1557 10

‒3

Five-term 0.05 ×4.6404 10

‒3 ×1.2415 10

‒2 ×5.8721 10

‒3 ×1.6845 10

‒2 ×6.8030 10

‒3 ×1.9726 10

‒2

0.01 ×2.5330 10

‒3 ×6.4315 10

‒3 ×1.6975 10

‒3 ×4.5163 10

‒3 ×1.8568 10

‒3 ×5.2353 10

‒3

0.005 ×2.4648 10

‒3 ×6.2632 10

‒3 ×1.0817 10

‒3 ×2.4276 10

‒3 ×1.0232 10

‒3 ×2.8558 10

‒3

0.001 ×2.5457 10

‒3 ×6.3806 10

‒3 ×7.7299 10

‒4 ×1.8326 10

‒3 ×2.9730 10

‒4 ×6.7816 10

‒4
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of =β 0.5 for the two-, three-, and five-term is used. The
figure shows that in this domain, better accuracy has been
attained. Figures 4 and 5, also display the outcome of the
suggested effective approach for nonrectangular domains.
In addition, better accuracy has been attained in this case
as well.

Problem 2. As a second test problem, the exact solution for
Eq. (1) with = =α α 1

1 2
, is

= ∈− −U τ e πs πr s rs, sin sin , , Ω.

s r τ( ) ( ) ( ) ( ) (23)

The numerical results, the suggested hybrid meshless
approach for Problem 2 are shown in Table 3. The nodes N

and temporal step size J are varied, and the fractional
orders = =β β 0.9

1 2

, = = =β β β 0.9
1 2 3

and = =β β
1 2

= = =β β β 0.9
3 4 5

are considered for two-term, three-
term, and five-term, respectively. The final time is set to
1, while the error norms MaxE and RMS are utilized. The
recommended meshless approach is capable of producing
better results, according to these data. The table makes it
evident that accuracy improves as the number of time-
fractional orders increases, as the number of nodes
increases, and as the temporal step size decreases. In
Table 4, the numerical results are obtained using range
of fractional-order and final time τ values. The number
of nodes =N 10, and the fractional order = =β β β

1 2

is
used for two-term, = = =β β β β

1 2 3

for three-term and
= = = = =β β β β β β

1 2 3 4 5

for five-term. Reasonable better
accuracy has been obtained in this scenario as well.

6 Conclusion

In this article, we have effectively solved the multiterm
fractional-order convection-diffusion equation with the
hybrid meshless method. Numerical studies were carried

out for different values of time-fractional order β
k
to check

positive contributions of the model. The calculated results
demonstrate how impressively and precisely the proposed
technique can handle these kinds of problems. The local
meshless feature of the recommended method results in a
sparse system of linear equations, which produced better
accurate and efficient results. The hybrid approach uses
both rectangular and nonrectangular domains to produce
efficient and precise results. In light of recent research, the
suggested method is a remarkably effective and strong
tool for addressing numerical problems relating multiterm
time-fractional PDEs that can be encountered in a variety
of financial, scientific, and technological sectors.
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Table 4: Results of the hybrid meshless method for Problem 2

Two-term Three-term Five-term

τ RMS MaxE RMS MaxE RMS MaxE

=β 0.55 1 ×6.0167 10

‒3 ×1.6253 10

‒2 ×4.0528 10

‒3 ×1.1081 10

‒2 ×2.4107 10

‒3 ×6.7260 10

‒3

2 ×2.2883 10

‒3 ×6.0982 10

‒3 ×1.5622 10

‒3 ×4.1962 10

‒3 ×9.4889 10

‒4 ×2.5894 10

‒3

=β 0.65 1 ×3.0792 10

‒3 ×8.4846 10

‒3 ×2.0379 10

‒3 ×5.6928 10

‒3 ×1.2347 10

‒3 ×3.3979 10

‒3

2 ×1.1635 10

‒3 ×3.1752 10

‒3 ×7.7690 10

‒4 ×2.1462 10

‒3 ×4.7799 10

‒4 ×1.2955 10

‒3

=β 0.75 1 ×1.5509 10

‒3 ×4.3388 10

‒3 ×1.0688 10

‒3 ×2.8639 10

‒3 ×7.8662 10

‒4 ×1.6704 10

‒3

2 ×5.8034 10

‒4 ×1.6157 10

‒3 ×4.0297 10

‒4 ×1.0703 10

‒3 ×3.0897 10

‒4 ×6.2538 10

‒4
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