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Abstract: The improvement in thermal performance of
fluid and the control of energy loss are equitably signifi-
cant. Therefore, the purpose of this study is to analyze
entropy generation, stagnation point flow, and thermal
characteristics of non-Newtonian third-grade modified
hybrid nanofluid generated by a stretchable/shrinkable
Riga plate in a porous medium with varying flow visc-
osity. In this analysis, a modification of hybrid nanofluid
is considered by using pure water as a base fluid and
three various nanomaterials (aluminium oxide, copper,
and nickel) as nanoparticles in the characterization of
heat transfer. Furthermore, the contribution of heat source/
sink and viscous dissipation are accounted for in the model.
The suited transformations are enforced to remodel the
governing mathematical equations to produce ordinary dif-
ferential equations that are conveniently tackled via spectral
quasilinearization method (SQLM) along with the overlap-
ping grid idea to yield numerical solutions. The preference
of this approach over others has been justified through dis-
cussion of error bound theorems, residual and solution
errors, computational time, and conditioning of matrices.
The physical significance of disparate governing parameters
on flow variables, velocity gradient, thermal rate, and
entropy generation are scrutinized through graphs and
tables. Crucial findings of the study include that temperature
of the modified hybrid nanofluid enhances quickly (better
thermal conductor) than temperature of single nanofluid,
hybrid nanofluid, and conventional third-grade fluid for
higher Biot number, variable viscosity, and heat source

parameters. Mass suction enhances fluid flow and physical
quantities of interest, but suppresses the fluid temperature.
An increase in variable fluid viscosity, modified Hartmann
number, and third-grade parameters enhances the wall drag
coefficient while lowering the rate of heat transfer, and the
opposite is true for porous media. More entropy is generated
in the systemby high variable fluid viscosity, suction, viscous
dissipation, modified Hartman number, and non-Newtonian
parameters. Owing to high velocity and temperature asso-
ciated with modified hybrid nanoparticles, modified hybrid
technology is recommended in enhancing the physical attri-
butes of the fluid with minimal cost effects. In engineering
and industrial point of view, this study can contribute sig-
nificantly in thermal improvement of the working fluid.

Keywords: overlapping domain decomposition, spectral
quasilinearization method, third-grade fluid, modified
nanofluid model, porous medium, fluid viscosity varia-
tion, Riga plate, entropy generation

1 Introduction

Flows with regard to non-Newtonian fluids have been a
topic worth researching in the recent past years because
of their prominence in various industrial and engineering
processes. Shampoos, soaps, muds, apple sauce, poly-
meric liquids, sugar solution, condensed milk, tomato
paste, paints, and blood at low shear rate are typical mate-
rials with non-Newtonian fluids attributes. Nevertheless,
their behaviour cannot be inspected via a single constitu-
tive correlation because of their varying rheological
properties. As a result, diverse fluid models have been
introduced to delineate precise nature of non-Newtonian
materials. The correlation among shear rate and shear stress
is nonlinear in such materials. Third-grade fluid is a subca-
tegory of differential kind non-Newtonian fluid that dis-
closes shear thickening and shear thinning features.
Thermodynamically stable conditions for third-grade
fluid were established by Fosdick and Rajagopal [1].
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Nonetheless, non-Newtonian fluids still fail to meet the
demand for excellent heat transfer performance as their
thermal conductivity is poor. To overcome such draw-
back, the idea of suspending nanoparticles (NPs) of dia-
meter below 100 nm into the non-Newtonian fluid is
quite innovative and helpful in improving the thermal
conductivity along with heat transfer competency. These
NPs can be found in the form of metals such as copper
(Cu), silver (Ag), nickel (Ni) and gold (Au), metal oxides
such as alumina/aluminium oxide (Al2O3), copper oxide
(CuO), titania/titanium dioxide (TiO2) and silicon dioxide
(SiO2), metal carbides, metal nitrides, and carbon mate-
rials such as graphite, single-walled carbon nanotubes,
multi-walled carbon nanotubes (MWCNTs), and diamond
[2]. The resultant fluid formed after dispersion of these NPs
into base fluids such as water (H2O), glycol, and engine oil
is called nanofluid. Important applications of nanofluids
arise in disciplines where heat transfer or cooling is needed
such as nuclear reactor cooling, solar collectors, automotive,
refrigerators, electronic cooling, and heat exchangers. Choi
and Eastman [3] were the first researchers to instigate the
notion of nanofluid by highlighting the merits of using NPs
to boost heat transmission. Subsequently, factors affecting
thermal conductivity of nanofluid, which include stability,
size, shape, temperature of the fluid, concentration of the
suspended NPs, and type of the regular fluid used have been
studied [4–6]. Thus far, numerous scholars [7–11] have used
either Buongiornomodel [12] or Tiwari and Dasmodel [13] to
inspect flow and heat transfer features in third-grade nano-
fluid via different geometries.

Although it is feasible to enhance features of single
nanofluids (SNFs) by fluctuating the volume concentra-
tion of the nanomaterial, this is, however, restricted by
the trouble in balancing the net positive of viscosity
diminish versus the net negative viscosity upsurge. To
circumvent this limitation, hybrid nanofluids (HNFs)
have been developed, and distinctive features of various
types of NPs have been exploited. HNF is a novel class of
heat transmission fluid that is capable of outperforming
the base fluid and SNF with regard to heat transference
performance. In HNF model, two kind of NPs are sus-
pended into a regular fluid, whereas in the SNF model
only one type of NP is dispersed into the base fluid.
Suresh et al. [14,15] initiated the conception of HNF via
experiment and numerical results, which confirmed that
HNF is the best heat transfer enhancer than SNF and reg-
ular fluid. HNFs have been found to be applicable in sev-
eral technological and manufacturing processes. When
coming up with a reliable HNF, it is necessary to choose
an appropriate combination of NPs. The principal aim in
developing HNF is to improve the properties of a single NP

that is either a better thermal conductor or possesses
enhanced rheological features. For that reason, it make
sense to blend a NP that has improved thermal conduc-
tivity with a NP that possesses augmented rheological
properties. One way of achieving this aim is blending
metallic NPs with metal oxides NPs. This is because metals
such as Cu are known to be better thermal conductor and
metal oxides such as Al2O3 are chemically inert and stable.
Even though, metals are better thermal conductor, but
they are costly and not realistic in mass production.
Thus, using NPs in the form of metal oxides with metallic
NPs can be massively pragmatic to the economy. So, the
resultant HNF will be a better thermal conductor with
intensified heat transfer competencies than metal oxide
SNF, chemically inert, stable, and cheaper compared to
the metal SNF. Devi and Devi [16] extended the Tiwari
and Das model to accommodate thermo-physical attri-
butes of HNF. HNF model has been extensively used with
non-Newtonian fluids such as second- and third-grade
fluids [17–20]. Govindarajulu and Reddy [20] inspected
magnetohydrodynamic (MHD) pulsatile radiative flow of
Au-Al2O3/blood third-grade HNF through a porous channel
considering the consequences of viscous dissipation and
Ohmic heating. Their valuable results include that flow
fields diminish with large non-Newtonian parameter and
Hartman number, but thermal fields improve with high vis-
cous dissipation. Improving viscous dissipation enhances
the heat transmission rate, which, however, diminishes
with high magnetic field and heat radiative fluxes.

The ability to use two NPs to improve the character-
istics of SNF has open more opportunities to test positive
outcomes of suspending three solid NPs into the normal
fluid. Recently, a novel class of working fluid called mod-
ified nanofluid (MNF) has been discovered as a superior
heat transfer enhancer than base fluid, SNF, and HNF.
Other words for the MNFs are tri-HNF and ternary nano-
fluid. In MNF, three kinds of particles with various thermo-
physical features and chemical bonds are suspended onto
the regular fluid. To improve efficiency in a metal-metal
oxide/metal oxide-metal HNF, another metal or metal
oxide with different thermal or rheological properties
can be added to produce metal-metal oxide-metal/metal
oxide-metal-metal MNF. For example, in the Cu-Al2O3/
Al2O3-Cu HNF mentioned earlier, cost-effective metal
NPs like Ni NPs can be added to give Cu-Al2O3-Ni/
Al2O3-Cu-Ni MNF model. Ni NPs have received consider-
able attention owing to their advantageous chemical,
physical, and magnetic properties. Also, Ni NPs are
very reactive, environmental friendly, and simple to
operate, and that make them useful in diverse organic
reactions including minimization of ketones and
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aldehydes, chemo-selective oxidizing coupling of thiols,
α-alkylation of methyl ketone, synthesis of stilbenes
from alcohol through Witting-kind olefination, and hydro-
genation of olefins. Ni NPs find applications in diverse
technological disciplines including ink for nanotube print-
ings, biomedicine, magnetic materials, electronics, cata-
lytic systems, augmented pseudo-capacitance, battery
production, magnetic biocatalysts, adsorption of yellow
dyes, biomolecules immobilization through the mag-
netic force of Ni NPs, optical switches, and field-modu-
lated gratings. When collated with other NPs, Ni NPs
possess substantial capability as catalysts in reactions,
fibre formation, propellants, sintering additive in coat-
ings, and plastics. An extensive review of synthesis,
stability, thermo-physical features, heat relocation soli-
citation, and environmental consequences of MNF was
done by Adun et al. [21]. Arif et al. [22] explored MNF
with water as a base fluid considering three diverse
shaped NPs. They reported that MNF demonstrates an
ability to be heat transfer rate enhancer than HNF and
SNF. Also, this heat transmission rate can be enhanced
by close to 33.67%, which is an indicator of assuring
thermal performance in the rate of heat transfer. Refer-
ences [23–25] entail recent studies on non-Newtonian
MNF flow and heat transfer through various geometrical
configurations.

The consequences of time-dependent fluid viscosity
give rise to fluctuation in the properties of the fluid [26].
For instance, fluid viscosity drops with fluctuation in
temperature, but viscosity of gases augments with inten-
sifying temperature. In oily liquids, temperature incre-
ment results to friction that impacts the viscosity of the
fluid, which is variant in nature. Due to this incompe-
tency, several scholars have inspected the phenomena
of variable viscosity effect subject to diverse conditions.
Recent studies on the impact of variable viscosity on HNF
and MNF flow over different geometries include [27–30].
Nadeem and Abbas [29] scrutinized the impact of time-
dependent viscosity on MHD flow and heat transfer char-
acteristics of Al O2 3-Cu Ni H O2- / MNF via an exponential
stretchable surface in porous media. They perceived that
viscosity of the fluid is the inverse function. The same
MNF model was used by Abass et al. [30] to investigate
flow and heat transference over a nonlinear stretching
Riga plate with time-dependent viscosity. They found
that velocity depreciates for large values of positive visc-
osity variant parameter and appreciates for large values
of negative variable viscosity parameter.

It has been established that consideration of porous
matrix yields thermal insulation and enhancement of
heat transmission. The significance of porous media in

the boundary layer flow has captured attention of many
researchers owing to its practical use in oil production,
cooling approach of nuclear reactors, heat exchangers,
electronic cooling systems, geothermal engineering, and
underground disposition of nuclear waste. In medicine,
porous media plays a crucial role in transmission process
in human lungs and kidneys, gall bladder in the exis-
tence of stone and clogging in arteries, and slight blood
vessels that cannot be resisted. Hou et al. [23] analyzed
flow, heat, and mass transmission in pseudo-plastic liquid
composed of tri-hybrid NPs over a stretchable porous sur-
face. Sohail et al. [24] scrutinized flow and heat transfer of
pseudo-plastic liquid with tri-hybrid NPs through stretching
sheet in porous media. Their valuable findings include that
Darcy number causes slowness in the movement of fluid
particles. Ramesh et al. [31] studied heat transport augmen-
tation in the flow of ternary nanofluids via stretching con-
vergent/divergent channel in porous media. Alharbi et al.
[32] inspected flow, heat, and mass transfer over a moving
cylinder with Darcy tri-hybrid nanomaterials. Other recent
investigations on flow and heat transfer in porous medium
via different geometrical configurations are found in
refs [33–38].

Boundary conditions are practically crucial for defining
a problem and, concurrently of principal significance in
computational fluid dynamics. This is due to the fact that
the applicability of numerical methods and the consequent
quality of computations can critically be decided on how
those are numerically treated. Convective boundary condi-
tion signify the rate of heat transmission via the surface,
which is proportional to the local variation in temperature
with ambient conditions. This means that convective
boundary condition augments the temperature and con-
sequently the thermal conductivity of nanofluids. For
that reason, it is essential to take into consideration
convective boundary condition as more appropriate model
collated to isothermal conditions. Solicitations of convective
boundary conditions can be found in diversemanufacturing
devices including heat exchangers, atomic plants, gas tur-
bines, and thermal energy storage [39]. These procedures
gain highest temperature when the flow is subject to con-
vective boundary conditions. In the latest past years,
inspection of boundary layer flow and heat transfer pro-
blems accompanied by convective boundary conditions
has been a subject of interest to many scholars [19,40,41],
since first initiated by Aziz [42].

Attributes of magnetic flux induction arises in diverse
engineering, geophysical, astrophysical, and industrial
processes. Fluids such as plasma, electrolytes, and metals
of liquid state to name a few, directly rest upon the induc-
tion of magnetic flux and electric field in the flow model.
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Fluids being poor-electromagnetic conductors due to
increment in inductions are the justification for these
aforesaid enclosure of electric and magnetic fields. An
alternative to make fluids better conductors is the use of
innovative Riga plate. A Riga palate is an electromag-
netic actuator consisting of alternative electrodes and
magnets deposited on a level surface. This innovative
idea was initiated by Gailitis and Lielausis [43]. Kha-
shi’ie et al. [17,18] scrutinized flow of Al O2 3–Cu/water/
ethylene/methanol second-grade HNF via a Riga plate.
They reported that hybrid NPs and the parameter of
electro-magnetohydrodynamic (EMHD) contributes towards
thermal upsurge of non-Newtonian working fluid. Also,
second-grade parameter stipulates a remarkably negative
influence on thermal performance. Siddique et al. [19]
explored stagnation point flow and heat transmission of
second-grade HNF (Al2O3 + Cu/engine oil) via a stretch-
able/shrinkable Riga wedge considering the impact of fuzzy
NPs, heat generation, and radiative heat flux. Their core
findings include that HNF is a superior thermal conductor
than the convectional second-grade liquid. The aspects
of porous media and variable fluid viscosity were not
accounted for in the studies conducted by Khashi’ie et al.
[17,18] and Siddique et al. [19]. Other recent explorations on
flow and heat transfer analysis using HNF model via Riga
plate are found in refs [44–47]. Unlike in the HNF model,
limited research work (see [30]) is available in literature
regarding the MNF flow model past a Riga plate.

Another aspect that works as an effectual tool to aug-
ment the performance of heat transfer procedures is
entropy generation along with its depreciation. The mini-
mization of entropy generation is appreciable in diverse
thermal engineering systems including air separators,
reactors, fuel cells, chillers, thermal solar, chemical,
and electro-chemical. The excellent energy of the system
is maintained through the application of the second law
of thermodynamics. Upreti et al. [48] inspected entropy
production and heat transmission of unsteady squeezing
MHD HNF (CNTs and MWCNTs) flow between two parallel
plates. They disclosed that entropy generation acceler-
ates with escalation in values of magnetic field parameter
as the HNFs moved away from the surface. Very few
scholars [49–51] have make use of the second law scru-
tiny to reduce entropy production in MNF models subject
to different physical attributes.

In light of the afore-stated surveys, no study has been
reported on entropy generation, stagnation point flow, and
thermal characteristics in non-Newtonian third-grade fluid
comprising ternary hybrid NPs induced by a Riga plate in
porous media with temperature-dependent viscosity. The

current study attempts to close this research gap, and for
that reason, it is believed to be original and entails new
significant components that have not been reported by
other scholars. Accordingly, the intention of this work is
to outstretch the theoretical study of Khaishi’ie et al. [18]
by investigating entropy production, flow, and heat transfer
in third-grade MNF near stagnation point via a stretchable/
shrinkable Riga plate in porous medium. The choice of
third-grade fluid model instead of the second-grade model
that was considered by Khaishi’ie et al. [18] is justified by
the fact that second-grade fluid model its incapable of
describing the shear thickening and thinning phenomena
for the steady flow via rigid boundary. However, the third-
grade fluid model signifies an additional, although incon-
clusive, strive towards a more complete explanation of the
behaviour of viscoelastic fluids. Other novel features of the
current scrutiny include consideration of varying flow visc-
osity, thermal convective boundary conditions, and heat
source/sink effects. Also, because of remarkably literature
and already highlighted advantages of Cu and Al2O3 NPs,
both NPs have been chosen to be blended with useful Ni
NPs that is limited in the literature to give an appropriate
MNF model. The transformed ordinary differential equa-
tions (ODEs) are conveniently tackled via the spectral qua-
silinearization method (SQLM) along with the overlapping
grid idea to yield numerical solutions. The SQLM has been
extensively used to solve boundary layer flow problems
because of its superior accuracy and convergence, which
are achievable with least number of iterations. Since the
SQLM approach is characterized by full differentiation
matrices that can lead to dense coefficient matrix, the
accuracy and convergence can deteriorate massively
when many grid points are required and when the com-
putational region is large. Applying the SQLM in over-
lapping multi-domains could be one possible way of
ensuring that good spectral accuracy and convergence
is always maintained, irregardless of the number of grid
points used and the domain size. This is because over-
lapping scheme contribute towards sparsity of the coefficient
matrix, thus becoming very easy to compute its inverse. Also,
the propagation of round-off errors that can bring about
unstable results is most likely to be depreciated through
the usage of less grid points at each sub-domain. In the
current study, the preference of this approach over the
single-domain version of SQLM has been justified through
discussion of residual and solution errors, computational
time, and conditioning of matrices. Graphs and tables are
utilized in demonstrating behaviour of emerging parameters
against entropy generation, velocity, temperature, wall shear
stress, and thermal transmission rate. The following crucial
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research questions are expected to be answered by the con-
sidered scrutiny:
• What is the impact of hybridization of aluminium oxide,
copper, and nickel NPs on the thermo-physical attri-
butes of the third-grade MNF model?

• What is the contribution of considering the MNF model
along with heat source/sink, viscous dissipation and
convective boundary conditions on thermal performance
of the fluid?

• What is the significance of control parameters including
porosity, EMHD, fluctuating fluid viscosity, and suction/
injection on the third-grade MNF flow?

• How can embedding flow parameters be controlled to
ensure adherence to the second law of thermodynamics
(reduction of entropy generation)?

• What is the effect of control parameters on wall shear
stress and heat transmission rate?

• What are the merits of choosing the overlapping grid
SQLM instead of the single-domain SQLM when solving
the non-dimensional transport equations?

The outcomes of this work are novel and play a crucial
role in controlling energy loss within thermal devices,
and further contribute towards ascertainment of the mod-
ified hybrid NPs’ performance in the non-Newtonian
third-grade fluid. Through results of this work, efficiency
and proficiency of thermal energy systems can be hugely
enhanced in various industrial, engineering, and biome-
dical disciplines at a low cost and environmental friendly
way. The assessment of entropy generation finds solicita-
tion in power engineering and aeronautical propulsion to
anticipate the smartness of the overall system.

2 Problem statement

We account for stagnation point flow of non-Newtonian
third-grade MNF (Al O2 3-Cu-Ni H O2/ ) generated by a stretch-
able/shrinkable horizontal Riga (EMHD) plate in a porous
medium with existence of convective boundary constraint
and suction/injection on the surface. The geometry of the
current flow model is depicted in Figure 1. The subsequent
suppositions are taken into account when developing the
MNF mathematical model:
• From the theoretical point of view, the Riga plate is
fabricated using electrodes and permanent magnets
having the same widths w .n

• The surface velocity of the fluid is denoted byu x cx,w( ) =

where c is the coefficient of the velocity of the deformed
plate. The constant c can be positive (stretchable Riga

surface that assist the flow), negative (shrinkable Riga
surface that opposes the flow) or zero (static Riga sur-
face). On the other hand, the velocity of the ambient
fluid is signified by u x ax,e( ) = where the constant a is
always positive.

• In this problem, x represents the distance parallel to
the sheet, y is the distance normal to the sheet, Tw
denotes surface temperature for the nanofluid which
is assumed to be constant, and T

∞

represents ambient
fluid temperature.

• In the current nanofluidmodel, the conventional base liquid
(pure water) and modified nanomaterials (Al O , Cu, Ni2 3 )
are presumed to be in thermal equilibrium and stable with
no slip occurring between them. The Al O Cu Ni H O2 3 2- - /

MNF model was also used by Abbas et al. [29,30] in the
Newtonian case. In the SNF, HNF, and MNF models, one,
two, and three solid nanomaterials are sequentially dis-
persed in a base fluid, respectively.

• The viscosity is presumed to be temperature variant,
and the energy equation is modelled subject to heat
omission/consumption.

• To control energy loss within the thermal devices, we
also account for entropy production.

Adopting the aforestated suppositions, the governing
boundary layer equations are as follows [18,19,44,52]:
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Here, u and v are the MNF velocity segments parallel to
the x- and y-axes, respectively, α α,1 2, and α3 are the mate-
rial parameters, k∗ signifies permeability; j M M x,0 0( )= , and
b1 are applied current density in the electrodes, magnetiza-
tion of the permanent magnets mounted on the Riga plate
surface with M0 being a constant for variable magnets
magnetization, and width of electrodes and magnets,
respectively; Q0 is the heat source/sink coefficient; and
ρ μ ρC, ,mnf mnf p mnf( ) , and κmnf are the density, dynamic
viscosity, specific heat at a constant pressure, and thermal con-
ductivity of the MNF, respectively. The thermo-physical models
of SNF, HNF, and MNF are depicted in Tables 1 and 2, whereas
values of thermo-physical properties of nanomaterials along

with pure water are demonstrated in Table 3. The sub-
scripts s s1, 2, and s3 stand for solid NPs of Al2O3, Cu,
and Ni, respectively, whereas subscripts f nf hnf, , , and
mnf designate fluid, SNF, HNF, and MNF. Also, Φ , Φ1 2,
and Φ3 signify the respective solid volume fraction of
Al2O3, Cu, and Ni NPs, respectively, while s 3= represents
spherical NPs. The experimental value of the Prandtl
number utilized for pure water is 6.2, and such value
has been widely used by researchers in the existing litera-
ture. In the current study, when Φ Φ Φ 0%1 2 3= = = , the
model reduces to conventional third-grade fluid, Φ1 =

5%, Φ Φ 0%2 3= = applies to Al O H O2 3 2/ SNF, Φ 5%,1 =

Φ 5%, Φ 0%2 3= = reduces to Al O2 3-Cu/H O2 HNF, and

Figure 1: Geometry of the model. (a) Stretching surface, and (b) shrinking surface.
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Φ 5%, Φ 5%, Φ 9%1 2 3= = = represents Al O2 3-Cu-Ni/
H O2 MNF model.

The boundary conditions of the present system is

u u x v v κ T
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where vw represent mass transfer velocity of the wall with
v 0w < for suction and v 0w > for injection, and hf is the
heat transfer coefficient.

The following transformations are used to make the
governing equations non-dimensional as follows [18,52]:
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In most studies, physical properties of SNF, HNF, and
MNF are considered as constants. However, physical fea-
tures of SNF, HNF, and MNF can fluctuate remarkably
with temperature [29,30]. Consequently, to accurately
infer the MNF flow and heat transfer rate, it is important
to consider temperature-variant MNF viscosity. The vari-
able viscosity for the MNF model is given by [27,28]

Table 1: The correlations of SNF and HNF [16, 53]

Properties SNF/HNF

Density SNF: ( )= +ρ ρ ρ1 − Φ Φnf f s

HNF : [{( )( ) } ]= + +ρ ρ ρ ρ1 − Φ 1 − Φ Φ Φhnf f s s1 2 1 1 2 2

Heat capacity SNF : ( ) ( )( ) ( )= +ρC ρC ρC1 − Φ Φp nf p f p s
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Dynamic viscosity SNF :
( )

=μnf
μ

1 − Φ
f

2.5 , HNF : ( ) ( )
=μhnf

μ

1 − Φ 1 − Φ
f

1 2.5 2 2.5

Thermal conductivity
SNF: ⎡

⎣
⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

nf

f

s f f s

s f f s

HNF: ⎡
⎣

⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

hnf

nf

s nf nf s

s nf nf s

2 2 2

2 2 2
, where

⎡
⎣

⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

nf

f

s f f s

s f f s

1 1 1

1 1 1
,

Table 2: MNF relations [29, 30,54]

Poperties Relations

Density ( )([{( )( ) } ] )= + + +ρ ρ ρ ρ ρ1 − Φ 1 − Φ 1 − Φ Φ Φ Φmnf f s s s3 1 2 1 1 2 2 3 3

Heat ( ) ( )([{( )( )( ) } ( ) ]

( ) )

= +

+

ρC ρC ρC

ρC

1 − Φ 1 − Φ 1 − Φ Φ

Φ
p mnf p f p s

p s

3 1 2 1 1

2 2

Capacity ( )+ ρCΦ p s3 3

Dynamic viscosity
( ) ( ) ( )

=μmnf
μ

1 − Φ 1 − Φ 1 − Φ
f

1 2.5 2 2.5 3 2.5

Thermal conductivity
⎡
⎣

⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

nf

f

s f f s

s f f s

1 1 1

1 1 1

⎡
⎣

⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

hnf

nf

s nf nf s

s nf nf s

2 2 2

2 2 2

⎡
⎣

⎤
⎦

( ) ( ) ( )

( ) ( )
=

+

+ +

κ
κ

κ s κ s κ κ
κ s κ κ κ

− 1 − − 1 Φ −
− 1 Φ −

mnf

hnf

s hnf hnf s

s hnf hnf s

3 3 3

3 3 3

Table 3: Transport characteristics for nanomaterials and water
[29,30,53]

Thermophysical
properties

Regular
fluid

Nanomaterials

H2O Al2O3( )Φ1 Cu ( )Φ2 Ni ( )Φ3

ρ (kg m−3) 997.1 3,970 8,933 8,900

Cp (J kg−1 K−1) 4,179 765 385 444

κ (W m−1 K−1) 0.613 40 400 90.7

Pr 6.2 — — —
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μ T
μ

e

μ
μ

e
μ

μ
e

1
1 Φ 1 Φ 1 Φ

,

mnf

f

τ T T

mnf

f

τ T T mnf

f

θ

1
2.5

2
2.5

3
2.5

Λ

( )

( ) ( ) ( )
( )

( )

=

− − −

= =

− −

− −

∞

∞

(2.6)

where τ T TΛ w( )= − −

∞

is temperature-variant viscosity
parameter. By using the aforementioned transformations
(2.5) and Eq. (2.6), the governing equations in non-
dimensional version is written as follows:

μ μ
ρ ρ

f e f e ff f

μ μ
ρ ρ

k f e Z
ρ ρ

e

β
ρ ρ

f f ff f
β

ρ ρ
f

β
ρ ρ

f f

Λ 1

2 3
2

6 Re
0,

mnf f

mnf f

θ θ

mnf f

mnf f
p

θ

mnf f

η

mnf f

iv

mnf f

x

mnf f

Λ Λ 2

Λ Ω

1 2 2 2

3 2

1

( )

( )

∕

∕

‴ +

″

+

″

−

′

+

−

∕

∕

′ +

∕

+

∕

′ ‴ − +

″

+

∕

″

+

∕

″

‴ =

−

(2.7)

κ κ
ρC ρC

θ fθ Q
ρC ρC

θ

μ μ
ρC ρC

f e

β
ρC ρC

f f ff f

β
ρC ρC

f

1
Pr

Ec

Ec

2 EcRe
0,

mnf f

p mnf p f p mnf p f

mnf f

p mnf p f

θ

p mnf p f

x

p mnf p f

2 Λ

1 2

3 4

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

∕

∕

″

+ ′ +

∕

+

∕

∕

″

+

∕

′

″

−

″

‴

+

∕

″

=

(2.8)

with dimensionless inter-related boundary conditions
given by

f f λ
κ

κ
θ γ θ

f η f η θ η η

0 Γ, 0 , 0 1 0 ,

1, 0, 0, as ,

mnf

f
( ) ( ) ( ) ( ( ))

( ) ( ) ( )

′ = = ′ = − −

′ →

″

→ → → ∞

(2.9)

where Z πj M
a ρ8 f

0 0
2= is the modified Hartmann number (EMHD

parameter); kp
ν

ak
f

=

*

is the porosity parameter;

β β,aα
μ

aα
μ1 2

f f

1 2
= = , and β a α

μ3
f

2 3
= are the material para-

meters for the third-grade fluid, Rex
u x
ν
w

f
= is the local

Reynolds number, Ω π
b

ν
a1
f

1
= represents the width of

the electrodes and magnets, Ec a x
C T Tp w

2 2

( )
=

−

∞

is the Eckert

number, Pr μ C
κ

f p f

f

( )
= is the Prandtl number,Q Q

a ρCp f

0
( )

= sig-

nifies heat source/sink parameter, and γ , Γh
κ

ν
a

u
u

f

f

f w

e
= = ,

and λ vw
x

u νe f
= − are Biot number, velocity ratio, and

mass transpiration parameters, respectively.

2.1 Skin friction, Nusselt number, Sherwood
number

The significant physical quantities are the skin frictionCfx

and local Nusselt number Nux, which can be written in
the dimensional form as follows:

C
τ

ρ u
xq

κ T T
, Nu ,fx

xy

f e
x

w

f w
2 ( )

= =

−

∞

(2.10)

where the respective shear stress and heat fluxes near the
surface are given by

τ μ T u
y

α u u
x y

u
x

u
y

v u
y

α u
y

q

κ T
y

2

2 ,

.

xy mnf

y
w

mnf
y

1
2

2

2 3

3

0

0

⎜

⎟ ⎜ ⎟

⎜ ⎟

⎡

⎣
⎢

( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥

⎛

⎝

⎞

⎠

=

∂

∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂

+

∂

∂

= −

∂

∂

=

=

(2.11)

Upon the utilization of the transformations in Eq. (2.5),
the dimensionless version becomes

C
μ

μ
f e β f f

f f β f
k

κ
θ

Re 0 3 0 0

0 0 2 Re 0 ,

Re Nu 0 .

x fx
mnf

f

θ

x

x x
mnf

f

1 2 Λ 0
1

3
3

1 2

( ) ( ( ) ( )

( ) ( )) [ ( )]

( )

( )
=

″

+ ′

″

− ‴ +

″

= − ′

∕

− ∕

(2.12)

2.2 Entropy generation modelling

Entropy generation of the system is given by [55]

Sg
κ
T

T
y

μ T
T

u
y

α
T

u u
y

u
x y

v u
y

u
y

α
T

u
y

2 .

mnf mnf
2

2 2

1
2 2

2
3

4

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛

⎝

⎞

⎠

( )
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

‴ =

∂

∂

+

∂

∂

+

∂

∂

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂

∞

∞

∞ ∞

(2.13)

By using the similarity transformations and the charac-
teristic entropy generation rate S κ a T T

ν T0
f w

f

( )
‴

=

−

∞

∞

, the dimen-
sionless entropy generation is written as follows [55]:

N
S T ν

aκ T T
ξ

κ
κ

θ
μ

μ
f e

β f f ff f β f

Br

Br 2 Re Br ,

G
g f

f w
t

mnf

f

mnf

f

θ

x

2 2 Λ

1
2

3
4

( )

( )

=

‴

−

=

′

+

″

+ ′

″

−

″

‴ +

″

∞

∞ (2.14)
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whereBr μ x a
κ T T

f

f w

2 2

( )
=

−

∞

and ξt
T T

T
w

=

−

∞

∞

are Brinkman number
and dimensionless temperature difference, respectively.

3 Method of solution

The flow of third-grade fluid model is characterized by
strongly nonlinear, coupled, and intricate differential
equations because of the non-Newtonian nature of the
model. As a result, it becomes very difficult to solve these
mathematical equations and obtain solutions that will be
more accurate. Most of the time, obtaining closed-form
solutions even become impossible. In such situations, we
often use the numerical methods to obtain the approxi-
mate solutions. Among these numerical methods, we
have spectral methods. When collated to approaches
such as RK4-method, Keller-Box technique, finite ele-
ment and difference methods, and spectral methods are
mostly preferred because of their remarkable accuracy,
convergence, and computational efficacious. Other merits
of spectral methods involve their flexibility to be adjusted,
so that problems with complicated geometrical configura-
tion and varying types of boundary constraints and those
problems with nonlinear nature emanating from extreme
nonlinear deformations and materials can be tackled.
It has been confirmed in the literature that such good
accuracy, convergence, and efficacious vanish when
single-domain spectral methods are implemented in larger
computational regions. The technique of using more grid
points for accuracy improvement also fails and sometimes
results in unstable results. The technique of using spectral
collocation methods with multiple sub-intervals that are
overlapping has been used in some studies [56–60] to
alleviate these drawbacks when solving nonlinear differ-
ential equations. In all these studies, it was revealed that
accuracy, convergence, stability, and computational effi-
cacious become better when spectral collocation methods
are used with multi-domain overlapping scheme in both
small and large calculation domains. Also, the implemen-
tation of the method is quite simple and straightforward,
and few grid points and iterations are needed to ensure
maximum accuracy and convergence are attained. In view
of all the merits of the overlapping grid based spectral
collocation methods, more work still needs to be carried
out in solving various type of intricate differential equa-
tions that are coupled and highly nonlinear. It is very
important for these numerical techniques to be well-tested
for robustness so that the reader is convinced that they are
the most appropriate ones to solve such type of flow pro-
blems. In this part of the work, we disclose the overlapping

domain decomposition SQLM and its utilization in solving
the highly intricate nonlinear coupled ODEs (2.7) and (2.8)
that are not amenable to any of the well-known methods.
The numerical procedure constitutes the use of multi-
domain overlapping scheme, quasilinearization method
(QLM) [61], spectral collocation method, and univariate
Lagrange interpolation polynomials with Chebyshev Gaus-
s–Lobatto grid points [62]. By using the QLM to linearize
Eq. (2.7) and (2.8), we obtain

f f f f f

ϖ θ R

ϱ ϱ ϱ ϱ ϱ

,
r r

iv
r r r r r r r r

r r r

4,
1

1 3,
1

1 2,
1

1 1,
1

1 0,
1

1

0,
1

1 1,

( ) ( ) ( ) ( ) ( )

( )

+
‴

+

″

+

′

+

+ =

+ + + +

+

+

(3.1)

ϖ θ ϖ θ ϖ θ f f

f f R

ϱ ϱ

ϱ ϱ ,
r r r r r r r r r r

r r r r r

2,
2

1 1,
2

1 0,
2

1 3,
2

1 2,
2

1

1,
2

1 0,
2

1 2,

( ) ( ) ( ) ( ) ( )

( ) ( )

″

+

′

+ +
‴

+

″

+

′

+ =

+ +

+

+ +

+

+

(3.2)

where the coefficients obtained after linearization are
provided as follows:

β f G e β f β f

G e G f β f β f

β f f G k e β f G f

G f β f

ϖ G f e G f e G k f e

ϖ G

ϖ G f

ϖ Q G e f

β f f G f e β f f

β f f β f

β f G θ β f f

R G f θ e G f θ e G f f

G k f θ e β f f β f f β f

β f
β f f G f Ze G

R G f θ G f e G θ f e
β f f β f f f β f

ϱ , ϱ 2 6 Re ,

ϱ Λ 6 4

12 Re , ϱ 2 2 ,

ϱ ,

Λ Λ Λ ,

Pr
,

,

EcΛ ,

ϱ Ec , ϱ 2 Ec 2 Ec

Ec 8 EcRe ,
ϱ Ec , ϱ Ec ,

Λ Λ

Λ 2 3

2
12 Re ,

Ec ΛEc
2 Ec 2 Ec 6 EcRe ,

r r r
θ

r x r

r
θ

r r r

x r r r p
θ

r r

r r r
iv

r r
θ

r
θ

p r
θ

r

r r

r
θ

r

r r r r r
θ

r r

r r x r

r r r r r r

r r r
θ

r r
θ

r r

p r r
θ

r r r r
iv

r

r

x r r r
η

r r r r
θ

r r
θ

r r r r r x r

4,
1

1 3,
1

1
Λ

1 3
2

2,
1

1
Λ

2 1 2

3 1,
1

1
Λ

1 2

0,
1

2 1

0,
1

1
Λ

1
2 Λ

1
Λ

2,
2 3

1,
2

4

0,
2

1
Λ 2

3,
2

1 2,
2

1
Λ

1

1 3
3

1,
2

1
2

0,
2

4 1

1, 1
Λ

1
2 Λ

2

1
Λ

1 1 1
2

2
2

3
2

2
2 Ω

2

2, 4 1
2 Λ

1
2 Λ

1
2

1 3
4

r

r

r

r r r

r

r

r r

r

r r

1

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

= − = +

′

+

″

= + +

″

+

″

+

″
‴

= − +
‴

−

′

=

″

−

=
‴

+

″

−

′

=

=

= +

″

= −

″

=

″

+

′ ″

−
‴

+

″

=

″

=

′

−

″
‴

=
‴

+

″

+

″

−

′

+

′
‴

− +

″

+

″

+
‴

″

−

′

− −

=

′

+

″

+

″

+

′ ″

−

″
‴

+

″

−

and G
μ

μ1
mnf

f
= , G ρ

ρ2
mnf

f
= , G κ

κ3
mnf

f
= , G ρC

ρC4
p mnf

p f

( )

( )
= .

To demonstrate the applicability of the overlapping
domain decomposition SQLM, we first approximate
the original semi-finite domain 0,[ )∞ with finite region
K η0, .[ ]=

∞

The restricted value η
∞

is sufficiently big to
guarantee that flow features at η

∞

bear a resemblance to
those at .∞ The truncated domain of concern K is parti-
tioned into � sub-domains, which are overlapping and
designated as follows:
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K η η υ, , 1, 2, 3, , ,υ
υ

N
υ

0 η[ ]

= = … � (3.3)

where equal number of Chebyshev collocation points
(N 1η + ) are utilized in the discretization of each sub-
interval with same length

η
1 1 cos 2π

Nη
( )( )

=

+ − − ∕

∞

�
� �

[56–59]. The diagrammatic representation of how the
finite interval is broken down into � multiple domains
is exhibited in Figure 2. From the figure, the initial two
quadrature points in the interval Kυ 1+

are in coincidence
with the final two points in the interval Kυ, and each
corresponding quadrature points are then treated as one
grid point.

For the spectral collocation algorithm to be used in
the valid interval 1, 1 ,[ ]− the mapping

η
η η

η
η η

η η
ˆ 2

N
υ υ

N
υ υ

N
υ υ

0

0

0η

η

η

=

−

−

+

−

(3.4)

is used to map the physical coordinate η η η,υ
N
υ

0 η
[ ]

∈ in the

interval Kυ onto the collocation coordinate η̂ 1, 1 .[ ]∈ −

The collocation points in interval Kυ are given in [62] as
follows:

η iπ
N

ˆ cos .i i
N

η
0

η
⎜ ⎟{ } ⎛

⎝

⎞

⎠

=

=

(3.5)

The unknown function taking f η( ), for instance, is
assumed to be approximated via univariate Lagrange
interpolating polynomial in the form

f η F η F η L η ,
ι

N

ι ι
0

η

( ) ( ) ( ) ( )
∑

≈ =

=

(3.6)

where L ηι( ) represents the Lagrange basis poly-
nomials. The corresponding derivatives at the interval
K υ 1, 2, 3, ,υ( )= … � are approximated at the collocation
points η j Nˆ , 0, 1, 2, ,j η= … as follows:

f
η

F η L η F ηD DFd
d

,
i

N

i i j
j

N υ
i j j

υ

0 0
,

η η

( ) ( ) ( )
∑ ∑

≈

′

= =

= =

(3.7)

where D D̂
υ 2

( )

=

�
is the differential matrix on the interval

Kυ and D̂ is the standard first order Chebyshev differential
matrix with order N N1 1η η( ) ( )+ × + [62,63]. The matrix-
vector F is given by

f η f η f ηF , , , ,υ υ
N
υ

0 1
T

η
[ ( ) ( ) ]

( )

= … (3.8)

where the capital letter T stands for the matrix transpose.
With regard to the aforestated properties of the overlap-
ping domain decomposition technique, the arrangement
of the differential matrix D having order N N1 1ι ι( ) ( )+ × +

with N N N 1 1ι η η( ) ( )= + − × −� is given by

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D ,

N N

N N

N N N N N N

N N

N N

N N N N N N

N N

N N

N N N N N N
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1
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1
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1
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1
1,1
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1
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1
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1,1
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1, 1

1
1,

1
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1
2,1

1
2, 1

1
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1
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1
, 1

1
,

η η

η η

η η η η η η

η η

η η

η η η η η η

η η

η η

η η η η η η
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⋯
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⋯
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⋯

⋯
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⋯

−

−
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−

−
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−

−

−

−

−

−

−
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−
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−

� � � �

� � � �
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(3.9)

where the rest of the components in the matrix D are zeros. The nth order space derivative for the function f in the
overall domain is approximated as follows:

f
η

D Fd
d

ˆ ,
n

n
n

≈ (3.10)
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where the new matrix-vector F̂ symbolizing the solution
across all sub-intervals is given as follows:

f η f η f ηF̂ , , , .N0 1
T

ι
[ ( ) ( ) ]

( )

= … (3.11)

The similar procedure is used to approximate the other
functions along with their derivatives. Upon the execu-
tion of spectral collocation procedure and the use of dis-
crete derivatives in Eq. (3.1) and (3.2), we have the fol-
lowing matrix equations:

ϱ ϱ ϱ ϱ ϱ

ϖ Θ

D D D D F

R

ˆ

ˆ ,
r r r r r

r r

4,
1 4

3,
1 3

2,
1 2

1,
1
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Equations (3.12) and (3.13) comprise an N N2 1 2 1ι ι( ) ( )+ × +

matrix system presented in the form

Θ
A A
A A

F R
R

ˆ
ˆ

1,1 1,2

2,1 2,2

1

2
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣⎢
⎤

⎦⎥
= (3.14)

or

Δ B H .r r r1 =

+

(3.15)

The boundary conditions are imposed on the main diag-
onal sub-matrices in the matrix system (3.15) to obtain
a new system which is then solved iteratively to attain
the numerical solutions concurrently across the entire
multiple domains. The following initial assumptions
complying with the boundary conditions are chosen to
initiate the iteration process:

f η e e η λ θ η
γ

γ
e

Γ 1 1 ,

1
.

η η

η

0 0
kf

kmnf

( ) ( ) ( )= − + + − +

=

+

− −

−

(3.16)

3.1 Error bound in the overlapping domain
decomposition scheme

In this subsection of the work, the univariate polynomial
interpolation error bound theorem for the single fixed
domain given in ref. [60] is being extended to be applic-
able in subdivided domain. We remark that the number
of C-G-L nodes is presumed to be fixed for all sub-
domains.

Theorem 1. The error bound when the C-G-L points

η η η,i i
N υ

N
υ

0 0
η

η
{ }

[ ]
∈

=

, υ 1, 2, 3, , ,= … � in the partitioned vari-
able η are employed in the interpolation via univariate
polynomial is provided as follows:

E η
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η

η
η( )

( )
⎛
⎝

⎞
⎠

( )( )
≤

+ !

+

+

� (3.17)

where ϒη is the error function.

Proof of Theorem 1. Throughout the calculation domain
η0, ,[ ]

∞

it holds that
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This suggests that within each sub-interval in the divided
domain, we ought to have

η η η η η
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(3.19)

If f η( ) is a smooth function, then η η lϒ , ,l
l

N
l

0 η
[ ]

∃ ∈ =

1, 2, 3, , ,… � such that the value of f ϒN
l

1η ( )( )+ is the abso-
lute extrema of f ηN 1η ( )( )+ in η η, .l

N
l

0 η
[ ]

Owing to such, the

Figure 2: Overlapping domain decomposition of [ ]η0, ∞ .
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error bound can be expressed in form of elements within
each sub-interval as follows:

N
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(3.20)

We provide
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to designate the maximum absolute value of f η( ) when
differentiated N 1η( )+ times with respect to η in the calcula-
tion domain η0, .[ ]

∞

Assuredly, f̂ N 1η( )
‖

+ fϒ ϒ .N
η

1η( ) ( )( )
‖ =

∞

+

To stretch the error bound throughout the calculation
domain, it is necessary to consider the greatest possible
error across the entire sub-intervals given as follows:
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Through the use of Eq. (3.22) and f η F η( ) ( )‖ − ‖ ≤

f η ηϒN
N

η i
N

i
1

1
1

0η
η η( ) ( )

( )
( )

∏ −

+

+

=

[60], where F η( ) is an

N 1η
th( )+ order interpolating polynomial for approxi-

mating f η ,( ) the proof is complete. □

From Eq. (3.17), it is evident that the error in uni-
variate polynomial interpolation is substantially smaller
when interpolation is carried out on partitioned

domain than on a single fixed domain. This is because
N η N

2
1

2
1η η

( ) ( )

≪

+ +

∞

� for large ,� which in turn lead to

reduction in the size of the interpolation error.

4 Computed results and discussion

This part of the work gives a detailed account of the
numerical results obtained through solving the trans-
muted nonlinear coupled ODEs using SQLM via the
overlapping grid scheme. The numerical solutions are
attained for varying values of governing parameters
to disclose their significant effect on flow variables, quan-
tities of engineering concern and entropy production.
The chosen values of the flow parameters are Λ 0.4,=

k 0.5p = , β 0.11 = , β 0.12 = , β 0.13 = , Re 0.2x = , Z 0.1= ,
Ω 0.11 = , Q 0.5= , Ec 0.1= , Pr 6.2= , Γ 0.2= , λ 2= , and
γ 0.5.= The graphs and tables were prepared using
N 30η = and 4.=� All these parameter values were con-
sidered the same in the whole study, unless stated. We
have also replaced the semi-finite domain of the problem
0,[ )∞ with finite computational domain 0, 2 ,[ ] since for
any η 2,> there is an insignificant change in the numer-
ical results. To approve the choice of the method and the
inspected model, our numerical results are matched with
findings from previous studies by Wang [64], Bachok
et al. [65], and Yacob et al. [66] for the limiting case in
Figure 3 and Tables 4 and 5. It is interesting to note that

Figure 3: Comparison of the present results of flow profiles with Bachok et al. [65] for Cu/H2O SNF. (a) Velocity fields against different
Φ2( = =Φ Φ 01 3 ) and (b) temperature fields against different Φ2 ( = =Φ Φ 01 3 ).

12  Musawenkhosi Patson Mkhatshwa and Melusi Khumalo



validation of the code is done for both conventional fluid
and SNF models (Cu/H2O and Al2O3/H2O). The sets of
results demonstrate coherent agreement; thus, the uti-
lized method is confirmed to be reliable and the proposed
MNF model is validated.

Tables 6 and 7 and Figure 4 are provided to justify the
choice of overlapping grid SQLM scheme over the usual
single-domain SQLM. Table 5 shows that the overlapping
domain decomposition approach is remarkably accurate
in both small and large computational domains. This
claim is confirmed by very small residual error estimates
and condition numbers in the column of overlapping
SQLM than in the column of the usual single domain
SQLM. Since η 2=

∞

in the current problem is considered
big enough to guarantee that flow features at this value
bear a resemblance to those at infinity, Table 6 approves
the overlapping grid SQLM as a preferred method to
ensure maximum accuracy in the domain 0, 2[ ]. Table 6
also indicates that errors and condition numbers reduce
drastically when the computational domain is being

stretched from small to large. This indicates that the accu-
racy improves when the computational domain is stretched
in the overlapping domain decomposition scheme. This
finding is in concurrence with the error bound given in
Eq. (3.17), where increment in the length of sub-intervals
is proven to contribute towards the reduction of the inter-
polation error. Table 7 elucidates that residual error values,
execution times, and condition numbers for the coefficient
matrix Δ are clearly smaller in the multi-domain SQLMwith
overlapping scheme than in the single-domain SQLM. Also,
the accuracy, computational effectiveness, and stability are
improved by considering few grid points within a sub-
interval while increasing the number of multiple domains.
This is demonstrated by the reduction in residual error
values, runtime, and condition numbers as collocation
nodes within each sub-interval are decreased, concurrently
increasing the number of multiple domains. The location
and the number of non-zero elements in the coefficient
matrix Δ are demonstrated in Figure 4. By using the over-
lapping domain decomposition scheme and further

Table 4: Numerical values of ( )f ″ 0 for different Γ and Φ2 (Cu/H2O SNF) when = =Φ Φ 01 3

Γ Wang [64] Bachok et al. [65] Present results

=Φ 02 =Φ 02 =Φ 0.12 =Φ 0.22 =Φ 02 =Φ 0.12 =Φ 0.22

2 −1.88731 −1.887307 −2.217106 −2.298822 −1.8873066 −2.2171059 −2.2988221
0.5 0.71330 0.713295 0.837940 0.868824 0.7132946 0.8379403 0.8688244
0 1.232588 1.232588 1.447977 1.501346 1.2325878 1.4479773 1.5013457
−0.5 1.49567 1.495670 1.757032 1.821791 1.4956698 1.7570319 1.8217912
−1 1.32882 1.328817 1.561022 1.618557 1.3288169 1.5610225 1.6185570

Table 5: Numerical values of coefficient of skin friction and thermal rate for Al2O3/H2O SNF ( = =Φ Φ 02 3 ) and Cu/H2O SNF ( = =Φ Φ 01 3 )
when Φ1 and Φ2 are varied

Yacob et al. [66] Bachok et al. [65] Present results

Φ1 Γ ( )f ″ 0
μ

μ
mnf

f
( )θ− ′ 0k

k
mnf

f
( )f ″ 0

μ
μ
mnf

f
( )θ− ′ 0k

k
mnf

f
( )f ″ 0

μ
μ
mnf

f
( )θ− ′ 0k

k
mnf

f

0.1 −0.5 — — 1.9440 0.7272 1.9439980 0.7271485
0.2 −0.5 — — 2.4976 0.8878 2.4976510 0.8878485
0.1 0 1.6019 1.3305 1.6019 1.3305 1.6020567 1.3305085
0.2 0 2.0584 1.5352 2.0584 1.5351 2.0583239 1.5351604
0.1 0.5 — — 0.9271 1.8278 0.9271059 1.8278469
0.2 0.5 — — 1.1912 2.0700 1.1911467 2.0699869
Φ2 Γ ( )f ″ 0

μ
μ
mnf

f
( )θ− ′ 0k

k
mnf

f
( )f ″ 0

μ
μ
mnf

f
( )θ− ′ 0k

k
mnf

f
( )f ″ 0

μ
μ
mnf

f
( )θ− ′ 0k

k
mnf

f

0.1 −0.5 — — 2.2865 0.8385 2.2865115 0.8385102
0.2 −0.5 — — 3.1826 1.0802 3.1825388 1.0803080
0.1 0 1.8843 1.4043 1.8843 1.4043 1.8843238 1.4043271
0.2 0 2.6226 1.6692 2.6226 1.6692 2.6227434 1.6693377
0.1 0.5 — — 1.0904 1.8724 1.0904524 1.8723864
0.2 0.5 — — 1.5177 2.1577 1.5177739 2.1576903
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increasing the number of sub-domains, the matrices emer-
ging in the implementation of the spectral collocation
method are sparse since the matrix contains mostly zero
components when compared to the single-domain SQLM.
This very small sparse matrix helps to ensure stability in the
system and minimize the computational storage better than
in the usual single-domain approach. Thus, computation of
the inverse of suchmatrix when solving the resultingmatrix
system iteratively is possible with minimal numerical errors
and good approximation accuracy.

Figure 5 elucidates how the graphs for residual errors
and solution errors behave when the number of iterations
are increased in the iteration process. Both graphs depicts
a monotonic reduction with regard to iterations increment,
and this behaviour implies convergence of the method.
When the graphs begin to demonstrate little or no decline,
then full convergence is reached. The accurateness of the
method is also demonstrated by the little residual error
estimates after the convergence is reached.

To obtain a clear awareness of the physics of the flow
problem, variations of entropy, velocity, and temperature
profiles against different controlling parameters are

disclosed in Figures 6–17. All figures have been plotted
for Γ 0.5= − (shrinking sheet) and Γ 0.2= (stretching
sheet). In the case of the stretching sheet, the profiles of
velocity f η( )′ are always positive and asymptotically
approach 1 as η becomes large η( )→ ∞ . This implies
that the velocity component of the fluid, u axf= ′ always
takes positive values since a 0> ; thus, the fluid dissemi-
nate along with the plate at all points. However, for the case
shrinking, the profiles of velocity are negative near the sur-
face, but after some value of η η 0.2( )≈ away from the sur-
face, the profiles become positive throughout the entire flow
regime while asymptotically approaching 1. This suggest
that the fluid near the surface moves along with the
shrinking plate and the fluid away from the surface disse-
minate in the opposite direction. On the other hand, tem-
perature and entropy generation curves are higher in the
shrinking case than in the stretching case. This is because
the thermal boundary layer of the shrinking Riga surface is
thicker than the stretching Riga surface. The less entropy
generated with large Γ is subject to the condition that velo-
city near the surface is less than that of the free stream
velocity. It is also perceived that both profiles of velocity

Table 6: Condition numbers and residual error values when the size of domains is varied

= =N N 120ι η , =� 1 = ( = )N N2 61η ι , =� 60

[ ]η0, ∞ ‖ ( )‖fRes ∞ ‖ ( )‖θRes ∞ Cond (Δ) ‖ ( )‖fRes ∞ ‖ ( )‖θRes ∞ Cond (Δ)

[ ]0, 1
×5.446182 10−3

×2.75180 10−5
×6.08686 1014

×1.348238 10−9
×1.62534 10−11

×3.84057 107

[ ]0, 2
×3.435438 10−4

×2.05298 10−6
×5.50742 1013

×1.241761 10−10
×1.14733 10−12

×3.39504 106

[ ]0, 4
×1.085894 10−4

×2.76485 10−7
×6.03703 1012

×3.521036 10−11
×3.02845 10−13

×3.70238 105

[ ]0, 8
×1.430288 10−6

×2.68188 10−8
×8.20196 1011

×3.367279 10−12
×2.04663 10−14

×5.56446 104

[ ]0, 12
×1.430288 10−6

×2.68188 10−8
×8.20196 1011

×2.507133 10−12
×6.62317 10−15

×2.40898 104

[ ]0, 16
×6.185510 10−7

×2.07301 10−9
×1.41444 1011

×1.849854 10−12
×7.33831 10−15

×1.55597 104

[ ]0, 20
×1.535048 10−6

×1.16860 10−9
×8.38888 1010

×9.347627 10−13
×2.39609 10−15

×1.20519 104

[ ]0, 26
×5.825402 10−7

×4.19018 10−10
×5.54015 1010

×9.111947 10−13
×1.02414 10−15

×9.65948 103

[ ]0, 30
×3.862862 10−7

×2.14969 10−10
×3.37522 1010

×9.560165 10−13
×8.27938 10−16

×8.82996 103

Table 7: Condition numbers, residual error values, and execution time when Nη and � are varied

Nη � ‖ ( )‖fRes ∞ ‖ ( )‖θRes ∞ Cond (Δ) Runtime (s)

120 1
×3.862862 10−7

×2.14969 10−10
×3.37522 1010 0.389483

60 2
×1.879395 10−7

×2.08051 10−11
×1.88496 109 0.317371

40 3
×2.148450 10−8

×4.34984 10−12
×3.62020 108 0.291249

30 4
×9.799008 10−9

×8.37306 10−12
×1.22806 108 0.223130

15 8
×4.771338 10−10

×4.66446 10−13
×9.58493 106 0.215285

8 15
×7.061280 10−11

×9.25581 10−14
×1.15954 106 0.193218

4 30
×1.619262 10−11

×8.98347 10−15
×1.69459 105 0.158996

3 40
×4.652243 10−12

×4.32553 10−15
×6.25561 104 0.117933

2 60
×9.560165 10−13

×8.27938 10−16
×8.82996 103 0.071437
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and temperature satisfy the imposed boundary conditions
asymptotically, thus justifying the authentication of the
computed numerical results. Figure 6 demonstrates velocity
curves when varying the types of fluids and volume fraction
of Ni NPs. It is clear in Figure 6(a) that high magnitude of
velocity belongs to the case of MNF, whereas the lowest
magnitude of velocity correspond to the case of conven-
tional third-grade fluid for both stretching and shrinking
surfaces. This shows that the velocity of MNF upsurges
quickly than that of the third-grade fluid. Physically, the
dispersion of NPs changes thermo-physical properties of
the fluid, thus contributing towards extra thinning of the
thickness of hydrodynamic boundary layer and massive
increment in the velocity field. These interesting results
are in accordance with findings reported by Khashi’ie

et al. [18] and Siddique et al. [19] in the case of second-
grade HNF model. A similar observation is noted in Figure
6(b) when Γ 0.5= − and Γ 0.2= , where the curves attain
maximum velocity with the increment of Ni NPs from 0 to
9% since the thermal conductivity of the fluid is directly
proportional to the solid volume fraction. The case of
Φ 0%3 = signifies the HNF model (i.e., Ni NPs are absent)
with lower velocity than MNF model. As Ni NPs are added,
kinetic energy is accelerated within the fluid particles,
which improves the collision of base fluid and NPs. Thus,
large Φ3 boosts the potential of heat transmission (thermal
expansion), and upsurge in fluidmotion is expected, leading
to a rise in MNF velocity.

Figure 7 illustrates the variation of temperature pro-
files with different types of fluids and volume fractions of

Figure 4: Sparseness arrangement of coefficient matrix Δ for varying Nη and �. (a) Single-domain SQLM ( = =�N 120, 1η ) and (b) over-
lapping grid SQLM when = =�N 2, 60η .

Figure 5: Behaviour of (a) residual errors (b) and error norms against iterations when =N 2η and =� 60.
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Ni NPs. In both stretching and shrinking Riga plate, Figure 7a
shows that higher temperature relates to MNF, while lower
temperature belongs to the conventional third-grade fluid.
This is because of the improvement in thermal conductivity
from the base fluid to SNF, then from SNF to the HNF, and
finally from HNF to the MNF. The concentration of NPs is
augmented because of direct influence of thermal conduc-
tivity on concentration of NPs. From physical perspective,
energy in the form of heat is distributed from NPs; thus,
incorporation of more different kinds of NPs (MNF model)
can make use of more energy, which in turn amplifies the
temperature along with thickness of the thermal boundary
layer. As expected in Figure 7b, the profiles of temperature
and thermal boundary layer thickness accelerate with

increment in the values of solid volume fraction of nickel
(Φ3) for the MNFmodel. The rise in Φ3 implies enhancement
of the concentration within the resultant nanofluid and more
availability of space for intensification in heat conduction.
Thus, the addition of more Ni NPs exerts more energy that
causes heat dispersion within the surface, consequently
boosting thermal boundary layer thickness and MNF tem-
perature. These results verify that desirable thermal aug-
mentation, particularly near the surface, can be achieved
through using the Al O Cu Ni H O2 3 2- - / MNFmodel with more
Ni NPs. The high velocity and temperature associated with
MNF implies that modified hybrid technology can assist in
enhancing the physical attributes of the fluid with minimal
cost effects.

Figure 6: Behaviour of (a) regular fluid, SNF, HNF, MNF, and (b) Φ3 on velocity fields.

Figure 7: Behaviour of (a) regular fluid, SNF, HNF, MNF, and (b) Φ3 on thermal fields.
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From Figure 8a, the increment in the velocity gra-
dient causes the momentum boundary layer to become
slightly thinner with increment in the modified Hartman
number Z( ); thus, MNF velocity is perceived to improve
for both cases of stretching and shrinking surface. This
upsurge of velocity curves is a clear indication that the
fluid velocity closer to the surface surpasses the fluid
velocity at the free stream. From the physical point of
view, large values of Z ascertain the intensity of external
electric field that assists flow of the fluid, accordingly
Lorentz force is activated. The existence of Lorentz forces
possesses the separation of laminar boundary layer flow
that gently aid the movement of third-grade MNF NPs,
thereby leading to enhancement in velocity. The impact

of the porosity parameter kp on the velocity profiles is
highlighted in Figure 8b when Γ 0.5= − and Γ 0.2= . For
both cases of Γ, the velocity drops with increment in kp,
which is responsible for higher fluid viscosity that pro-
duces resistance between fluid particles. From the phy-
sical perspective, the void spaces within the medium
upsurge with large values of kp, which give additional
resistive forces to the motion of the fluid. Thus, the flow
of the fluid is decelerated leading to a decrement in the
third-grade MNF velocity.

Figure 9 portrays the outcome of varying the third-
grade parameter (β1) on the velocity and temperature
fields. Figure 9a demonstrates that the velocity of the
MNF declines with large values of β1 for both stretching

Figure 8: Velocity fields against different (a) Z and (b) kp.

Figure 9: (a) Velocity and (b) thermal fields against different β1.
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and shrinking cases. This is because escalation in β1 cor-
relates with the intensity of non-Newtonian MNF viscosity
that leads to lower velocity. The intensity of the non-New-
tonian deportment influences the MNF viscosity by thick-
ening the momentum boundary layer, thus leading to
shrinkage in the MNF velocity. This can be comprehended
from the actuality that superior normal stress bring about
force onto the surrounding particles, which leads to the quick
movement of the particles. In contrary, for both cases of
shrinking and stretching surface, the MNF temperature and
thermal boundary layer thickness augment with incremental
values of β1 as shown in Figure 9b. Such results are in con-
junction with those disclosed by Khashi’ie et al. [18] and
Siddique et al. [19] in the second-grade HNF model.

Figure 10 elucidates the impact of fluid variable phy-
sical properties on both velocity and temperature distri-
butions. In both cases of stretching and shrinking Riga
plate, it is clear that increment in the viscosity variant
parameter leads to augmentation in the non-dimensional
flow and temperature. This is due to the fact that an
increase in the variable viscosity parameter has a poten-
tial of increasing the temperature difference T Tw( )−

∞

,
thus weakening the third-grade fluid bond and mini-
mizing the strength of dynamic viscosity of the non-New-
tonian fluid. Thus, both velocity and thermal boundary
layer thicknesses are improved, leading to upsurge in
MNF velocity and temperature. Figure 11 stipulates the
repercussions of suction parameter (λ 0> ) on both

Figure 10: (a) Velocity and (b) thermal fields against different Λ.

Figure 11: (a) Velocity and (b) thermal fields against different λ.
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velocity and temperature fields. In both stretching and
shrinking instances, the figure shows that MNF velocity
improves with escalation in λ, whereas the temperature
decreases. This happens because greater suction strength
in the flow leads to severe motion of the fluid, thus velocity
is elevated and temperature is diminished. In actual fact,
the thickness of momentum boundary layer is diminished
leading to increment in velocity gradient at the surface,
which in turn improves MNF velocity. As the external heat
velocity is elevated, heat is spread quickly on all sides
leading to a reduction in fluid temperature. Physically,
larger values of λ reduces the thermal boundary layer

and surface temperature such that temperature gradient
at the surface is enhanced and heat transmission from the
hot plate to cool ambient becomes slower.

Figure 12 depicts the impact of Biot number (Bi), heat
source (Q 0> ), and heat sink (Q 0< ) on the temperature
curves. For both stretching and shrinking Riga surfaces,
Figure 12a shows that upsurge in Bi leads to rapid incre-
ment in the temperature profiles of the MNF near the
surface of the sheet owing to augmentation in the con-
vective heat added onto the flow system. In physical
sense, the Biot number is given as the convection at the
surface of the hot body to the heat conduction within the

Figure 12: Thermal fields against different (a) γ and (b) Q.

Figure 13: Behaviour of (a) regular fluid, SNF, HNF, MNF and (b) ϕ3 on entropy generation.
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surface of the hot body. Thus, for larger Bi, more heat is
transmitted from the surface to the NPs giving rise to the
MNF temperature. For low Bi, it can take a lot of time to
transfer heat from the surface into the NPs; thus, MNF
temperature cannot be raised rapidly enough. It is clear
in Figure 12b that escalation in heat source parameter
improves the temperature of the MNF when Γ 0.5= −

and Γ 0.2= . Physically, the existence of heat source
means heat is generated within the system in the course
of the flow and extra heat is produced to the nanofluid,
thus thickening the thermal boundary layer and improving
temperature. In contrary, enhancement in the heat sink
( 0.1− to 1.5− ) leads to a reduction in MNF temperature

and inter-related thermal boundary layer thickness. This
is because negative values ofQ correspond to heat absorp-
tion taking place in the system in course of the flow.

Figure 13 demonstrates the variation of different types
of fluid models and volume fraction of Ni NPs against
entropy generation. In both cases of stretching and
shrinking Riga plate, the figure shows that more entropy
is generated in the MNF when compared to the other
fluids (conventional third-grade fluid, SNF, and HNF),
where the conventional fluid illustrates least entropy gen-
eration. The high entropy associated with MNF is due to the
augmentation of heat transmission with the use of more
NPs of different kinds. As expected, increasing values of

Figure 14: Entropy generation profiles against (a) β1 and (b) β2.

Figure 15: Entropy generation profiles against (a) Z and (b) kp.
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Φ3 also result to more entropy generation. The extra tem-
perature in the flow due to large Φ3 becomes exhausted
from the system and causes an increment in the entropy
production. Figure 14 elucidates that entropy minimization
can be attained by depreciating the non-Newtonian third-
grade parameters β1 and β2 in both stretching and shrinking
cases. Figure 15a depicts that entropy generated is high with
augmented modified Hartman number when Γ 0.5= − and
Γ 0.2= . This is to be expected since enhancement in Lor-
entz force due to augmented Z results in more friction that
imposes upsurge in the rate of entropy generation. In con-
trary, entropy generation is lowered by high porosity para-
meter as shown in Figure 15b. This implies that the main
intention of second law of thermodynamics, which is

entropy minimization can be ascertained by the inclusion
of porous media in the flow system.

Figure 16 discloses that entropy production is increased
by raising the variable viscosity Λ( ) and suction (λ 0> )
parameters in both cases of stretching and shrinking Riga
plate. The enhancement of Λ leads to augmented fluid visc-
osity that generate resistance between fluid particles, thus
disorder within the system augments resulting in enhanced
entropy production. On a similar note, high suction strength
relate to more entropy generated. This is because NG is
proportional to temperature and velocity gradients, whereas
temperature and velocity gradients are directly correlated to
suction, consequently entropy production enhances. Figure
17(a) elucidates that entropy generation profiles are raised

Figure 16: Entropy generation profiles against (a) Λ and (b) λ.

Figure 17: Entropy generation profiles against (a) Br and (b) Ec.
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with high Brinkman number (Br) in both cases of shrinking
and stretching surface. The Brinkman number is sensitive to
improve the friction of nanofluid which results in more
entropy generated. Accordingly, Br manages the omitting
of heat via viscous heating in correlation to heat transmis-
sion in the company of molecular conduction. Heat omitted
by viscous impact is lower than heat transmission by mole-
cular conduction near the surface. As a result, superior
amount of heat is formed between layers of the fluid particles
in motion, leading to enhancement in entropy production.
An increase in the chaotic behaviour of the overall system is
evident to be generating more heat in the system because of
higher values of Br. From Figure 17(b), NG is directly corre-
latedwith the Eckert number and that is why increment in Ec
implies more entropy generated. This is justified by the fact
that frictional heating rises with escalating Ec.

The impact of various important flow parameters on the
physical quantities of interest for varying types of fluids
when Γ 0.5= − (shrinking sheet) and Γ 0.2= (stretching
sheet) is demonstrated in Tables 8 and 9. From Table 8,
higher wall shear stress corresponds to the shrinking sur-
face and MNF model, whereas lower wall shear stress
belongs to the stretching surface and conventional third-
grade fluid. It is noticeable that the values of skin friction
coefficients in the MNF model are almost double those
values in the conventional third-grade fluid. From Table
9, higher Nusselt numbers correspond to the stretching sur-
face and conventional third-grade fluid, whereas lower Nus-
selt numbers belongs to the shrinking surface and MNF
model. These results are similar to those found by Khashi’e
et al. [18] in the second-grade HNF model. The higher wall
shear stress and low rate of heat transfer associated with
MNF are due to the fact that inserting more or diverse NPs
result in superior energy transportation via the flow in rela-
tion with the irregular movement of NPs. The skin friction
coefficient also enhances with higher variable fluid visc-
osity, suction strength, EMHD, and non-Newtonian third-
grade parameters, but depreciates with the existence of
porous media. On the other hand, the heat transmission
rate improves with growing suction strength, porous media,
and heat sink, but diminishes with increment in variable
fluid viscosity, Biot number, heat source, EMHD, and non-
Newtonian third-grade parameters.

5 Concluding remarks

This study highlights analysis of entropy generated, stag-
nation point flow, and heat transfer on a third-grade

modified HNF model driven by a stretchable/shrinkable
Riga plate in a porous medium with heat-dependent fluid
viscosity. The modified hybrid nanofluid has been pre-
pared by suspending solid NPs of Cu, Al2O3 and Ni into
the host fluid (pure water) in a particular order. The
mathematical model also incorporates the impacts of
heat omission/consumption, convective boundary condi-
tions, suction/injection, and viscous dissipation in the
boundary layer region. The performance of each type of
fluid and various controlling parameters on entropy gen-
erated, velocity, temperature, and physical quantities of
interest has also been investigated. Although utilization
of appropriate transformations the governing mathema-
tical equations are transmuted into nonlinear ODEs that
are numerically solved via SQLM that is executed on over-
lapping multi-domains. The choice of overlapping grid
approach over the single-domain approach is justified
through the analysis of residual and solution errors, con-
dition numbers, execution time, and error bound theorems.
The error bound theorem discloses that the error in uni-
variate polynomial interpolation is substantially smaller
when interpolation is carried out on partitioned domain
than on a single fixed domain. Also, the residual error esti-
mates and condition numbers are notable to be very small
in the overlapping domain decomposition approach leading
to computation of highly accurate and stable results in a
short runtime using few grid points and iterations. As a
comparative scrutiny, it is perceived that MNF plays
an efficient role in the intensification of thermal con-
ductance when collated with HNF, SNF, and conven-
tional third-grade fluid. The rest of the valuable findings
include that:
• Fluid flow accelerates with more NPs of different type
(MNF model), high EMHD, and variable fluid para-
meter, whereas decelerates with increasing third-grade
and porosity parameters.

• Temperature and thickness of the thermal boundary
layer enhance with variable fluid viscosity, Biot number,
and heat source, but decrease with suction strength and
heat sink.

• Entropy of the system is enhanced by increasing the
Brinkman number, third-grade parameters, EMHD, vari-
able fluid viscosity, suction strength, and viscous dissi-
pation, and by using the MNF model, but minimized by
including the porous media in the flow system.

• Wall drag coefficient improves with large λ ZΛ, , and β ,1
and low k ,p whereas heat transmission rate enhances

with high λ and k ,p and least Bi ZΛ, , , and β .1
• MNF and shrinking surface yield maximum skin fric-
tion when compared to conventional third-grade fluid,
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SNF and HNF. The opposite is true with regard to the
rate of heat transmission.

Due to superior thermal conductivity, stability, chemi-
cally inertness, cost-effectiveness, and environmental friendly
of the considerednon-Newtonian third-grademodified hybrid
nanofluid model accompanied by the controlling parameters,
it can be of practical use in various engineering and industrial
applications where thermal improvement is important. The
outcomes of this scrutiny can be used to drive future progress
in which thermal proficiency of thermal system can be ascer-
tained via dispersion of various types of NPs into other non-
Newtonian fluids such as Maxwell, fourth-grade, Carreau,
Williamson, tangent hyperbolic, Carreau-Yasuda, Jeffery,
and micropolar fluids. Future works on modified hybrid
nanofluid can also use the obtained results to validate
newly computed results. The merits demonstrated by the
employed numerical method indicate that it can be uti-
lized as a bench-marking tool for previous and future stu-
dies on similar flow problems.

Nomenclature

Roman letters
u v, velocity segments m s 1( )−

x y, cylindrical coordinates m( )

uw Riga plate velocity m s 1( )−

ue free stream velocity m s 1( )−

vw mass transfer velo-
city m s 1( )−

hf convective heat transfer
coefficient W m K2 1( )− −

k∗ permeability m 2( )

j0 applied current density in
the electrodes A m 2( )−

M magnetization of the per-
manent magnets mounted
on the Riga plate surface T( )

b1 width of electrodes and
magnets m( )

Q0 heat source/sink coeffi-
cient W m K3 1( )− −

a positive constant s 1( )−

c constant signifying plate
velocity s 1( )−

T fluid temperature K( )

T T,w ∞

wall and ambient tempera-
ture K( )

Cp specific heat at constant
pressure J Kg K1 1( )− −

qw wall heat flux W m 2( )−

Sg‴ local volumetric entropy
generation rate W m K3 1( )− −

S0‴ characteristic entropy gen-
eration rate W m K3 1( )− −

NG entropy generation
parameter

f η( ) velocity similarity function
Z modified Hartmann number
kp porosity parameter
Rex local Reynolds number
Ec Eckert number
Pr Prandtl number
Q heat source/sink parameter
Br Brinkman number
C , Nuf x skin friction coefficient via

the x-direction and local
Nusselt number

Greek symbols
η similarity variable
μ fluid dynamic visc-

osity Kg m s1 1( )− −

κ fluid thermal conduc-
tivity W m K1 1( )− −

ρ fluid density Kg m 3( )−

τxy wall shear
stress Kg m s1 2( )− −

ξt non-dimensional tempera-
ture variance m( )

β β β, ,1 2 3 third-grade fluid parameters
Φ , Φ , Φ1 2 3 solid volume fraction of

aluminium oxide, copper,
and nickel NPs

Ω1 width of the electrodes and
magnets

Λ temperature-variant visc-
osity parameter

γ Biot number
Γ velocity ratio parameter
λ mass transpiration

parameter
θ non-dimensionless

temperature
Subscripts

w,∞ Ambient and wall
conditions

f conventional fluid
s s s, ,1 2 3 solid NPs of aluminium

oxide, copper and nickel
nf hnf mnf, , single, hybrid and modified

nanofluids
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