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Abstract: In this work, a new iterative algorithm is pre-
sented to solve autonomous n-dimensional fractional non-
linear systems analytically. The suggested scheme is com-
bination of two methods; the Laplace transform and the
residual power series. The methodology of this algorithm
is presented in details. For the accuracy and e�ective-
ness purposes, two numerical examples are discussed. Fi-
nally, the impact of the fractional order acting on these au-
tonomous systems is investigated using graphs and tables.

Keywords: Caputo-fractional autonomous nonlinear sys-
tems, Laplace transform, residual power series method

1 Introduction
Extending the ordinary-partial di�erential equations into
fractional di�erential equations has been attracted by
many researchers since the fractional derivatives are
more general, applicable and more e�cient for real world
phenomena, especially when the dynamics of a given
mathematical model is a�ected by constraints inherent to
the system [1]. Since it is di�cult to �nd explicit solutions
to these fractional problems, it is necessary to use, alter-
native methods, numerical and approximate techniques.

The most popular numerical techniques for solving
fractional problems are the Collocation methods whose
basic functions are of types: Haar functions, Legendre
wavelets, Bernoulli polynomials, B-spline functions,
Chebyshev polynomials, and others [2–6]. On the other
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side, many e�ective analytical schemes were developed to
treat nonlinear problems involving fractional derivatives,
such schemes are: generalized power series [13, 16, 22, 23],
residual power series method [17, 26–29], di�erential
transform method [19, 21, 24, 25], homotopy perturbation
method [14, 15, 18, 20] and others.

In this work, we are interested in introducing a new ana-
lytical scheme to solve nonlinear fractional autonomous
dynamical systems. Dynamical systems describe the
prediction of future states follow from the current state.
Di�erent numerical and analytical algorithms were used
to solve fractional dynamical systems, such as, Homotopy
analysis method, the variational iteration method, Ritz
method and the explicit one-step method [7–10]. In this
context, we present a new algorithm constructed by com-
bining the Laplace transform method and the residual
power seriesmethod (LRPS). This new technique has been
recently proposed for the �rst time in [11] and used in [12].

The organization of the paper is the following: In Section
2 we present the steps of applying the LRPS method to
solve n × n autonomous fractional dynamical systems.
In Section 3 we study two examples of order 2 × 2 and
3 × 3, and also provide graphical analysis. Finally, the
conclusion is given in Section 4.

2 Description of LRPS
In this section, we present in details the steps of apply-
ing the LRPS scheme in solving the following autonomous
fractional system:

Dαt ν1(t) = h1
(
t, ν1(t), ν2(t), ..., νn(t)

)
,

Dαt ν2(t) = h2
(
t, ν1(t), ν2(t), ..., νn(t)

)
,

.

.

.
Dαt νn(t) = hn

(
t, ν1(t), ν2(t), ..., νn(t)

)
,

(1)
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subject to the initial conditions

νm(0) = am ,m = 1, 2, 3, . . . , n, (2)

where 0 < α ≤ 1, 0 ≤ t ≤ 1, hm are suitable functions, and
Dαt is the Caputo-derivative.

Applying the Laplace transform to (1) we get

Vm(s) =
am
s + Hm(s)sα , (3)

where

Vm(s) = L[νm(t)],
Hm(s) = L[hm

(
t, ν1(t), ν2(t), ..., νn(t)

)
].

We assume that Vm(s),m = 1, 2, 3, . . . , n have fractional
power series representation, i.e.,

Vm(s) =
∞∑
r=0

cmr
srα+1 . (4)

Next, we let Vkm(s) denote the k-th truncated series of
Vm(s), i.e.,

Vkm(s) =
k∑
r=0

cmr
srα+1 . (5)

By condition (2), the 0-th LRPS approximate solution of
Vm(s) is νm(0) = lim

s→∞
sVm(s) = c0r = am. Thus,

Vkm(s) =
am
s +

k∑
r=1

cmr
srα+1 . (6)

Now, we de�ne the Laplace residual function and the k-th
Laplace residual function to (3), respectively, as:

LResm(s) = Vm(s) −
am
s − Hm(s)sα , (7)

LReskm(s) = Vkm(s) −
am
s − Hm(s)sα . (8)

To determine the coe�cients cmr , m = 1, 2, 3, . . . , n and
r = 1, 2, 3, . . . , k, we substitute (6) into (8), then multiply
the resulting equation by skα+1, and next we solve the fol-
lowing iterative equation

lim
s→∞

(
skα+1LReskm(s)

)
= 0, (9)

for the unknowns cmr : k = 1, 2, 3, .... Finally, we apply
theLaplace inverse toVkm(s) to obtain the k-th approximate
solution νkm(t).

3 Numerical Problems and
concluding remarks

In this section we present two examples of fractional non-
linear autonomous systems of order 2 × 2 and 3 × 3. The
steps of implementing the LRPS will be clari�ed, and the
e�ectiveness of the proposedmethodwill be tested by pro-
viding a graphical analysis.

3.1 Example 1

Consider the following 2×2 nonlinear autonomous system
[7, 8] {

Dαν1(t) = ν1(t)
2 ,

Dαν2(t) = ν21(t) + ν2(t),
(10)

subject to

ν1(0) = 1,
ν2(0) = 0.

(11)

Applying the Laplace transform to (10)−(11), we get

V1(s) =
1
s +

V1(s)
2sα ,

V2(s) =
1
sα
(
L
[
L−1

[
V1(s)

]2] + V2(s)) . (12)

We assume that both V1(s) and V2(s) have fractional
power series representation as

V1(s) =
∞∑
n=0

an
snα+1 ,

V2(s) =
∞∑
n=0

bn
snα+1 ,

(13)

and we assume that the k-th truncated series of V1(s) and
V2(s) are

Vk1(s) =
k∑
n=0

an
snα+1 = 1

s +
k∑
n=1

an
snα+1 ,

Vk2(s) =
k∑
n=0

bn
snα+1 =

k∑
n=1

bn
snα+1 .

(14)

It is clear that the Laplace residual function for both Vk1(s)
and Vk2(s) are

LRes1(s) = V1(s) −
1
s −

V1(s)
2sα ,

LRes2(s) = V2(s) −
1
sα
(
L
[
L−1

[
V1(s)

]2] + V2(s)) . (15)
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Accordingly, the k-th Laplace residual functions, LResk, are

LResk1(s) = Vk1(s) −
1
s −

Vk1(s)
2sα ,

LResk2(s) = Vk2(s) −
1
sα

(
L

[
L−1

[
Vk1(s)

]2]
+ Vk2(s)

)
.

(16)

To determine a1 and b1, we consider

LRes11(s) = V1
1 (s) −

1
s −

V1
1 (s)
2sα ,

LRes12(s) = V1
2 (s) −

1
sα

(
L

[
L−1

[
V1
1 (s)

]2]
+ V1

2 (s)
)
.

(17)

As V1
1 (s) = 1

s +
a1
sα+1 and V1

2 (s) = b1
sα+1 , we get

LRes11(s) =
a1
sα+1 −

1
2sα

(
1
s +

a1
sα+1

)
,

LRes12(s) =
b1
sα+1 −

1
sα

(
L

[
L−1

[
1
s +

a1
sα+1

]2]
+ b1
sα+1

)

= b1
sα+1 −

1
sα

(
L

[
(1 + a1tα

Γ(1 + α) )
2
]
+ b1
sα+1

)
= b1
sα+1 −

1
sα

(
L

[(
1 + 2a1tα

Γ(1 + α) +
a21t2α

Γ2(1 + α)

)]
+ b1
sα+1

)
= b1
sα+1 −

1
sα

(
1
s +

2a1
s1+α +

a21Γ(1 + 2α)
Γ2(1 + α)s1+2α +

b1
sα+1

)
.

(18)

Multiply (18) by sα+1, we obtain that

sα+1LRes11(s) = a1 −
1
2

(
1 + a1sα

)
,

sα+1LRes12(s) = −
2a1
sα − a

2
1Γ(2α + 1)
Γ2(α + 1)s2α + b1

(
1 − 1

sα

)
− 1.

(19)

Finally, we solve the following system

lim
s→∞

(
sα+1LRes11(s)

)
= 0,

lim
s→∞

(
sα+1LRes12(s)

)
= 0,

(20)

which gives that

a1 =
1
2 ,

b1 = 1.
(21)

In a similar manner, to �nd a2 and b2, we consider

LRes21(s) = V2
1 (s) −

1
s −

V2
1 (s)
2sα ,

LRes22(s) = V2
2 (s) −

1
sα

(
L

[
L−1

[
V2
1 (s)

]2]
+ V2

2 (s)
)
.

(22)

As V2
1 (s) = 1

s +
1

2sα+1 +
a2
s2α+1 and V2

2 (s) = 1
sα+1 +

b2
s2α+1 , we obtain

LRes21(s) =
a2
s2α+1 −

1
4s2α+1 −

a2
2s3α+1 ,

LRes22(s) =
1
sα+1 + b2

s2α+1 −
1
sα

(
L

[
L−1

[
1
s +

1
2sα+1 + a2

s2α+1

]2]
+ 1
sα+1 + b2

s2α+1

)
.

(23)
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Multiply (23) by s2α+1, and then solve

lim
s→∞

(
s2α+1LRes21(s)

)
= 0,

lim
s→∞

(
s2α+1LRes22(s)

)
= 0,

(24)

we deduce that

a2 =
1
4 ,

b2 = 2.
(25)

Hence, the 2nd-approximate LRPS solution of V2
1 (s) and V2

2 (s) are

V2
1 (s) =

1
s +

1
2sα+1 + 1

4s2α+1 ,

V2
2 (s) =

1
sα+1 + 1

2s2α+1 .
(26)

Proceeding as the above illustrated steps in determining the unknown functions ak and bk, one can easily reach the
following results:

a3 =
1
8 ,

a4 =
1
16 ,

a5 =
1
32 ,

(27)

and

b3 =
5
2 + Γ(1 + 2α)

4Γ2(1 + α) ,

b4 =
1
4

(
11 + Γ(1 + 2α)Γ2(1 + α) +

Γ(1 + 3α)
Γ(1 + α)Γ(1 + 2α)

)
,

b5 =
1
16

(
46 + 4Γ(1 + 2α)

Γ2(1 + α) + Γ(1 + 4α)
Γ2(1 + 2α) +

1
Γ(1 + α)

(
4Γ(1 + 3α)
Γ(1 + 2α) + 2Γ(1 + 4α)

Γ(1 + 3α)

))
.

(28)

Therefore,

V1(s) =
1
s +

1
2sα+1 + 1

4s2α+1 + 1
8s3α+1 + 1

16s4α+1 + 1
32s5α+1 + ...,

V2(s) =
1
sα+1 + 1

2s2α+1 + 1
s3α+1 (

5
2 + Γ(1 + 2α)

4Γ2(1 + α) ) +
1

s4α+1 (
1
4(11 +

Γ(1 + 2α)
Γ2(1 + α) +

Γ(1 + 3α)
Γ(1 + α)Γ(1 + 2α) ))

+ 1
s5α+1 (

1
16(46 +

4Γ(1 + 2α)
Γ2(1 + α) + Γ(1 + 4α)

Γ2(1 + 2α) +
1

Γ(1 + α) (
4Γ(1 + 3α)
Γ(1 + 2α) + 2Γ(1 + 4α)

Γ(1 + 3α) ))) + ... .

(29)

Consequently, the solution of (10)-(11) is

ν1(t) = 1 + tα
2Γ(1 + α) +

t2α
4Γ(1 + 2α) +

t3α
8Γ(1 + 3α) +

t4α
16Γ(1 + 4α) +

t5α
32Γ(1 + 5α) + ...,

ν2(t) =
2t2α

Γ(1 + 2α) +
10t3α

4Γ(1 + 3α) + +
tα

4Γ2(1 + α)

(
4Γ(1 + α) + t

2αΓ(1 + 2α)
Γ(1 + 3α)

)
+
t4α
(
11Γ2(1 + α)Γ(1 + 2α) + Γ2(1 + 2α) + Γ(1 + α)Γ(1 + 3α)

)
4Γ2(1 + α)Γ(1 + 2α)Γ(1 + 4α) + ... .

(30)

We point out that the exact solutions to the system in Example 1 for the case of α = 1 are ν1(t) = e t
2 and ν2(t) = tet

[7, 8]. We consider ϕ1(t) =
∑6

i=0 ai t
iα to be the LRPS approximation of ν1(t), and ϕ2(t) =

∑6
i=0 bi t

iα to be the LRPS
approximation of ν2(t). In Figure 1, the �rst sub-�gure represents the values of ϕ1(t) for di�erent values of the fractional
order α and values of ν1(t), while the second sub-�gure represents the absolute error |ν1(t) − ϕ1(t)| when α = 1. In



286 | M. Alquran et al., Combination of Laplace transform and residual power series techniques

Figure 2, the �rst sub-�gure represents the values of ϕ2(t) for di�erent values of the fractional order α and values of
ν2(t), while the second sub-�gure represents the absolute error |ν2(t) −ϕ2(t)|when α = 1. From these plots, we observe
that the curves of ϕi(t) : i = 1, 2, are mapping continuously and gradually as α varies from 0 to 1 and converges to
νi(t) : i = 1, 2, when α = 1. Also, we observe that the approximations ϕi(t) : i = 1, 2, are in excellent agreement with
νi(t) : i = 1, 2, when α = 1.

On the other side, as shown in Table 1, we provide numerical investigations on the accuracy of LRPS applied to
Example 1. While as, in Table 2, we present the impact of the fractional order α acting on the values of the unknowns
�eld functions νi(t) : i = 1, 2.

Figure 1: Exact, pro�le approximate solutions and absolute error regarding ν1 of Example 1.

Figure 2: Exact, pro�le approximate solutions and absolute error regarding ν2 of Example 1.

Table 1: Numerical values of ϕ1(t) and ϕ2(t) for α = 0.5, 0.7, 0.9 to Example 1.

α = 0.5 α = 0.7 α = 0.9
t ν1(t) ν2(t) ν1(t) ν2(t) ν1(t) ν2(t)

0.2 1.312141902 1.184140706 1.201599157 0.580240824 1.130764596 0.320222598
0.4 1.486564677 2.444376604 1.354985531 1.290827616 1.259270690 0.756805142
0.6 1.6445934256 4.006862318 1.506375497 2.249749087 1.396080779 1.365217628
0.8 1.7972927210 5.900827955 1.661915587 3.516856974 1.543797927 2.198213783
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Table 2: Absolute errors: |ϕ1(t) − ν1(t)| and |ϕ2(t) − ν2(t)| to Example 1.

t |ϕ1(t) − ν1(t)| |ϕ2(t) − ν2(t)|
0.2 1.408981153×10−9 5.516320339×10−7

0.4 9.149350321×10−8 3.65457231×10−5

0.6 1.057576003×10−6 4.31280234×10−4

0.8 6.030974603×10−6 2.51274279×10−3

3.2 Example 2

Let us consider the following 3 × 3 nonlinear autonomous system [9, 10]
Dαν1(t) = ν1(t),
Dαν2(t) = 2(ν1(t))2,
Dαν3(t) = 3ν1(t)ν2(t);

(31)

subject to

ν1(0) = 1,
ν2(0) = 1,
ν3(0) = 0.

(32)

Apply the Laplace transform to (31)-(32), we get

V1(s) =
1
s +

V1(s)
sα ,

V2(s) =
1
s +

2
sα
(
L
[
L−1

[
V1(s)

]2]) ,
V3(s) =

3L
[
L−1

[
V1(s)

]
L−1

[
V2(s)

]]
sα ,

(33)

Assume that V1(s), V2(s) and V3(s) have fractional power series as

V1(s) =
∞∑
n=0

an
snα+1 ,

V2(s) =
∞∑
n=0

bn
snα+1 ,

V3(s) =
∞∑
n=0

cn
snα+1 ,

(34)

with the k-th truncated series

Vk1(s) =
k∑
n=0

an
snα+1 = 1

s +
k∑
n=1

an
snα+1 ,

Vk2(s) =
k∑
n=0

bn
snα+1 = 1

s +
k∑
n=1

bn
snα+1 ,

Vk3(s) =
k∑
n=0

cn
snα+1 =

k∑
n=1

cn
snα+1 , respectively,

(35)

whose the Laplace residual functions for Vk1(s), Vk2(s) and Vk3(s) are

LRes1(s) = V1(s) −
1
s −

V1(s)
sα ,

LRes2(s) = V2(s) −
1
s −

1
sα
(
L
[
L−1

[
V1(s)

]2]) ,
LRes3(s) = V3(s) −

3L
[
L−1

[
V1(s)

]
L−1

[
V2(s)

]]
sα .

(36)
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Accordingly, the k-th Laplace residual functions, LResk, are

LResk1(s) = Vk1(s) −
1
s −

Vk1(s)
sα ,

LResk2(s) = Vk2(s) −
1
s −

1
sα

(
L

[
L−1

[
Vk1(s)

]2])
,

LResk3(s) = Vk3(s) −
3L
[
L−1

[
Vk1(s)

]
L−1

[
Vk2(s)

]]
sα ,

(37)

To determine a1, b1 and c1, we substitute (35) in (37) with k = 1 to get

LRes11(s) =
a1
sα+1 −

1
sα

(
1
s +

a1
sα+1

)
,

LRes12(s) =
b1
sα+1 −

1
sα

(
L

[
L−1

[
1
s +

a1
sα+1

]2])
,

LRes13(s) =
c1
sα+1 −

3
sα

(
L

[
L−1

[
1
s +

a1
sα+1

]
L−1

[
1
s +

b1
sα+1

]])
,

(38)

Multiply (38) by sα+1,

sα+1LRes11(s) = a1 −
(
1 + a1sα

)
,

sα+1LRes12(s) = b1 − s
(
L

[
L−1

[
1
s +

a1
sα+1

]2])
,

sα+1LRes13(s) = c1 − 3s
(
L

[
L−1

[
1
s +

a1
sα+1

]
L−1

[
1
s +

b1
sα+1

]])
.

(39)

It is clear that when we solve lims→∞
(
sα+1LRes1m(s)

)
= 0, m = 1, 2, 3, we directly obtain

a1 = 1,
b1 = 2,
c1 = 3.

(40)

Similarly, whenwe substitute (35) in (37) with k = 2 and then use the fact that lims→∞
(
sα+1LRes2m(s)

)
= 0, m = 1, 2, 3,

we reach

a2 = 1,
b2 = 4,
c2 = 9.

(41)

Hence, the 2nd-approximate LRPS solution of V2
1 (s), V2

2 (s) and V2
3 (s) are

V2
1 (s) =

1
s +

1
sα+1 + 1

s2α+1 ,

V2
2 (s) =

1
s +

2
sα+1 + 4

s2α+1 ,

V2
3 (s) =

3
sα+1 + 9

s2α+1 .

(42)

Proceeding as the above illustrated steps in determining the unknown functions ak, bk and ck, one can easily verify the
following results:

a3 = 1,
a4 = 1,
a5 = 1,

(43)
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b3 = 4 + 2Γ(1 + 2α)
Γ2(1 + α) ,

b4 = 4 + 4Γ(1 + 3α)
Γ(1 + α)Γ(1 + 2α) ,

b5 = 4 + 2( 1
Γ2(1 + 2α) +

2
Γ(1 + α)Γ(1 + 3α) )Γ(1 + 4α),

(44)

c3 = 15 + 6Γ(1 + 2α)
Γ2(1 + α) ,

c4 = 15 + 6(Γ2(1 + 2α) + 3Γ(1 + α)Γ(1 + 3α))
Γ2(1 + α)Γ(1 + 2α) ,

c5 = 3(5 + 4Γ(1 + 4α)
Γ2(1 + 2α) +

2Γ(1 + 2α)Γ(1 + 4α)
Γ3(1 + α)Γ(1 + 3α) + 1

Γ(1 + α) (
4Γ(1 + 3α)
Γ(1 + 2α) + 6Γ(1 + 4α)

Γ(1 + 3α) )).

(45)

Therefore,

V1(s) =
1
s +

1
sα+1 + 1

s2α+1 + 1
s3α+1 + 1

s4α+1 + 1
s5α+1 + ...,

V2(s) =
1
s +

2
sα+1 + 4

s2α+1 + 1
s3α+1

(
4 + 2Γ(1 + 2α)

Γ(1 + α)2

)
+ 1
s4α+1

(
4 + 4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)

)
+ 1
s5α+1

(
4 + 2

(
1

Γ(1 + 2α)2 + 2
Γ(1 + α)Γ(1 + 3α)

)
Γ(1 + 4α)

)
+ ...,

V3(s) =
3
sα+1 + 9

s2α+1

+ 1
s3α+1

(
15 + 6Γ(1 + 2α)

Γ(1 + α)2

)
+ 1
s4α+1

(
15 + 6(Γ(1 + 2α)2 + 3Γ(1 + α)Γ(1 + 3α))

Γ(1 + α)2Γ(1 + 2α)

)

+
3
(
5 + 4Γ(1+4α)

Γ(1+2α)2 +
2Γ(1+2α)Γ(1+4α)
Γ(1+α)3Γ(1+3α) + 1

Γ(1+α)

(
4Γ(1+3α)
Γ(1+2α) + 6Γ(1+4α)

Γ(1+3α)

))
s5α+1 + ... .

(46)

Consequently, the solution of (31)-(32) is

ν1(t) = 1 + tα
Γ(1 + α) +

t2α
Γ(1 + 2α) +

t3α
Γ(1 + 3α) +

t4α
Γ(1 + 4α) +

t5α
Γ(1 + 5α) + ...,

ν2(t) = 1 + 4t2α
Γ(1 + 2α) +

4t3α
Γ(1 + 3α) +

2t3αΓ(1 + 2α)
Γ(1 + α)2Γ(1 + 3α) +

2tα + 4t4αΓ(1+3α)
Γ(1+2α)Γ(1+4α)
Γ(1 + α)

+ 4t4α
Γ(1 + 4α) +

1
Γ(1 + 5α)

(
t5α
(
4 + 2

(
1

Γ(1 + 2α)2 + 2
Γ(1 + α)Γ(1 + 3α)

)
Γ(1 + 4α)

))
+ ...,

ν3(t) = tα(3(tα
(

3
Γ(1 + 2α) + 5t

α
(

1
Γ(1 + 3α) +

tα
Γ(1 + 4α)

))

+ 1
Γ(1 + α)2

(
2t2αΓ(1 + 2α)

(
1

Γ(1 + 3α) +
1

Γ(1 + 4α)

))
+
1 + 6t3αΓ(1+3α)

Γ(1+2α)Γ(1+4α)
Γ(1 + α) )) + ... .

(47)

It is worth mentioning that the exact solutions to the system in Example 2 for the case α = 1 are ν1(t) = et, ν2(t) = e2t

and ν3(t) = e3t −1 [9, 10]. We consider ψ1(t) =
∑6

i=0 ai t
iα to be the LRPS approximation of ν1(t), ψ2(t) =

∑6
i=0 bi t

iα to be
the LRPS approximation of ν2(t) and ψ3(t) =

∑6
i=0 ci t

iα to be the LRPS approximation of ν3(t). In Figure 3, the �rst sub-
�gure represents the values of ψ1(t) for di�erent values of the fractional order α and values of ν1(t), while the second
sub-�gure represents the absolute error |ν1(t)−ψ1(t)|when α = 1. In Figure 4, the �rst sub-�gure represents the values of
ψ2(t) for di�erent values of the fractional order α and values of ν2(t), while the second sub-�gure represents the absolute
error |ν2(t) − ψ2(t)| when α = 1. In Figure 5, the �rst sub-�gure represents the values of ψ3(t) for di�erent values of the
fractional order α and values of ν3(t), while the second sub-�gure represents the absolute error |ν3(t) − ψ3(t)| when
α = 1. For this 3 × 3 system, one can observe the same �ndings depicted for Example 1. Finally, as shown in Table 3, we
provide numerical investigations on the accuracy of LRPS applied to Example 2.
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Figure 3: Exact, pro�le approximate solutions and absolute error regarding ν1 of Example 2.

Figure 4: Exact, pro�le approximate solutions and absolute error regarding ν2 of Example 2.

Figure 5: Exact, pro�le approximate solutions and absolute error regarding ν3 of Example 2.

Table 3: Absolute errors: |ψ1(t) − ν1(t)|, |ψ2(t) − ν2(t)| and |ψ3(t) − ν3(t)| to Example 2.

t |ψ1(t) − ν1(t)| |ψ2(t) − ν2(t)| |ψ3(t) − ν3(t)|
0.2 9.149350315×10−8 6.030974603×10−6 7.080039050 ×10−5

0.4 6.030974603×10−6 4.102618258×10−4 4.980922736 ×10−3

0.6 7.080039050×10−5 4.980922736×10−3 6.278346441 ×10−2

0.8 4.102618258×10−4 2.991775772×10−2 3.932243806 ×10−1
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4 Conclusion
A combination of two schemes; the Laplace transform and
the residual power series, is adapted to solve nonlinear
Caputo-fractional autonomous dynamical systems. The
methodology, reliability and the accuracy of the new
technique are introduced by solving 2 × 2 and 3 × 3 sys-
tems. The role of the fractional derivative is investigated
by using graphical analysis. Finally, the advantage of the
current method was depicted as converting the whole
fractional problem into pure algebraic computational
scheme which can be executed using any available com-
putational softwares.

As a future work, the authors plan to extend the use
of LRPS to solve multi-dimensional various fractional
problems arising in Engineering and Science.
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