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Abstract: The significance of different types of periodic
solutions in nonlinear equations is vital across various
practical applications. Our objective in this study was to
uncover novel forms of periodic solutions for the modified
regularized long wave equation. This particular model
holds great importance in the realm of physics as it charac-
terizes the propagation of weak nonlinearity and space-time
dispersion waves, encompassing phenomena like nonlinear
transverse waves in shallow water, ion-acoustic waves in
plasma, and phononwaves in nonlinear crystals. By employing
the methodology of modified rational sine-cosine and sinh–
cosh functions, we successfully derived new kink-periodic
and convex–concave-periodic solutions. To showcase the
superiority of our proposed approach, we conducted a com-
parative analysis with the alternative Kudryashov-expansion
technique. Furthermore, we visually depicted the diverse
recovery solutions through 2D and 3D plots to enhance the
understanding of our findings.

Keywords: nonlinear equations, periodic solutions, time-
space dispersion waves, trial function methods

1 Introduction

Nonlinear partial differential equations (NLPDEs) are com-
monly utilized as fundamental mathematical equations to
model various physical phenomena in numerous fields of
engineering, science, and physics. Explicit solutions to
NLPDEs are highly beneficial for visualizing the dynamics
of a wide range of applications and phenomena. Obtaining
solutions with diverse physical structures for a particular
model can lead to a better comprehension of the under-
lying mechanisms and processes of its dynamic system and
help in its development and maintenance.

NLPDEs have solutions known as propagation wave-
solutions, which encompass a diverse range of types such
as soliton, kink, cusp, periodic, breather, lump, rogue, and
more. No single method generates all these types of solu-
tions simultaneously, and each approach has its own
specific construction to generate a few types. In recent
decades, many approaches have been developed to extract
various types of solitary wave solutions, enriching the field
of solitons. Some of the updated approaches and recent tech-
niques include the Hirota bilinear method with Cole–Hopf
transformations, which has offered new types of solitons
such as multi-solitons, rogue, lump, and breather waves
that have significant applications in water waves and optical
pulses [1–4]. Other suggested scheme-solutions involve expo-
nential, trigonometric, or hyperbolic functions, such as the
simplified bilinear method [5,6], polynomial function method
[7,8], modified ′∕G G( )-expansion [9], modified Kudryashov-
expansion [10], Lie-symmetry [11], generalized exponen-
tial rational function method [12], and numerous other
methods [13–18].

The main goal of this work is to explore periodic solu-
tions, never been reported earlier, for the modified regu-
larized long wave (MRLW) equation, which reads

+ + + = =α β x tΩ Ω Ω Ω Ω 0, Ω Ω , .t x x xxt
2 ( ) (1)
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The presence of different types of periodic solutions to
nonlinear equations plays a crucial role in various real-
life applications. For instance, in the field control systems
and electrical engineering, periodic solutions provide valu-
able insights into the stability of a system. By studying the
stability properties of periodic solutions, engineers and
scientists can assess the behavior of a system over time
andmake predictions about its long-term stability. In nonlinear
dynamics, different applications in nature and engineering are
represented by nonlinear systems. Understanding the different
types of periodic solutions helps in studying and predicting
complex behaviors in these systems. Nonlinear dynamics
provide insights into phenomena such as chaos, bifurca-
tions, and attractors, which have applications in fields like
weather prediction, population dynamics, and neural net-
works. Moreover, periodic solutions are also valuable in
energy harvesting applications. Many natural and engineered
systems exhibit periodic behavior that can be harnessed to
generate electricity. Overall, the presence of different types of
periodic solutions in nonlinear equations enhances our
understanding of complex systems and provides practical
benefits in various fields, ranging from engineering and phy-
sics to biology and environmental sciences.

In Eq. (1), the parameters α β, refer to the nonlinearity
and time-space dispersion, respectively. The MRLW equa-
tion is very important application in the media of physics
since it describes the propagation of weak nonlinearity and
space-time dispersion waves, including nonlinear trans-
verse waves that arise in shallow water, ion-acoustic waves
in plasma, and phonon waves in nonlinear crystals.

The MRLW has been investigated in a few occasions,
for example, the B-spline collocation numerical scheme is
used to find approximate solutions for specific values of
the nonlinearity and dispersion coefficients [19]. Also, by
using the Fourier spectral method, bell-shaped solution is
obtained [20]. By implementing of the cosine-function algo-
rithm, the secant solution is obtained for the case of =α 1

and = −β 1 [21]. Moreover, via the conservation laws, the
sech-solution is reported for the MRLW [22]. Finally,
numerical solutions of the MRLW equation are obtained
by means of quintic B-splines, quartic B-splines, septic
B-spline collocation, and Petrov Galerkin finite element
method [23–25].

To the best of our knowledge, the contributions to the
MRLW equation are limited. It is manifested from the lit-
erature point of view that there are some scopes for
further investigations on the MRLW equation to explore
new periodic solutions via the modified rational sine-
cosine/sinh–cosh function method and the Kudryashov-
expansion method as well as to draw their physical
clarifications.

2 Explicit solutions to the MRLW
model

To recognize travelling wave solutions to a NLPDE, we use
linear transformation to reduce it into simplified ordinary
differential equation. In particular, we consider the new
independent variable = −z x ct to reduce (1) to the fol-
lowing differential equation:

− + − ″ =c U z
α

U z βcU z1
3

0,3( ) ( ) ( ) ( ) (2)

where =U z x tΩ ,( ) ( ). Next, we solve (2) by implementing
two recent effective approaches: the Kudryashov’s method
[26,27] and the modified rational trigonometric and hyper-
bolic functions schemes [28–30].

2.1 Approach I: Kudryashov-expansion

The Kudryashov solution of (2) is of the following form:

= +U z A BY ,( ) (3)

where = = +Y Y z
δe

1

1 μz( ) satisfies ′ = ′ = −Y Y z μY Y 1( ) ( ).
By plugging (3) into (2) and collecting the coefficients of
Y i, we obtain the nonlinear system:
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By solving the aforementioned four equations, we reach at
the following findings:
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Accordingly, the Kudryashov solution of MRLW is
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The parameter δ that appear in (6) is known as the
Kudryashov index, which determines whether the wave
is singular ( <δ 0) or nonsingular ( >δ 0), and Figure 1
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shows the physical structure of (6), kink-wave >δ 0, and
singular-kink-wave <δ 0.

2.2 Approach II: modified rational
trigonometric/hyperbolic functions

We aim here to investigate travelling periodic-wave solu-
tions to the MRLW by considering different types of rational
functions in terms of trigonometric and hyperbolic func-
tions. Four suggestions will be offered in this section.

2.2.1 Rational sine–cosine

The suggested solution is

=
+
+

U z
a μz

a a μz
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Then, we insert (7) in (2) to obtain
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From (8), we null the coefficients of μz μz1, sin ,…, sin3( ) ( ) to
obtain
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By solving the aforementioned system, we deduce the fol-
lowing three cases:

Figure 1: Kink and singular-kink of MRLW as depicted in (6): (a) >δ 0 and (b) <δ 0.

Figure 2: Kink-periodic waves of MRLW as depicted in Ω1.
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Case 1:
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As a result, the first three periodic solutions to MRLW
labeled as Ω , Ω , Ω1 2 3 are as follows:
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By selecting = = = =a μ α β 13 , Figure 2 shows the propaga-
tion of kink-periodic waves as depicted in Ω1, and Figure 3
shows the motion of convex–concave-periodic waves as
depicted in Ω3. For the same assigned values, Ω2 has the
same physical shape as for Ω3.

2.2.2 Rational cosine–sine

The suggested solution is
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By substituting (14) into (2), we obtain the same system as
in (9). Thus, the same findings as in (10)–(12). Accordingly,
three new more periodic solutions will be attained to
MRLW labeled as Ω4, Ω5, Ω6 and given by
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We point here that the physical types of Ω4, Ω5, Ω6 are the
same as reported in Ω1, Ω2, Ω3.

2.2.3 Rational sinh–cosh

The suggested solution is
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Then, we insert (16) in (2) to obtain
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From (8), we collect the coefficients of μz μz1, sinh ,…, sinh3( ) ( )

and null them to zero to arrive a nonlinear algebraic system in
the unknowns a a a μ c, , , ,1 1 1 . By solving the resulting system,
we obtain two cases:
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From case A, we obtain the following new kink-soliton
solution to MRLW labeled as Ω7 and given by
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From case B, we obtain the same solution as depicted
in Ω2.

2.2.4 Rational cosh–sinh

The suggested solution is
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By using the same steps applied to the aforementioned
suggested solutions, we insert (21) in (2) and collect
the coefficients of μz μz1, cosh ,…, cosh3( ) ( ) and null
them to zero to arrive a nonlinear algebraic system in
the unknowns a a a μ c, , , ,1 1 1 . By solving the resulting
system, we obtain four cases:
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Figure 3: Convex–concave-periodic waves of MRLW as depicted in Ω3.
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Now, by combining the aforementioned four cases with
(21), more new solutions of the MRLW will be attained,
labeled as Ω8, Ω9, Ω10, and Ω11 and given by:
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For instance, if we assign the values = = =a α β 13 and
=μ 0.5, one can check that the types of Ω8, Ω9, Ω10,

and Ω11 are kink, singular-kink, kink, and singular-kink,
respectively.

3 Discussions

Periodic solution refers to a solution that repeats itself after
a certain period. In other words, the solution exhibits a
recurring pattern over time. Kink solution is a type of soliton
that describes a localized wave disturbance or discontinuity
in a system. It is characterized by a sharp change or jump in
the field or variable being described. The kink solution typi-
cally connects different stable equilibrium states. Singular-
Kink solution: A singular-kink solution refers to a special
type of kink solution where the wave disturbance or discon-
tinuity becomes particularly sharp or intense. It is asso-
ciated with a singularity or a point of non-analytic behavior
in the solution. Kink periodic solution combines the con-
cepts of a kink solution and a periodic solution, where the
wave shape or kink repeats itself periodically. Convex–
concave periodic solution refers to a periodic solution that
alternates between convex and concave shapes. In other
words, the solution exhibits regions where it is curved out-
ward (convex) and regions where it is curved inward (con-
cave) in a repeating manner.

Now, we demonstrate the advantages of employing the
adapted rational sine-cosine/sinh–cosh functions for iden-
tifying periodic solutions to the MRLW equation. Our inten-
tion is to offer a concise summary of the research outcomes
by presenting them as bullet points accompanied by sim-
plified explanations.
• The tanh-solutionΩ10 and coth-solutionΩ11 can be derived
directly by using the tanh–coth expansion method.

• Both Ω2 and Ω3 can be obtained by using the sec-tan
expansion method.

• Both Ω5 and Ω6 can be extracted by using the csc–cot
method.

• The solution Ω9 can be attained by using the csch-expan-
sion method.

• For = ∓
+

μ
α

β α a

2

3 32( )
, for the case of =δ 1, the Kudryashov

solution (6) is the same as Ω10. Also, for = −δ 1, the
Kudryashov solution (6) is the same as Ω11.

• The solutionsΩ1,Ω4,Ω7,Ω8 are presented in this work for
the first time and they are of type kink-periodic and
convex–concave-periodic.

In summary, we may say that the modified rational sine-
cosine/sinh–cosh approach is a comprehensive hybrid
scheme that generates wave solutions of different physical
shapes that cannot be found using a single method. The
proposed approach includes other well-known methods in
terms of giving similar solutions as shown in the cases of
tanh–coth expansion, csc–cot expansion, csch-expansion,
and the Kudryashov-expansion.t

4 Conclusion

This work introduces a novel investigation of the MRLW
equation, focusing on the discovery of previously unre-
vealed periodic solutions. These solutions were derived
using a contemporary approach known as modified
rational sine–cosine and sinh–cosh functions. The effec-
tiveness of this method is demonstrated through a com-
parative analysis with previous approaches, highlighting
its capability to identify multiple solutions with diverse
physical characteristics.

There are possibilities for exploring new avenues in
future research that are directly relevant to the current
work. For instance, one can broaden the scope of the
MRLWmodel by incorporating time/space fractional deriva-
tives and examining their influence on the propagation of its
solitary waves. By employing various explicit and numerical
techniques [31–38], both explicit fractional soliton solutions
and numerical-analytical solutions can be obtained.

6  Marwan Alquran et al.
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