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Abstract: The integration of artificial intelligence (AI) into
computational fluid dynamics (CFD) has significantly
expanded the scope of fluid modeling, allowing enhanced
analysis capabilities and improved simulation performance.
While Eulerian methods already benefit extensively from
AI, notably in reliable weather prediction, the application
of AI to Lagrangian methods remains less consolidated.
Smoothed particle hydrodynamics (SPH) is a Lagrangian
mesh-less numerical method for CFD with well-established
advantages for the simulation of highly dynamic free-sur-
face flows. Here, we explore an application of AI to SPH
simulations, utilizing an artificial neural network (ANN)
to estimate hydrodynamic forces between particle pairs,
learning from SPH-simulated results. A model of this nature,
which emulates the mathematical representation of physics,
is termed an emulator. We examine the physical significance
of the emulator, presenting its applications in benchmark
tests, assessing its faithfulness to traditional SPH simula-
tions, and highlighting its ability to generalize and simulate
test cases with varying levels of complexity beyond its
training data.
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1 Introduction

There is a growing interest in leveraging artificial intelli-
gence (AI) to push forward the frontiers of computationalfluid
dynamics (CFD) [1], enabling new forms of analysis [2–4] and

enhancing simulation performances [5,6]. A common
approach in this direction is the use of emulators, where
AI models are trained over simulated data to learn the beha-
vior of traditional CFD models and replace them, offering
better performances [7,8]. The use of AI-based emulators
opens to new levels of analysis [9,10], allowing a better
description of physical phenomena [11,12] and an efficient
simulation of large-scale problems [8,13,14]. However, the
increasing widespread use of AI-based models raises the
issue of rigorously validating the outputs, necessitating a
deeper analysis of their reliability. Eulerian formulations
can already provide high-fidelity and reliable results, with
clear examples being the Deep Emulator Network SEarch
(DENSE) model for weather predictions [8] or MeshGraphNet
for fluid dynamics simulations [15]. On the other hand,
Lagrangian applications, especially in their mesh-free var-
iants, are less consolidated, requiring a significant part of the
design effort already to handle the absence of pre-established
connections between nodes [16]. This aspect is also reflected in
the generated results. While some of these approaches are
based on simplified CFD models with little physical meaning,
many others only show qualitative comparisons to the refer-
ence CFDmodels, with quantitative analysis typically being out
of their scope. It is, therefore, important to explore the real-
world relevance and accuracy of mesh-free Lagrangian emu-
lators compared to traditional equation-based methods. We
will focus on smoothed particle hydrodynamics (SPH) [17], a
mesh-free numerical method that allows to obtain high-fidelity
simulations of complex fluids [18], specifically for free surface
and multi-phase flows subject to large deformations and inter-
acting with complex geometries [19].

Among the major groups of approaches that can be
found in the literature for Lagrangian emulators, one is
based on the use of graph neural networks (GNNs), where
the graph is a direct way to compensate for the lack of a
spatial structure in the dataset. GNNs are built so that
particles are treated as the nodes and the interactions
between them are represented as the edges. Specifically for
the context of fluid dynamics, Lagrangian fluid graph net-
works [20] have been developed [21]. Despite this approach
can effectively cope with unstructured datasets, it affects the
mesh-free nature of the reference SPH method. It introduces
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the need for re-meshing after large deformations, a compu-
tationally expensive job that goes against some of the possible
applications of emulators.

Another major kind of approach for Lagrangian emu-
lators uses convolutional neural networks (CNNs). These take
into account the spatial distribution of the Lagrangian nodes
by performing spatial convolutions over restricted neighbor-
hoods using predefined masking functions. Originally, CNNs
are designed to work with structured grids of data, as would
be the pixels of an image or the nodes of an Eulerian numer-
ical method. Therefore, their application to Lagrangian
mesh-free methods is not straightforward and needs specific
designs [22,23]. These approaches allow a high-level emulation
and can replace the process of iterating over the neighboring
particles, one of the fundamental tasks in SPH simulations,
altogether. However, these models show a strong dependence
on the spatial features of the training data (e.g., global position
of the particles), which can affect the quality of the results
and the generalization capabilities. This is the case when
some particles’ configurations are not well represented in
the training dataset.

A third kind of approach treats the emulation locally,
at a particle level or particle-pairs interactions. In this case,
the spatial distribution of the particles is handled with
iterations over neighbors, as in the original SPH approach.
Ladickỳ et al. [7] presents an application of AI to speed-up
SPH simulations, where a random forest (RF) model learns
and reproduces the behavior of each particle over time
steps longer than those utilized in simulation. The RF takes
as input features the SPH viscous and pressure forces (com-
puted online with the classical SPH equations), as well as
some particle state physical quantities, and returns an
update of the particles state relative to the time step pre-
sented at training that can be longer than those used for the
reference simulation. The emulator delivers good speed-up
of the method with real-time performances. However, one
of the main limits of RF models for regression tasks is the
inability to extrapolate output values outside of the data
ranges observed during training, which is a limitation to
the consistency of the method and to generalization possi-
bilities. A different solution is presented by Alexiadis [16],
where an artificial neural network (ANN) is used to estimate
the force between particle pairs. The inputs to the network
are the relative particle distance, relative velocity, and the
two particles densities. Because the network works on par-
ticle pairs, in this approach, the global spatial distribution of
the particles in the training dataset is not as substantial as it
is for CNN. This is a case where the concept of emulator
is applied in a strong sense, as the network plays the same
role of the reference equations. In the work by Alexiadis
[16], different CFD methods are emulated (SPH, molecular

dynamics, and discrete element method), showing good fide-
lity of the results to those of the reference models and good
generalization capabilities. The paper also shows an example
of model inversion, as the ANN is trained to estimate particle
forces while only knowing total forces per particle. However,
the study mainly covers the technical aspects of the develop-
ment and testing of the emulator, whereas the adopted refer-
ence models only take into account little physical meaning
(they are so-called “vanilla” models). This does not make
possible a direct applicability of the emulator for prac-
tical use.

Here, we present an SPH emulator based on ANN,
developed for physically consistent simulations, where
the reference model is in line with SPH formulations
adopted in practical applications. This study emphasizes
the design aspects that have a strong impact on the phy-
sical fidelity of the reference SPH model. The design of the
ANN recalls the idea proposed in the study by Alexiadis [16]
and extends the overall structure of the emulator to handle
the more complex and realistic physics. The presented
design enforces symmetry in the predicted forces by only
using particle-pair properties as inputs to the network.
Specifically, we feed the network the product of the par-
ticle densities as a unique feature, as opposed to giving
them individually. This also lightens the computational
management of the network, which has a reduced number
of inputs. To test the generalization capabilities, we train the
emulator over a test case with intermediate complexity,
represented by a dam break flow, and then we reproduce
test cases with both lower and higher complexities.

In the following, we will begin by introducing the SPH
model that we use as a reference for the emulator. In
Section 3, we will discuss the design and training of the
emulator, and Section 4 shows how the emulator reproduces
the same problem used for training and how it generalizes
to new cases. Finally, we will conclude with remarks in
Section 5.

2 SPH reference model

SPH [17] is a particle-based Lagrangian mesh-free numer-
ical method with growing applications to fluid dynamics.
The Lagrangian nature of the method allows an accurate
treatment of flow interfaces, including free surfaces and
interactions with complex geometries [24]. The absence of
any predefined interconnection between nodes (i.e., meshes)
allows efficientmanagement of highly dynamic flows under-
going strong mixing [25]. This model has shown to be very
flexible in its application to diverse scientific and technolo-
gical fields. As a part of its flexibility, SPH comes in many
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formulations [26,27], including numerical corrections
[19,28,29], which can be chosen according to the character-
istics of the simulated problem and the level of abstraction
that one wants to adopt with respect to the simulated
physics.

2.1 SPH formulation

The SPH model that we will take as reference is based on a
quite general, weakly compressible formulation for inviscid
fluids (as water is typically approximated), which is used
in many validated applications [19,26,28,30,31]. We will con-
sider the Navier–Stokes equations of momentum conser-
vation, to model the dynamics of the particles, and mass
conservation, to model the evolution of particles density.
Our model will be developed in 2D. In this formulation,
the SPH discretization of the equation for mass conservation
is written as follows:
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where the second term on the right-hand side stands for
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with =ε 0.01h .
The 2D equations of momentum conservation are

written as follows:
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where ( )= −g 0, 9.81 T is the gravity vector and Πij is the
artificial viscosity term, which helps reducing numerical
high-frequency components of the velocity field, defined as
follows [17]:
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In order to reproduce an equivalent kinematic visc-
osity, ν, we define the artificial viscosity coefficient α as
in [17], using the relationship

=α
ν

hc

8
.

0

(5)

The pressure P is obtained from the density using Cole’s
equation of state [33]:
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where ρ
0
is the reference density of the fluid and γ is the

polytropic constant that we take equal to 1. The speed of
sound c0 is taken 20 times higher than the hydrostatic
velocity, i.e., ‖ ‖=c hg20 20 , with h as the maximum height
of the fluid [34].

We use the fifth order Wendland smoothing kernel
[35], which has been observed to be beneficial for free-
surface simulations [36]. This kernel has a smoothing
radius h2 , where h is the smoothing length, defined using
the smoothing factor as = ∕α h pΔs , and we take =α 1.33s .

2.2 Integration scheme

We adopt a second-order predictor–corrector integration
scheme described by the following steps:
(1) Compute accelerations and density derivatives at instantn:

(a) ( )( ) ( ) ( ) ( )= ρa a x u, ,n n n n ,
(b) ( )( ) ( ) ( ) ( )=ρ ρ ρx u˙ ˙ , ,n n n n .

(2) Compute half-step intermediate positions, velocities,
and densities (predictor):
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2
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2
.

(3) Compute corrected accelerations and density derivatives:
(a) ( )( ) ( ) ( ) ( )=⋆ ⋆ ⋆ ⋆ρa a x u, ,n n n n ,
(b) ( )( ) ( ) ( ) ( )=⋆ ⋆ ⋆ ⋆ρ ρ ρx u˙ ˙ , ,n n n n .

(4) Compute new positions, velocities, and densities
(corrector):

(a) ( )( ) ( ) ( ) ( )= + ++ ⋆ tx x u a Δn n n n t
1

Δ

2
,

(b) ( ) ( ) ( )= ++ ⋆ tu u a Δn n n1 ,
(c) ( ) ( ) ( )= ++ ⋆ρ ρ ρ t˙ Δn n n1 .

The time step tΔ is computed for each particle i, and it
is required to fulfill CFL-like (Courant-Friedrichs-Lewy)
stability conditions [37] determined by the acceleration
magnitude and speed of sound:
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The resulting overall time step for the model is chosen
as the minimum particle time step.
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2.3 Boundary model

We adopt the dynamic boundary model [38,39], for which
some parallel layers of extra particles, referred to as
boundary particles, are placed along analytical bound-
aries. These layers are spaced at intervals of pΔ from one
another, originating at the analytical boundary position.
Fluid particles are thus positioned, commencing from a
distance of pΔ away from the analytical boundary. These
extra layers of particles should be enough to complete the
support of the smoothing kernel when it is centered on the
outmost fluid particle. Boundary particles are assigned a
density, which is treated equally to fluid particles. The
velocity of these particles is set to zero (unless a moving
boundary needs to be modeled).

3 AI-based emulators for CFD

An AI-based CFD (AI-CFD) emulator is a model that com-
bines the principles of CFD simulations with AI techniques
to enhance fluid simulations, either in terms of perfor-
mances or generated information. The AI algorithms can
join an equation-based CFDmodel or replace parts of it and
emulate the respective behavior, learning from a dataset of
simulated input–output values. Incidentally, emulators are
trained to mimic CFD models with specified mathematical
laws, which represent the emulated entity. This is in con-
trast to generic data-driven approaches, where the data can
be experimental and the physical laws unknown [40,41].

Applications of AI can be divided into two main tasks
[42]: classification and regression. The first task aims at
dividing the data into classes, or clusters, connected to
each other by intraclasses similarities, which measure
the homogeneity of a cluster, and interclasses dissimilari-
ties between different clusters, which measure the distance
between two clusters [43–47]. Therefore, the output of the
model is a discrete number linked to the class membership.
For the regression task, the purpose is to evince the rela-
tionships between input and output data and to make
it applicable to new datasets [48]. In this case, outputs
are given as continuous values. For emulators, regression
applications of AI are generally used, as the aim is to gen-
erate continuous simulation quantities compatible with
training data. Examples of AI architectures that can be
used in Lagrangian emulators for regression tasks are
RFs [7] and ANNs [16,49]. The first one is known for the
inference speed, and the second one for better generaliza-
tion ability. The two architectures are largely used for non-
linear regression tasks.

3.1 ANN-based SPH emulator

We here design an emulator for the weakly compressible
SPH scheme shown in Section 2.1, where the momentum
equation is replaced by an ANN, thus emulating the forces
between particle pairs.

The ANN that we use is a multilayer perceptron (MLP).
This is a fully connected class of feedforward ANN com-
posed of layers of nodes (usually called neurons) with
weighted interconnections. Each node computes its output
from the inputs by using so-called activation functions [50].
A network is typically composed of at least three layers: the
first one is called input layer, the last one is called output
layer, and any other layers in between are called hidden
layers. The number of nodes in the input and output layers
determines, respectively, the number of inputs and outputs
of the network. The number of hidden layers and their
nodes determines the complexity of the network and,
therefore, the capability to catch details of the dataset. It
is demonstrable that the standard multilayer feed-forward
networks, with at least one sufficiently wide hidden layer
of neurons, can approximate any kind of functions with
any accuracy, and so they can be considered universal
approximators [51]. The process of extrapolating the rela-
tionships between input and output from a representative
dataset is called training, during which the weights of the
connections are set.

While the outputs of a network are clearly defined by
the quantity that one is looking for, in our case, the parti-
cles interaction forces, the set of input variables provided
to the ANN must be designed in order to contain all the
information needed to infer input–output relationships
within the dataset. This design process is called features
extraction, and it is proper of AI approaches classified as
machine learning techniques [42,52], as is the one pre-
sented here. These are in contrast to deep learning techni-
ques, where features are automatically extracted from the
provided input dataset by the model during the training
phase [50,53].

For the design of an emulator, the relationships
between inputs and output data are typically known in ana-
lytical form (the set of equations of the reference numerical
model), which is a great advantage for the process of feature
extraction. Looking at our equations of interest, Eq. (3),
which in turn recalls Eqs (4) and (6), it is clear that the inputs
to the network will include particle positions, velocities, and
densities. Still, the design of the MLP inputs requires addi-
tional effort, primarily because velocities and positions are
2D vectors, while input variables of the MLP should be sca-
lars. We, therefore, derive scalar quantities from the vari-
ables of interest, combining them in a way suggested by how
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these variables figure within the reference equations. We
use three input variables, which are the relative distance
between the particles, the normal component of the relative
velocity, and the product of the two densities. While the first
two quantities are identical to those used in [16], individual
densities were used in that case as two independent inputs.
Our design choice keeps the number of inputs smaller, with
consequent computational advantages during training and
execution of the network. Furthermore, our inputs only
refer to particle-pairs quantities, forcing the network to pro-
vide symmetric interaction forces. As for the particle forces
estimated by the network, they need to be vectors with the
component of acceleration in the two spatial dimensions.
However, considering Eq. (3), these vectors are, by construc-
tion, oriented as the vector of relative position between the
interacting particles, which is known. Therefore, the net-
work is designed to produce in output the module of the
acceleration vector, which we then multiply by the unit
vector of the relative position. The structure of the network
was defined empirically during training, including three
hidden layers with the following number of neurons: 9, 27,
and 9. We note that this network is larger than the one used
by Alexiadis [16], likely because of the higher complexity of
the physics represented in the dataset. The activation func-
tion adopted for the nodes is the exponential linear unit
(ELU) function [54].

As a measure to reduce the execution time of the emu-
lator, during runtime, we substitute the use of the ANN
with a lookup table that maps its input–output relationship
[55], as done in the study by Alexiadis [16]. This table is
constructed once at the conclusion of the training phase, by

sweeping the inputs of the ANN across a predefined set of
values and storing the corresponding outputs. During run-
time, the output values of the ANN are reconstructed from
this table using linear interpolation. Although this process
introduces some errors in the estimation of the output, it
significantly reduces the emulator’s runtime and main-
tains its independence from the complexity of the MLP.

3.2 Training the emulator

The dataset for the training is generated by simulating a
dam break flow, with the SPH formulation presented in
Section 2.1. Other than being a classical benchmark case
for SPH, a dam break presents a wide range of flow con-
ditions, evolving from the initially violent flow of the tran-
sient, toward a static steady state. Therefore, the training
dataset will be representative for the different flow condi-
tions. The fluid that we model has density = ∕ρ 1.00 kg m 3,
artificial speed of sound =c 560.29 m/s0 , and artificial visc-
osity coefficient =α 0.01. The tank is 90 m long, and the
fluid is initially confined within a rectangular shape of
width 30 m and height 40 m, as shown in Figure 1. We will
consider three spatial resolutions, for which the whole par-
ticle set is discretized by using a spatial step of =pΔ 0.5 m,

=pΔ 0.75, and =pΔ 1.0 m, resulting in 6,681, 3,423, and 2,151
particles, respectively. The initial density is set by using an
inversion of the state equation (Eq. (6)) and considering a
hydrostatic pressure profile.

In order to incorporate meaningful phases of the flow
into the training dataset, we simulate 50.0 s of evolution, at

Figure 1: Dam break test case used to generate training data. On the left is the initial simulation setup with particles colored by density [ ∕kg m 3]. On
the right is the final frame of the dataset with particles colored by velocity magnitude [m/s].
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the end of which the flow reaches the state shown in Figure 1.
We sample the whole particle set, including boundary par-
ticles, every 0.5 s. This results into a dataset including 3.42
million of particle samples for the intermediate spatial reso-
lution. About 80% of the total dataset is used for the training
phase, while the remaining part is used for the validation
phase. We found that including boundary particles within
the dataset improved the quality of the results in terms of
particle disorder. This is likely due to a better representa-
tivity of surface particles.

Despite the output of the MLP represents particle
interaction forces, following [16], we write the loss function
Li taking into account the total forces acting on particles.
Specifically, the network is trained to minimize a total loss
function, composed by the sum over all the neighbor lists
for all the particles and time steps, namely of all the single
Li, which consider the difference between the total force
Fi

target given by the SPH model and the sum of the particle
pair interaction forces f

ij

ANN predicted by the MLP:

∑= −L F f
r

r

.i i

j

ij

ij

ij

target ANN

2

(8)

In this way, the sum of the estimated forces has to approx-
imate the sum of the computed force, without knowing
them individually. This approach allows to reduce the
size of the training dataset, as it overcomes the need to
store individual samples of the forces, in favor of storing
only total forces. Total forces are computed and added to
the training set for boundary particles.

Training is run for 10,000 epochs, with a learning rate
of ·= −α 5 10 4 [50]. The Adam optimizer is used, typically
reaching a final training and validation loss in the order
of −10 3.

We note that emulating the momentum equationmeans
that we also emulate the computation of the kernel and the
equation of state. Therefore, the parameters adopted in
these expressions, like the pΔ , the smoothing length, or the
speed of sound, are learnt during training and will not need
to be specified for the emulator. On the other hand, this
means that these values are fixed for the emulator, and a
newmodel (by means of a new training) needs to be created
when one needs to use different values.

4 Results and discussion

To test the emulator, we initially replicate the dam break
problem used to generate the training dataset. Figure 2
shows a comparison of three different phases of the dam

break flow, and a good agreement can be appreciated
between the results obtained with the equation-based
SPH model (hereafter simulations) and the AI-based SPH
emulator (hereafter emulations).

Some discrepancies can be seen at the level of particle
configurations, especially in the regions where the details
of the flow are comparable to the particle size or where the
fluid behaves in a highly chaotic way (see the splashes
shown in the middle and bottom frames of Figure 2). In
both cases, the local flow is highly sensitive to particle
positions and velocities, and even small discrepancies
can generate a different content of flow features in the
resulting simulations. We observed these phenomena by
also reproducing the experiments, which include the three
steps, i.e., equation-based SPH simulation, training, and AI-
based SPH emulation, with different spatial resolutions
(one lower resolution with =pΔ 1.0 m and one higher reso-
lution with =pΔ 0.5 m). For both lower resolutions, where
the particle size becomes more important within the domain,
and higher resolutions, where more sensitive flow details are
generated, different forms of discrepancies emerged during
the comparison of SPH-emulator results. Appendix 1 shows
more details about the results obtained with the three resolu-
tions. However, in most practical applications, this level of
comparison can be disregarded, as the discrepancies can be
considered compatible with simulation tolerances. On the
other hand, a robust matching can be observed in terms of
major flow features, like the initial advancement of the fluid
front, and the interaction with the walls, including the forma-
tion of a swirl in proximity of the left wall, visible at the
bottom of Figure 2.

To quantitatively compare these results, Figure 3 shows
the position of the waterfront over time in the two cases,
measured as the position of the rightmost particle of fluid
over time. Taking into account the scale of the fluid domain
and the adopted spatial resolution, the two fronts advance
with a strong matching, with a little divergence developing
after 2 s of evolution. By looking at the particles configura-
tions in Figure 4, we can see that the discrepancy in the
advancement of the front is generated by a slightly different
particle configuration at the front of the flows. The differ-
ence is compatible with the scale of a particle size and,
therefore, is comparable to the simulation tolerance. On
the other hand, a very strong agreement can be observed
for the overall profile of the flow.

For the emulator to be used in a scientific context, it is
also important to assess the ability to generalize and correctly
predict the behavior of the fluid in conditions that have not
been presented during training. To this aim, we simulate two
other problems that involve the same physics of the dam
break but introduce different levels of complexity.
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Figure 2: Simulation (left) and emulation (right) of a dam break with an artificial viscous term. The time frames per line are related to 1.5, 8.5, and
15.0 s of simulation. Particles are colored by velocity magnitude (m/s), with a minimum of 0.0 m/s and a maximum of 29.0 m/s.
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We study a flow at lower complexity by examining the
behavior of a still volume of fluid in a tank. This is a first
generalization test of the emulator, which, being trained
over fluid in motion, should also be able to deal with fluid
at rest. We used a 90 m by 15 m domain of fluid, with the
same physical and simulation properties of the training
fluid, and we used the emulator previously trained over
the dam break to reproduce 200.0 s of evolution. We then
simulated this problem with the original equation-based
SPH model and compared the results. Although in this
case the individual particles assume a different configura-
tion, the overall behavior of the fluid was consistent with
the expectations for the test case and with the respective
SPH-based simulation.

To test the ability of the emulator to deal with flows
with higher complexity than the training case, we include
the presence of waterfalls, obtained by starting the flow
from an elevated shell, again using the model trained over

the dam break. Figure 5 shows the evolution of the flow,
simulated with both the emulator and the reference SPH
model. Similar to what observed for the dam break, some
differences arise over simulated time, due to the discrepan-
cies between the computed and estimated accelerations
that gather during the simulation. However, the sequence
of major flow dynamics is preserved.

As a remark about generalization capabilities, we
recall the peculiarity of using an emulator that reproduces
particle interaction quantities rather than directly mod-
eling the spatial behavior of the fluid. In this case, the
emulator learns to reproduce the numerical relationships
between the variables in the reference model. Therefore,
when the emulator is presented with a different problem
to simulate than what was seen during training, as long as
the values of the variables are in ranges where they hold
the same physics learnt from the reference simulation, the
emulator should be able to produce physically meaningful
results. From the generalization tests we saw previously,
even though some differences appeared in particle distri-
bution with respect to the reference simulations, the fluid
consistently exhibited a realistic behavior across all exam-
ined cases.

In addition, for the generalization tests, we reproduce
the experiments (SPH simulation, training, and emulation)
with the two different spatial resolutions ( =pΔ 1.0 m and

=pΔ 0.5 m), obtaining results consistent with the respec-
tive SPH-based simulations. The only limitation that we
have encountered occurs when increasing flow complexity
and spatial resolution, with some instabilities happening at
the impact of jets or drops. However, these limitations are
inherently conservative, as they primarily influence the
numerical execution of the simulation and do not lead to
physically unrealistic results. We have noted that training

Figure 3: Dam break front over time. Solid line: SPH model; dashed line:
emulator.

Figure 4: Dam break simulation at =t 2.2 s. Blue particles: SPH; orange particles: emulator.
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the network with input SPH quantities sampled during
the predictor phase of the integration (see Section 2.2)
and SPH reference outputs sampled during the corrector
phase (see Section 2.2), improves the stability of the emu-
lator. This could be explained considering the similarity of
this approach to an implicit integration scheme. Although
this procedure introduces a deviation from the reference
integration scheme, we deem this deviation to be negligible
with respect to the achieved benefit in stability.

5 Conclusions

We presented an AI-CFD emulator based on the use of an
ANN to emulate the SPH momentum equation and produce
forces between particles starting from quantities represen-
tative of the particle state.

This emulator is meant to take into account the phy-
sical meaningfulness of the results, so it was developed by
referring to SPH formulations adopted in real-world appli-
cations. We, therefore, adopt a second-order predictor–cor-
rector integration scheme, where the density is integrated
by means of a continuity equation. We adopted the dynamic
boundary model and studied the effect of their presence
within the training set, finding that the results of the
emulator were more disordered when not including
the boundary particles data. Moreover, we formed all
the input features from pair-related quantities, enfor-
cing reciprocity in the interaction, which is a require-
ment for energy conservation.

Simulations of a dam break problem showed that the
results of the emulator are faithful to those of the equation-
based simulation. To validate the model, from a qualitative
point of view, we analyzed the presence of major flow
features in the generated results, and from a quantitative

Figure 5: Simulation (left) and emulation (right) of the waterfalls problem with artificial viscous term. The time-frames per line are related to 7.5, 22.0,
and 30.0 s of simulation. Particles are colored by velocity magnitude (m/s), with a minimum of 0.0 m/s and a maximum of 29.0 m/s .
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point of view, we studied the position over time of a dam
break front, finding good levels of matching between the
results.

We then studied the ability of the emulator to gener-
alize for conditions never seen during training phase. We
used the model trained over dam break data to different
settings with more or less complexity with respect to the
reference case. We have compared the emulations with
the corresponding simulations, showing similar levels of
agreement to what obtained for the validation. In addition,
we also have changed the spatial resolution of the pro-
blems and repeated the experiments, to verify the robust-
ness of this approach also for changes of this type. Even if
particles distribution is not reproduced exactly, due to the
differences in the accelerations estimation, these tests
show how this emulator is able to reproduce the main
features of the fluid, with a faithful appearance of jets,
vortexes, and droplets.

Therefore, the emulator here presented is capable of
faithfully reproducing traditional SPH simulations and gen-
eralizing over test cases with varying levels of complexity.
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Appendix

A Effect of resolution

The following Figures A1–A3 show a comparison of the
simulations obtained with the original SPH model and
the emulator. The columns of each picture show the three
significant times: =t 9.51 , =t 10.02 , and =t 17.51 . After the
dam break reaches the right wall, the returning flow tends
to create an impinging jet at t1, and some discrepancies are
visible in the minor flow features between the results pro-

duced by the SPH model (shown in upper rows of the
figures) and emulator (shown in lower rows of the figures).
For the reasons explained in Section 4, the discrepancies
degenerate in more apparent differences in the minor
flow features, as visible right after at t2. However, at t3

the effect of the minor flow features have dissipated,
and the matching between the major evolution of the
flow is again visible.

Figure A1: =pΔ 1.0 m.
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Figure A2: =pΔ 0.75 m.

Figure A3: =pΔ 0.5 m.
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