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Abstract: In this work, a new iterative algorithm is pre-
sented to solve autonomous n-dimensional fractional non-
linear systems analytically. The suggested scheme is com-
bination of two methods; the Laplace transform and the
residual power series. The methodology of this algorithm
is presented in details. For the accuracy and effective-
ness purposes, two numerical examples are discussed. Fi-
nally, the impact of the fractional order acting on these au-
tonomous systems is investigated using graphs and tables.

Keywords: Caputo-fractional autonomous nonlinear sys-
tems, Laplace transform, residual power series method

1 Introduction

Extending the ordinary-partial differential equations into
fractional differential equations has been attracted by
many researchers since the fractional derivatives are
more general, applicable and more efficient for real world
phenomena, especially when the dynamics of a given
mathematical model is affected by constraints inherent to
the system [1]. Since it is difficult to find explicit solutions
to these fractional problems, it is necessary to use, alter-
native methods, numerical and approximate techniques.

The most popular numerical techniques for solving
fractional problems are the Collocation methods whose
basic functions are of types: Haar functions, Legendre
wavelets, Bernoulli polynomials, B-spline functions,
Chebyshev polynomials, and others [2-6]. On the other
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side, many effective analytical schemes were developed to
treat nonlinear problems involving fractional derivatives,
such schemes are: generalized power series [13, 16, 22, 23],
residual power series method [17, 26-29], differential
transform method [19, 21, 24, 25], homotopy perturbation
method [14, 15, 18, 20] and others.

In this work, we are interested in introducing a new ana-
Iytical scheme to solve nonlinear fractional autonomous
dynamical systems. Dynamical systems describe the
prediction of future states follow from the current state.
Different numerical and analytical algorithms were used
to solve fractional dynamical systems, such as, Homotopy
analysis method, the variational iteration method, Ritz
method and the explicit one-step method [7-10]. In this
context, we present a new algorithm constructed by com-
bining the Laplace transform method and the residual
power series method (LRPS). This new technique has been
recently proposed for the first time in [11] and used in [12].

The organization of the paper is the following: In Section
2 we present the steps of applying the LRPS method to
solve n x n autonomous fractional dynamical systems.
In Section 3 we study two examples of order 2 x 2 and
3 x 3, and also provide graphical analysis. Finally, the
conclusion is given in Section 4.

2 Description of LRPS

In this section, we present in details the steps of apply-
ing the LRPS scheme in solving the following autonomous
fractional system:

Dfvi(t) = hy (t,vi(8), va(D), ..., va(D)),
D?VZ(t) = hZ (t) Vl(t), VZ(t); eeey Vn(t)) )

@

D?Vn(t) = hn (t’ Vl(t)r VZ(t)y ceey Vn(t)) ’
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subject to the initial conditions
Vm(0)=am,m=1;2,3,---,n, (2)

whereO < a < 1,0 < t <1, hy, are suitable functions, and
D¢ is the Caputo-derivative.

Applying the Laplace transform to (1) we get

H
Vn(s) = m  Hnls), ©)
where
Vin(s) = ZLlvm(®)],
Hm(s) = Llhm (t,v1(t), vo(8), ..., va(t))].
We assume that Viy(s), m = 1,2, 3, ..., n have fractional

power series representation, i.e.,

oo

Vin(s) = Z

r=0

- (4)

gra+l

Next, we let V,’il(s) denote the k-th truncated series of

Vn(s), i.e.,
k

c
vh(s) =D o ©)
r=0
By condition (2), the 0-th LRPS approximate solution of
Vm(s) is vim(0) = lim sV (S) = cor = am. Thus,
S—roo

k
a c
Vhe)= om0 o ©
r=1

Now, we define the Laplace residual function and the k-th
Laplace residual function to (3), respectively, as:

am Hm(s)
LResm(s) = Vm(s)- S sa @
LResk(s) = Vk(s)- %n _ Hn(s) ®)
S sa
To determine the coefficients cmr, m=1,2,3,...,nand

r=1,2,3,...,k, we substitute (6) into (8), then multiply
the resulting equation by s**1, and next we solve the fol-
lowing iterative equation

lim
S—roo

(sk“+1LRes’,§1(s)) =0, )

for the unknowns cmr ¢ k =1, 2, 3, .... Finally, we apply
the Laplace inverse to VX (s) to obtain the k-th approximate
solution v&,(¢).
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3 Numerical Problems and
concluding remarks

In this section we present two examples of fractional non-
linear autonomous systems of order 2 x 2 and 3 x 3. The
steps of implementing the LRPS will be clarified, and the
effectiveness of the proposed method will be tested by pro-
viding a graphical analysis.

3.1 Example1

Consider the following 2 x 2 nonlinear autonomous system
7, 8]

{D%ﬂozwy’ (10

Dv,(t) = vi(D) + va(8),
subject to

v1(0) = 1,

Vo (0) =0. (11)

Applying the Laplace transform to (10)—(11), we get
_ 1 Vl(S)
Vl (S) = g + 254 >
1 _
Va6) = o (£ [¢7 )]+ 1a) -

S

(12)

We assume that both V;(s) and V,(s) have fractional
power series representation as

S

a
Vi(s) = 2 : Snaril ’
n=0

oo

b
VZ(S) = Z Sm%’

n=0

(13)

and we assume that the k-th truncated series of V;(s) and
V,(s) are

k k

k _ an _ 1 an
Vils) = Z sgna+l ~ g + Z gna+1’
n=0 n=1
B , . , (14)
k n n
Va(s) = Z gna+1 = Z gna+l
n=0 n=1

It is clear that the Laplace residual function for both V(s)
and V§ (s) are

_ 1 V1(S)
LResy(s) = Va(s) - - 5 &

LRess () = Va(s) - o (£ [67 Vi0)]*] + Val))

(15)
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Accordingly, the k-th Laplace residual functions, LResk, are

k
LResk(s) = Vi(s) - L - V1),
S 2s¢ (16)
Kiey _ vkiey 1 -1 [kea]? k
LRes5(s) = V5(s) - . (£ |£ [Vl(s)} + V) .
To determine a; and b, we consider
1
LRes(s) = Vi(s) - L - V108),
S 2s¢@ 17)
1

LResk(s) = Vi(s) - (L {5*1 [V%(s)ﬂ + Vzl(s)) .

s

AsVi(s) = 1 + & and Vj(s) = Sﬁ’—}l, we get

LResl(s)= 2 - L (% T ) ,

sa+l 25« sa+l
B 2
1 bl 1 1|1 aq b1
LRes;(s) = s+l ga (L L |:g + S‘”l} :| + sa+1>
b1 1 [ altlx 2 bl
T sarl _57<L _(1+I"(1+a)) st (18)
bl 1 [ 2a1t“ a%tza b1
= ——(cll1 e
satl  ga < ( +F(1+a)+1"2(1+a) Jrs"‘+1
_bh 1 1, 2a, a’l'(1 + 2a) . by
sa+l s S sl+a ['2(1 + a)51+2a sa+l | *

Multiply (18) by s%*1, we obtain that

1 a
s“1LResi(s) = a; - 5 (1 + s—;) ,

2 (19)
al 1oy _2a1 _ ail'Qa+1) 1y
s LRes;3(s) ¢ Pas s 1 @ 1
Finally, we solve the following system
lim (s“”LRes%(s)) =0,
S—roo
(20)
lim (s”‘”LRes%(s)) =0,
S—ro0
which gives that
a1
1= 5, 1)
bi=1
In a similar manner, to find a, and b,, we consider
2
LRes2(s) = V2(s) - 1.9 (S),
S 2s¢
1 (22)

LRes3(s) = V3(s) - (L {L"l [v%(s)ﬂ " v%(s)) :

2 1 1 a 2 1 b .
As Vi(s) = 5 + 5gar + gur and V3(s) = r + 47, we obtain

ar 1 aj
2041~ fg2a+1  Dg3a+l’

2 (23)
2 1 bz 1 -1 1 1 ar 1 bz
LRes5(s) = ga+1 + s2a+l ~ ga (L |:L |:§ + Jga+l + sZa+1] :| + sa+l + s2a+1 | °

LRes?(s) = p
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Multiply (23) by s24*1, and then solve
SlLrEO (sz”‘”LRes%(s)) =0,
Sli_)n;} (sZ“”LRes%(s)) =0,

we deduce that

a; =

b, =

]

N B

Hence, the 2nd-approximate LRPS solution of Vf (s)and V% (s) are

oo 11 1
Vi(s) = S+ 5t * gg2art?
1 1

200y _
VZ(S) T ogarl + 2g2a+1”

— 285

(24)

(25)

(26)

Proceeding as the above illustrated steps in determining the unknown functions a; and by, one can easily reach the

following results:

1
(13 = g,
1
a4 = R’
1
(15 = 37,
and
5 TI(1+2a)
by ==+ ——7,
3724+ a)
1 I'(l1+2a) Ir(l+3a)
=-(11
ba=73 ( PA+a)  TA+al1+2a))°
b _ 1 46+41‘(1+20z)+1“(1+40()+ 1 4F(1+3a)+2F(1+4a)
>~ 16 NA+a) I?A+2a) TA+a) \ T1+2a) I(1+3a) )
Therefore,
v oL, 1 1 1 1 1
1(5) T + g+l + 4s2a+1 + 8g3a+1 + 16s4a+1 + 32g5a+1 toeen
1 1 1 5 I'(l1+2a) 1 1 I'(1+2a) I'(1+3a)
Va(s) = sa+l * 2s2a+1 * s3a+1 (f * 4I2(1 + a)) * 54“+1(Z(11 * 21 +a) * I'l+a)(1+ 20()))
1 1 4Ir(1+2a) TI(1+4a) 1 41 +3a) 2I(1 + 4a)
*at(160t iy T TP(1s20) (T 0 TA+20 T30 )

Consequently, the solution of (10)-(11) is

ta tZa t3a t4a tSa
=1
=1+ o Y ara s 2w T 8r 3 T Terd 4w 32T s sa)
2t%¢ 10¢3¢ t« 29T (1 + 2a)
f) = ra Lo ed
va(t) I'(l1+2a) " 4I(1 + 3a) ++4F2(1+a) (4 +a)+ I'l+3a) )

4 (11121 + )L (1 + 2a) + I*(1 + 2a) + I'(1 + )T (1 + 3a))
+ Fon .
4r2(1 + a)I'(1 + 2a)I(1 + 4a)

@7)

(28)

(29)

(30)

We point out that the exact solutions to the system in Example 1 for the case of a = 1 are v{(t) = e’ and V() = tef
[7, 8]. We consider ¢ (t) = Zf:() a;t™ to be the LRPS approximation of v;(t), and ¢2(t) = Z?;O b;t'“ to be the LRPS
approximation of v, (t). In Figure 1, the first sub-figure represents the values of ¢ (¢) for different values of the fractional
order a and values of v;(t), while the second sub-figure represents the absolute error |v;(t) — ¢1(¢)| when a = 1. In
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Figure 2, the first sub-figure represents the values of ¢, (t) for different values of the fractional order a and values of
v,(t), while the second sub-figure represents the absolute error |v,(t) — ¢, ()| when a = 1. From these plots, we observe
that the curves of ¢;(t) : i = 1, 2, are mapping continuously and gradually as a varies from O to 1 and converges to
vi(t) : i=1,2, when a = 1. Also, we observe that the approximations ¢;(t) : i = 1, 2, are in excellent agreement with
vi(t): i=1,2,whena = 1.

On the other side, as shown in Table 1, we provide numerical investigations on the accuracy of LRPS applied to

Example 1. While as, in Table 2, we present the impact of the fractional order a acting on the values of the unknowns
field functions v;(t) : i=1, 2.

|1 (t)—v4(t)]

0.1 0.2 0.3

0.4

0.5

Figure 1: Exact, profile approximate solutions and absolute error regarding v; of Example 1.

[ (t)-va(t)]
P 6.x107%

5.x1078f
a=0.5
a=0.7
—— a=09 3.x107%f
a=0.95
a=1

4.x1078F

2.x1075}

Exact 1.x1 u—s [

0.1 0.5

Figure 2: Exact, profile approximate solutions and absolute error regarding v, of Example 1.

Table 1: Numerical values of ¢4 (t) and ¢, (t) for @ = 0.5, 0.7, 0.9 to Example 1.

a=0.5 a=0.7 a=0.9

v1(t)

va(t)

vi(t)

va(t)

vi(t)

va(t)

0.2

1.312141902

1.184140706

1.201599157

0.580240824

1.130764596

0.320222598

0.4

1.486564677

2.444376604

1.354985531

1.290827616

1.259270690

0.756805142

0.6

1.6445934256

4.006862318

1.506375497

2.249749087

1.396080779

1.365217628

0.8

1.7972927210

5.900827955

1.661915587

3.516856974

1.543797927

2.198213783
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Table 2: Absolute errors: |¢1(t) — v1(t)| and |@2(t) - v2(t)| to Example 1.

M. Alquran et al., Combination of Laplace transform and residual power series techniques

t

[p1(t) —v1(t)]

[p2(t) — v (1)]

0.2

1.408981153x107°

5.516320339x107/

0.4

9.149350321x1078

3.65457231x107°

0.6

1.057576003x10°°

4.31280234x1074

0.8

6.030974603x107°

2.51274279x1073

3.2 Example 2

Let us consider the following 3 x 3 nonlinear autonomous system [9, 10]

subject to

Apply the Laplace transform to (31)-(32), we get
Vi(s) =

Vy(s) =

V3(s) =

1
st
1
s

D%4(t) =v1(D),
D%,(t) =2(v1()?,
D%3(t) = 3vi(t)va(8);

Vl(o) =1,

Vz(O) =1

V3 (0) =0
Vi(s)

s« ’

s ([ ).
34 [£7 iG] £7 [Vas)]]

s

Assume that V(s), V>(s) and V3(s) have fractional power series as

with the k-th truncated series
k

Vi) =) <

n=0

Vz (s) = Z
V3 (s) = Z

Vi(s) = Z T

b
VZ(S) = Z Sm%’

n=0

V3(S) Z na+1’

k
an 1 ai’l
- = — 4+ _,
na+1 S § :Sna+1
n=1
k
1 bn
na+1 - E Z gna+1’
n=1

= E Cn tivel
nCH'l = W, respectively,
n=1

whose the Laplace residual functions for V1 (s), V§‘ (s) and V§‘ (s) are

LResq(s) = V4(s) -

LRes;(s) = V(s) -

LRes3(s) = V3(s) -

RO
sa

s (0[67 o)),

’

\HM\H

s

3L [T Vi) £7 [Va(s)]]

— 287

€3y

(32

33)

(34)

(35)

(36)
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Accordingly, the k-th Laplace residual functions, LRes*, are

LRes’{(s) = V{‘(s) - % - Vi(ff),
LResk(s) = V&(s) - % - sl (L {L‘l [ViGs)] ZD : 37)
3L [L‘l {V’f(s)} £l [V’;(S)H

LResX(s) = VX(s) -

>

sa

To determine aq, b1 and c1, we substitute (35) in (37) with k = 1 to get

LResi(s) = Sal 1 <1 + A ) ,

arl ~ ga \ g | ga+l

a+1 sa

LRes3(s) = Sbl 1 <L

)

1 C1 3 1|1 ai 1|1 b1
LRes3(s) = pres g <L [L {E + sa+1] Iy [E + SD?H) ,

Multiply (38) by s%*1,

s*1LResl(s) = a; - (1 + %) ,

2
s*1LResi(s)= by, -s <L [L"l F + 4 } }) , (39)

S sﬂ+1
1 1 |1, a1 | 1|1 by
s“*LRes3(s) = ¢1 - 3s (L [L [E + s“+1} L {E + sa+1”) .

It is clear that when we solve lims_ o (s’“lLRes}n(s)) =0, m=1, 2, 3, we directly obtain

a =1,
b1 =2, (40)
c, = 3.

Similarly, when we substitute (35) in (37) with k = 2 and then use the fact that lims_, e (s“*lLResfn(S)) =0,m=1,2,3,
we reach

a =1,
b, = 4, (41)
Cy = 9

Hence, the 2"¢-approximate LRPS solution of V(s), V3(s) and V2(s) are

1 1 1

+

V%(S) = S
V2(s) = % s 2, 4 42)

3 +
ga+l g2a+1”

O

V3i(s) =

Proceeding as the above illustrated steps in determining the unknown functions ay, b; and c, one can easily verify the
following results:

az; =1,
a, =1, (43)

as =1,
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2I(1+2a)
b = a4 . N ?
34 21 +a)
4I(1 +3a)
b = —’
“= A Ty I (1 + 20)
1 2
= 2 (1 ;
bs =4+ (1"2(1+2a) +F(1+a)1"(1+3a)) (1+4a)
6I'(1+2a)
=154 = "<
¢3=15+ n1+a)’
6(Ir*(1+2a) +3r( + a)I'(1 + 3a))
C4 = 15 + )
r2(1+a)l(1+2a)
B 4I(1+4a) 2I(1 +2a)(1 + 4a) 1 41 +3a) 6I'(1 + 4a)
< =30 (20 " P30 T @ M2 | T30 )
Therefore,
v 1 1 1 1 1 1
1(s) = s + ga+1 + s2a+1 + g3a+1 + sha+1 + g5a+1 toeess
1 2 4 1 2I'(1 +2a) 1 4I(1 + 3a)
VZ(S) T s + sa+l + s2a+1 + s3a+l <4+ 1+ a)? ) sha+l ( + I'ld+al'(1+2a)

1 1 2
+ Sar (4 +2 (r(1 207 AT Iy 3(1)) ra+ 4a)) + sy

9
V3(S) = sa+l + s2a+1

1 1 6I'(1 +2a) 1 15+ 6(I(1+2a)? +3I(1 + )I(1 + 3a))
s3a+l ( I'l+a)? ) sharl ( I'(1+a)?I’'(1+2a) )

3 (5 + 40+4a) | 2I(1+200[(1+40) 1 (4F(1+3a) 6F(1+4a)))
I'(1+2a)? I'(1+a)3I'(1+3a) I'l+a) \ T(1+2a) I'(1+3a)
+ 55a+1

+

Consequently, the solution of (31)-(32) is
ta tZa t3a t4a tSa
"TA+a) TA+2a) T(1+30) TA+4a) TA+5a) 7

« 4t I (1+3a)
424 43¢ 20°T(1+2a) 20+ magararea

TA+2a) T(A+30) TA+al(1+3a)  T(1+a)

+ 4t + 1 £ (4+2 1 + 2 Ir(1+4a)) )+
e s (O (402 (rt s * ravaraese) 10 49) )+
P 3 a 1 t*
v3(t) = t°3(t (F(1+2a)+5t (,—(1+3a)+r(1+4a)>)
68T (1+3a)

1 2a 1 1 1+ T(1+2a)f(1+4a)
—— (2t T (1 + 2 e
F(1+a)2< 1+ 00(F(1+30()+1"(1+4oz)>>Jr I'l1+a) )+

Vl(t) =1

vo(t) =1+

(44)

(45)

(46)

(47)

It is worth mentioning that the exact solutions to the system in Example 2 for the case a = 1 are v{(t) = ef, v,(t) = e*!
and v3(t) = e~ 1 [9, 10]. We consider 14 (t) = Z?:O a;t'® to be the LRPS approximation of v (t), t,(t) = 21-6:0 b;t'* to be
the LRPS approximation of v,(t) and y5(t) = 21.6:0 ¢;t% to be the LRPS approximation of v3(t). In Figure 3, the first sub-
figure represents the values of 1 (t) for different values of the fractional order a and values of v, (t), while the second
sub-figure represents the absolute error |v; ()~ (¢)| when a = 1. In Figure 4, the first sub-figure represents the values of
Y (t) for different values of the fractional order a and values of v, (t), while the second sub-figure represents the absolute
error |v,(t) — Y, (t)| when a = 1. In Figure 5, the first sub-figure represents the values of 13(t) for different values of the
fractional order a and values of v5(t), while the second sub-figure represents the absolute error |v3(t) — 3(t)] when
a = 1. For this 3 x 3 system, one can observe the same findings depicted for Example 1. Finally, as shown in Table 3, we

provide numerical investigations on the accuracy of LRPS applied to Example 2.
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- a=0.5

0.000015f

a=0.7 0.000010
a=0.9

a=0.95
a=1 5.x107%}
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[ (t)=v ()]

0.1 0.2 0.3 04 0.5

Figure 3: Exact, profile approximate solutions and absolute error regarding v, of Example 2.

L]

20+

15+

10+

Figure 4: Exact, profile approximate solutions and absolute error regarding v,

')

40+

201

0.0010

0.0008}
a=0.5 L
a=0.7  (,0006}
a=0.9 L
a=0.95 0.0004
a=1 F

Exact 0.0002f

g2 (t)=v2(t)]

0.012¢

0.010
a=0.5
a=0.7
a=0.9 0.006
a=0.95
a=1

Exact 0.002F

0.008(

0.0041

‘ ‘ . g
0.1 0.2 0.3 0.4 0.5

of Example 2.

[@a(t)=vs(t)]

0.1 0.2 0.3 0.4 0.5

Figure 5: Exact, profile approximate solutions and absolute error regarding v3 of Example 2.

Table 3: Absolute errors: [1(t) — v1(t)], [2(t) — v2(8)| and |P3(t) — v3(t)] to Example 2.

t [h1(t) = v1(0)| [1h2(8) - va(8)| [3(8) - v3(8)]
0.2 | 9.149350315x1078 | 6.030974603x10°° | 7.080039050 x10~>
0.4 | 6.030974603x107° | 4.102618258x10~% | 4.980922736 x1073
0.6 | 7.080039050x107° | 4.980922736x107> | 6.278346441 x1072

0.8

4.102618258x1074

2.991775772x1072

3.932243806 x107!
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4 Conclusion

A combination of two schemes; the Laplace transform and
the residual power series, is adapted to solve nonlinear
Caputo-fractional autonomous dynamical systems. The
methodology, reliability and the accuracy of the new
technique are introduced by solving 2 x 2 and 3 x 3 sys-
tems. The role of the fractional derivative is investigated
by using graphical analysis. Finally, the advantage of the
current method was depicted as converting the whole
fractional problem into pure algebraic computational
scheme which can be executed using any available com-
putational softwares.

As a future work, the authors plan to extend the use
of LRPS to solve multi-dimensional various fractional
problems arising in Engineering and Science.
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