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Abstract: Studies on Non-linear evolutionary equations
have become more critical as time evolves. Such equations
are not far-fetched in fluid mechanics, plasma physics, op-
tical fibers, and other scientific applications. It should be
an essential aim to find exact solutions of these equations.
In this work, the Lie group theory is used to apply the sim-
ilarity reduction and to find some exact solutions of a (3+1)
dimensional nonlinear evolution equation. In this report,
the groups of symmetries, Tables for commutation, and
adjoints with infinitesimal generators were established.
The subalgebra and its optimal system is obtained with the
aid of the adjoint Table. Moreover, the equation has been
reduced into a new PDE having less number of indepen-
dent variables and at last into an ODE, using subalgebras
and their optimal system, which gives similarity solutions
that can represent the dynamics of nonlinear waves.

Keywords: (3 + 1) - dimensional nonlinear evolution equa-
tion; optimal system; Lie symmetry analysis; group invari-
ant solutions

1 Introduction

Recently, non-linear governing equations suitable to ana-
lyze quartic autocatalysis were presented by Makinde and
Animasaun in [1] and [2]. There has been an increasing in-
terest in the study of NLEEs in the past few years. The (3+1) -
dimensional nonlinear evolution equations was first intro-
duced by Zhagilao [3] in the study of algebraic-geometrical
solutions. An evolution equation refers to a partial differ-
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ential equation having partial derivatives of the depen-
dent variable u with respect to the time ¢t and space vari-
ables x = (xq, ..., Xn), which are the independent vari-
ables. The (3+1)-dimensional equation possesses the KdV
equation uy — 6uux + uxxx = O as its main term under

the transformations v(x,t) — u(x’,t), x' — %x and
_1

t — < ﬁt. Based on this, the (3+1)-dimensionalfnonlin-
ear evolution equation may be used to study the shallow-
water waves and short waves in nonlinear dispersive mod-
els [4]. A physicist should be well aware of all new as-
pects of the nonlinear wave theory. It is always a good prac-
tice to study a new equation of the theory of nonlinear
evolution equations. The proper understanding of qualita-
tive significances of many incidents and procedures can be
achieved by exact solitary wave solutions of NLEEs in dif-
ferent fields of applied mathematics, engineering, physics,
biology, chemistry, and many more. So, to gain a clear
understanding of the qualitative and quantitative prop-
erties of these equations, it is necessary to find some ex-
act solutions to these equations. For illustration, the soli-
ton pulse implies an ideal balance between nonlinearity
and dispersion effects. The soliton is a crucial character
of nonlinearity [5-16]. Soliton solutions are of special type
PDEs solutions that model phenomena from the balance
between nonlinear and dispersive effects in systems like
light pulses propagation in optical fibers and water waves.
For the nonlinear PDEs, the exact solutions graphically
demonstrate and determine the structure of many nonlin-
ear complex phenomena such as absence of multiplicity
steady states under different conditions, spatial localiza-
tion of transfer processes, presence of peaking regimes,
and many others. First of all, Geng [13] introduced equa-
tion (1) in the algebraic geometrical solutions [17]. In [6] N-
soliton solutions of the (3+1)-d NEE was studied by Geng
and Wazwaz [5, 18, 19] found some multiple soliton solu-
tions and a collection of traveling wave solutions of the
(3 + 1)-d NEE (1). Soliton and rogue wave solutions can
be found in [3, 20-25]. There are many powerful meth-
ods to understand the nonlinear evolution equations that
have been used, for instance, the Hietarinta approach [15],
Hirota bilinear method [5-14], the Backlund transforma-
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tion method, Pfaffian technique, Darboux transformation,
the inverse scattering method, the generalized symmetry
method, the Painlevé analysis, and other methods. To in-
vestigate nonlinear dynamical phenomena using a gen-
eralised model in shallow water, plasma and nonlinear
optics, a generalized (2 + 1)- dimensional Hirota bilinear
equation was proposed by Hua et al. [26]. Xin Zhao et al.
[27] have investigated the generalized (2 + 1)-dimensional
nonlinear wave equation in nonlinear optics, fluid me-
chanics and plasma physics. They have used the Hirota
Bilinear method, and obtained bilinear Backlund trans-
formation, to construct the Lax pair and obtained Mixed
Rogue- Solitary Wave Solutions, Rogue—Periodic Wave So-
lutions and Lump-Periodic Wave Solutions. They have also
explained the interactions between the rogue wave, peri-
odic wave and the solitary wave. Here, we shall study such
a (3+1)-dimensional nonlinear evolution equation [5] - [8]
and [18].

3Vxz = (2Ve + Vi — 2VVx)y + 2(vxa;1vy)x =0, (1)
where .
0300 = / f(byat. @

Obviously, 0x0x!f = 0x'0xf = 1 under the decay-
ing condition at o. As per the coefficients of x, y and z,
the multiple soliton solutions exist for equation (1) ([5]
and [6]). Several soliton solutions, as well as singular soli-
ton solutions, were obtained by the simpler form of the
Hirota’s method in [1]. An N-soliton solution of a (3+1)-
dimensional nonlinear evolution equation is obtained by
using the Hirota bilinear method with the perturbation
technique in [6]. A new Wronskian condition was set for
equation (1), with the aid of the Hirota bilinear transforma-
tion, a novel Wronskian determinant solution is presented
for the equation (1). The Wronskin determinant is differ-
ent for both [5] and [6]. We aim to extend the work in [8],
where the classical Lie symmetry of the (3+1)-dimensional
nonlinear evolution equation (1) was found. Here, we ob-
tained an optimal system for further results and then some
new solutions which can explain new nonlinearity fea-
tures with the approach applied in [28], [29] and [30].
To remove the integral term in equation (1) by introducing
the potential

V(X,Y,Zy t):uX(nyst t)y (3)
we get
A = 3Uxxz — (QUxt + Uxxxx — zuxuxx)y + 2(llxxuy)x =0. (4)

Generally, it is not easy to get every possible combina-
tion of group generators to obtain the invariant solutions,
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as there may be infinitely many solutions. Researchers
have always discussed relatively independent solutions,
this inspires many other researchers to obtain a new sys-
tem called an optimal system. Thus, in this paper, we con-
structed a one-dimensional optimal system of subalgebra
for equation (4). The Norwegian mathematician Sophus
Lie introduced the term invariant solutions and developed
the Lie point symmetry analysis (1842-1899). The research
conducted so far motivates us to obtain some new exact
solutions using an optimal system, of equation (4), which
has not been found in research yet.

One may find in this article some acceptable answers, as
a result, shown in the graphs and solutions presented in
the closed-form. Do the soliton solutions of the given equa-
tion exist? If so, how do they behave? Can one speculate
the "soliton" nature of the solution even if solutions are
not well known in some real systems? How can one find
some precise solutions that can be useful "if the complex-
ity of the methods affects the solution results"? Are there
solutions to test stability and estimate errors for the newly
proposed numerical algorithms"? The authors have tried
to find the answers of the above mentioned questions in
the present article.

This work has two main objectives. The first is to ob-
tain an optimal system, and the second is to obtain sev-
eral types of new exact solutions. In section (2), we have
applied the Lie group approach to obtain the symmetries
of equation (4). An optimal system of vector fields is es-
tablished in section (3). In section (4), we investigated the
reduced equations to find exact solutions, and in the end,
some remarks are presented in the conclusion.

2 Lie point symmetries

Lie group of transformations with parameter (€) acting on
variables (dependent and independent) for equation (4)
are as follows

% =x+ep*(x,y,z, t,u) + 0(e?),
y=y+ep’(x,y,z t,u) + 0(e?),
z=z+eP’(x,y,z,t,u)+ 0(e?), (5)
t=t+et(x,y,z t,u)+0(),

t=u+enlx,y,z t,u)+ 0(e?),

where € is a small Lie group parameter and y*, Y, Y?, T
and 7 are the infinitesimals of the transformation which
are to be found for independent and dependent variables,
respectively. Thus, the associated Lie algebra will be of the
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form Olver [31]
P =y (x,y,z,t u)i+1/)y(x Y,z t u)i
b b bl ’ aX ’ ’ b I’ ay
: 9 0 6
Y0y, 2 g Ty, 2t u) 5 (6)
0
+n(x,y,z, t, u)a.

The above vector field generates a symmetry of equation
(4). Also, for the invariance, pr®P(4) = 0, when A = 0 for
equation (4), where pr(S)]P is the fifth prolongation of P. To
obtain an overdetermined system of the coupled PDEs, we
applied pr®P to equation (4)

0 0 0
+ xyt XXXXY +

Uxyt

prOP =p + p** +

OlUxxz Uxxxxy Uxy

0 0 0 0 0
xx n nx O Ly XXX v e
Uxx Ux

+n +

s

Uxxx Uy

@

Uxxy

and get

XXz xyt _

3% - 2n Y+ buan™ + by ™

+ 22U )™ + 2Uoy ™ + 22U’ + 2uy™* = 0.

(8)

After this, we use a computer algebra software (Maple) to
obtain the following system of PDEs:

3’1“ = _l/}£’ erX = 3'1b§_21/))t(a 2’1y = 31/)§’ lzbtu =0, lzb)t( =0,
Yy =0, %% =0, Py = 0, i = 0,3y = i, Py = 0,9} = 0,
!)b)l: =Oxl:b¥(=0,3¢¥=3¢§_2¢f’¢?=0’¢ﬁ =O’l»b§=0’
lp; = Os l;bgz :O’

€)

and, thus, we obtained the required infinitesimal genera-
tor as follows:

W' = S+l 0,9 = sy +fi(2),

Ye = %(3c3 +2C1)Zz+C4, T = C1t + C2,
(10)

1 3 0 0
n=-3Cu+ ijfZ(Z’ t —X&fz(z, 9]

2@+ f(z 0,

where ¢;’s, (i = 1,2,3,4) and fi's,(j = 1,2,3) are ar-
bitrary. Following the Lie symmetry method explained in
[31], we get the Lie algebra of symmetries for equation (4)
as follows:

P —lxi_},gzi_‘_ti_lui
17 3%x " 3%0z "ot 3 ou’
0 ) 0 )
P, 3 Pa—ya—y tZ5s 1P’4—$, 1
0 0 )
]P)S_aiy’ Pé_a’ ]P)7_$'
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Table 1: Commutator Table

* | Py | Py P3| Py | Ps | P | Py
Py| O |[-Po| O |-3P,| O |-3Pg | 3P,
P, | P, 0|0 0 0 0 0
Ps| O 0 | 0| -P4 |-P5s| O 0
Py | 2P, | O |P4| O 0 0 0
Ps| O 0 |[Ps| © 0 0 0
Pe| 3P¢ | O | O 0 0 0 0
P; [ -3P;| 0 | O 0 0 0 0

Now, for convenience, we obtain the Table 1 of commuta-
tor with entries as [P;, P;] = P; - P; - P; - IP; (see [31]).

Clearly, the infinite-dimensional Lie algebra spanned
by vector fields (11) generates an infinite continuous group
of transformations of equation (4). These generators are
linearly independent. Thus, it is very much appropriate to
represent any infinitesimal of equation (4) as a linear com-
bination of P;, given as

X= C1]P>1 + Cz]P)z + C3P3 + C4P4 + C5P5 + CGPG + C7P7.

The group of transformation G; : (x,y,z,t,u) —

(%, 7, 2, t, it) which is generated by the infinitesimal gen-
erator P; fori =1, 2, 3, 4, 5, 6, 7 are as follows [31]:

Gy :(xe, y, 2023 te€ ue /3,

Gy :(x,y,z,t+€,u),

Gs :(x, ye®, ze, t, u),

Gy :(x,y,z+€,t,u), (12)

Gs :(x,y+e€,z,t,u),

Gg:(x+¢€,y,z,t,u),

G7 :(x,y,z,t,u+e).
The right hand side gives the transformed point
exp(eP)(x,y,z, t,u) = (X, 7, 2, , it). As each group G;is a
symmetry group (by [31]), ifu = f(x, y, z, t) is a solution of
equation (4) so are the functions

u® =e"Sfe”Sx,y, e iz, €76,
u(Z) zf(xa )’; Z’ t_ e)’

u® =f(x, ey, ez, 1),

u(4) =f(X1 )’:Z_e, t)’ (13)
u® =f(x,y - €,2,1),

u(6) =f(X - €, y, Z, t),

u” =f(x,y,z,t) +¢,
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where € is any real no. For a detailed description, the
reader can see [31].

Generally, there is an infinite number of subalgebras
for this Lie algebra formed from linear combinations of
generators Py, P, P3, P4, Ps, Pg and P;. If two subalge-
bras are equivalent, i.e., each has conjugate in the sym-
metry group, then their corresponding invariant solutions
are connected by the same transformation. Thus, it is suf-
ficient to place all similar subalgebras in one class and se-
lect a representative for every class. The set of all these
representatives is called an optimal system (for details, see
[31] and [32]). A detailed discussion is given in the next sec-
tion.

3 Optimal system of subalgebra

Now, we find an optimal system of one dimensional Lie
subalgebra. As an application of Lie group analysis, the
primary use of an optimal system is to classify the group
invariant solutions of partial differential equations to
shorten the problem of categorizing subgroups of the com-
plete symmetry group. A set of subalgebras forms an opti-
mal system if each subalgebra of the Lie algebra is equiv-
alent to a unique member of the set of subalgebras un-
der some element of adjoint representation. Ovsiannnikov
and Olver [31, 32] suggested the construction of an optimal
system for the Lie subalgebra. The method made useful
progress under the work of Petera, Winternitz, and Zassen-
haus [33, 34], where various illustrations of an optimal sys-
tem of subgroups can be seen for the Lie groups of math-
ematical physics. Based on the systematic algorithm [35],
we find an optimal system of one-dimensional subalge-
bras of the equation (4). The symmetry Lie algebra having
a basis {P1, P, P3,P,, P5, Pg, P7} of section (2) and iden-
tify this with R” as a vector space using the map P; — ¢;
where {e1, ¢, ¢3, ¢4, ¢s5, ¢¢, ¢7 } is the standard basis of R7.
Then, from the Table 1, we obtain the following matrix de-
scription of Ad(PP;):
Ad (exp(ePy)) P; = P; - e[P;, Pj] + e 2Py, [Py, Py]] -
where [P;, ]P’j] is the commutator of the two operators. A
real function ¢ on the Lie algebra g is called an invariant
if it satisfies the following condition:

¢(Adg(M)) = p(M) for all M € g.

For the Lie algebra g, we consider any subgroup g =
exp(eS), where § = Z].llbjIP’j toacton M = Zilla,-]}”i, we
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get

Adg(M) =e ¢S Me®®

=(a1Py + axP; + a3P3 + asP, + asPs + aglPg + a;P;)

- €(91P1 + 92[[»2 + 931@3 + 941@4
+ 95?5 + 66P6 + 97P7) + 0(62),
(14)

Whereei = ei(al’ ap, as, dy, ds, a6s arz, bl; bZ’ b3’ bl}’ bS’ b6’ b7),

i=1,2,3,4,5, 6,7 canbe obtained from the commutator
table (1), and for invariance

¢(ai, ay, a3, a4, as, ag, az) = Ppla, — €61, a, — €6,,

as - €63, a4 — €04, as — €05, ag — €0, a; — €67).

(15)
Expanding the right-hand side of eq. (15), we obtain
a<;1> 0¢ o o o o
01 +92 +03 +04a—m+65aa +96aa6
¢ _
+ 0767(17 = O, (16)
where
91 =0, 92 = —b1a2 + bzal, 93 =0
94 = —§b1a4 - b3a4 + §b4a1 + b4a3,
05 = -bszas + bsas, 17)

1 1
96 = —§b1(16 + §b6(11,

1 1
97 = §b1(17 - §b7a1.
Substitution of equations (17) into equation (16) and
collection of the coefficients of all b;s gives the following
linear over determined system of PDEs in ¢:

U
by :a; :L(I)bz o,

bs : -ay (;3:117 5 3:1]55 0,

be: a3 v 32 —o, (18)
bs : a3 ::i 0,

be : 1611 s;;b 0,

b7 : 1611 ;:11)7

Looking the solutions of the above system, we get the
invariant form given as, ¢(ai, az, as, as, as, ag, a;) =
F(ai, a3), where F can be chosen as an arbitrary function.
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Thus, the following two basic invariants of the Lie algebra
g exist:
I'y=ayandrl; = as,

also the function n(P) = 3a + 2a3 + 4ayas, is invariant
of the full adjoint action known as the Killing’s form for
g ([31] and [36]). It can be seen that the Killing form is a
combination of the basic invariants of the Lie Algebra g.
Thus, the basic invariants of the Lie algebra g are used to
find the one-dimensional optimal system of the equation
(4).

Now, we need to prepare the general adjoint trans-
formation matrix A, which is obtained by the prod-
uct of the individual matrices of the adjoint actions
A1, Ay, A3, Ay, As, Ag, A7, which are the adjoint action
Of]Pl,IPz, Pg, P4,]P>5,IP6, ]P)7 to A.
Lete;,i=1,2,3,4,5,6,7 bereal constantsand g = e
then we get

€ilP;
b

1 0 0 0 0 0 0]

0 e 0 0 0 0 O

0 01 0 0 0 O
Aj=|0 0 0 e 0 0 o0 |,

0 0 0 0 1 0 O

0 0 0 0 0 ed 0

0 0 0 0 0 0 -e7]
[1 -e;, 0 0 0 0 O]

0 1 00O0O0O

0 0 10000
A,=l0 0 01 0 0 Of,

0 0 00100

0 0 00O0T10

0 0 00O0O0O 1

(1 0o o o o o O]
010 0 0 0O
001 0 0 00
A;=10 0 0 ¢ 0 0 O,
000 O € 0 0
000 O O 10
000 0 0 01

1 0 0 -2¢, 0 0 0O
010 0 00O
001 - 000
A,=|0 00 1 0 0 Oof,
000 O 100
000 O 010
000 O 001
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1000 0 00O
0100 0 0O
0 01 0 -5 0O

As=0 0 01 0 o0 of,
0000 1 00
0000 O 10
0000 O 01
1 0 0 0 0 -le O]
01000 0 O
00100 O O

A¢=0 001 0 o0 o0,
00001 0 O
00000 1 O
00000 O 1]
1 0 0 0 0 0 le
010000 O
001 00GO0 O

A;=/0 001 00 O
000010 O
000O0OT1 O
000O0OTO0 1

The adjoint action of P; on P; can be obtained from the
adjoint representation, (see Table 2) for more detail, one
may refer to Hu et al. [35].

The formation of an optimal system of subalgebras of
aLie algebra is not an easy assignment. An optimal system
of Lie subalgebras can be obtained by solving the system
of algebraic equations, and the equivalent Lie subalgebras
can be identified by the use of adjoint action on the set of
these Lie subalgebras. Let

X = 1Py + 3P + ¢3P3 + ¢4 P4 + C5P5 + cgPg + c7P7, (19)

where ¢4, ¢, c3, C4, C5, Cg, C7 are the real constants. Here,
X can be considered as a column vector with entries
C1, €2, C3, C4, C5, Cg, C7. Let A(eq, €2, €3, €4, €5, €6, €7) =
A7A6A5A4A3A2A1, which gives

i
1 —€ef 0 -Zee [ fieée» §€7e
0 e 0 0 0 0 0
0 0 1 —e,en” —e5e 0 0
2
A= o 0 0 e 0 0 0
0 0 0 0 e 0 0
a

0 0 0 0 0 es 0
o

0 0 0 0 0 0 e

Now, to construct an optimal system of equation (4),
we consider X = 217:1 ¢jP;jand Y = 21.7:1 d;IP; as two el-
ements of Lie algebra g. Adjoint transformation equation
for equation (4) is

(dl’ dZ’ d3, d4, dSs d61 d7) = (Cla C2, C3, C4, C5, Cg, C7) -A
(20)
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Table 2: Adjoint Table
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Ad Py P, P; P, | Ps P P,
P, P, e P, Ps e3P, | Ps | e3€Pg | e3P,
P, | Pr1-€P, | P, P5 P, | Ps P P;
P5 Py P, P5 e‘Py, | ePs | Pg P;
Py |P1-2ePy | P, |P3-€Py| Py Ps Py P,
Ps Py P, |P3s-€Ps| P;, | Ps P P;
P | P1-3ePs | P, P; P, Ps Pe P,
P; | P1+3eP; | Py P; P, Ps P P,

In addition, A(e1, €5, €3, €4, €5, €6, €7) transform X as fol-
lows

Aer,€2,€3,€4,€5,€¢,€7) - X =c1Pq

2 2
+(-c162€% + 2P, + c3P3 + (—gcle4e3el+e3

2 2
—C3€,e317% ¢ c4e3€“€3> Py + (-c3€5€° + c5€) Ps

1 1 1
+ <—§0166e3€1 + c6e3€1) P

+ (%cleye_%el + c7e_%51> P;.
1)

By definition, X and A(eq, €5, €3, €4, €5, €6, €7) + X
generate equivalent one dimensional Lie subalgebras for
any €1, €, €3, €4, €5, €, €7. This provides the liberty of
choosing various values of €; to represent the equivalence
class of X that might be much simpler than X. In order to
distinguish the one dimensional Lie subalgebras of equa-
tion (4), we consider the cases as follows:

Case-1

¢1 = 1,c3 = l;. Here, |; ¢ {—%,O} is an arbitrary real
constant. Now, choosing a representative element X=r+
CcoPy +c3P3+c4 P4+ c5Ps + cgPg + c7P7, and putting dq = 1,
dr,=d3 =d, =ds =dg =d; =0, d; =1, in equation (20),
we get the solution as

C c
2 K €5=i, €¢ = 3ag, €7 = -3ay.

’
5+¢C3 C3

€2 =C2, €4 =

(22)
the action of adjoint maps Ad(exp(e,P5)),
Ad(exp(esPs)), Ad(exp(egP¢)) and

Thus,
Ad(exp(e4Py)),

Ad(exp(e;IP;)) will eliminate the coefficients of P,, P,
Ps, Pg and Py , respectively, from X. Thus, X = P; + ¢3P5 is
equivalent to Py + ¢, P, + [1IP3 + €4 P4 + C5P5 + cgIPg + C71P7.

Case-2

c1 = 1, c3 = 0. Now, choosing a representative element
X = Py + ¢,P) + c4P4 + c5Ps + cgPg + c;P7, and putting
dy=1,d, =ds3 =d, = ds = dg = d; = 0in equation (20),
we get the solution as

3
€) =Cp, €4 = =Cy4, €¢ = 3616, €; =-3ay. (23)

2

Thus, the actions of adjoint maps Ad(exp(e,P5)),
Ad(exp(e4P,)), Ad(exp(egPs)) and Ad(exp(e;P;)) will
eliminate the coefficients of P, P53, P4, Pg and P; from X.
Thus, X = P; + c5Ps is equivalent to Py + ¢, P, + c4P4 +
Ccs5Ps + cgPg + 7P

Case-3

c1 = 0, c3 = 1. Now, choosing a representative element
X = Py + P3 + c4P4 + c5P5 + cgPg + c7IP7, and putting
di =0,d, =d4 =ds =dg =d; =0, ds; = 1in equation
(20), we get the solution as

€4 = Cy, €5 = As. (24)

Thus, the action of adjoint maps Ad(exp(esPs)),
Ad(exp(esPs)) will eliminate the coefficients of P, and
]P)5 fron X Thus, X =Py + ]P)g + CGPG + C7]P7.
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Case-4

c1 = 0, c3 = 0. Now, choosing a representative element
X = 3Py +c4Py+c5Ps +cgPg+c7P7, and putting dq = d, =
ds; = ds4 = ds = dg = d7 = 0 in equation (20), we get, X =
2Py + 4Py +C5Ps + cgIPg + €7 IP7. To summarize, an optimal
system of one-dimensional subalgebras of equation (4) is

obtained to be those generated by

Py =Py + c3P5,
P, = Py + ¢5Ps,
IE% = C2P2 +IP3 + C6]P6 + C7P7,

Pq = CzPZ + C4]P>4 + C5]P)5 + C6P6 + C7]P>7.

i.e., any subalgebra spanned by Py, P,, P3, P4, Ps, Pg, P
is equivalent to some P; in the set {P;, P>, P35, P, }.

4 Invariant solutions

After the formation of one-dimensional optimal system of
equation (4), we reach the equivalence class of group in-
variant solutions of equation (4). We will present the de-
tails of the calculation for some of the vector fields and di-
rectly give the calculation results for the remaining vector
fields.

4.1 1[51 =P; + c3P3

Solving the characteristic equation, similarity variables
can be obtained as

de_dy _ dz _dt_du (25)
35 Gy (3+5)z t -3
then, we get the invariantsas X = X, Y = t%, Z=-2;,

t§ tC3+§
u=t3F (X, Y, Z) with X, Y, Z as new independent vari-
ables and F as a new dependent variable. Thus, equation

(4) transforms to

6C3 YFXYY + 6C3ZFXYZ + ZXFXXY + 4ZFXYZ + 6FXFXXY

+12FXYFXX + 6C3FXY + 6FxxxFy + 9FXXZ + 4FXY

Again, reducing the equation (26) by point symme-
tries, the following vector fields are found to span the sym-
metry group of equation (26):

=

H=h@, & =mY+ "zz( ) &=z,

(272% n,c3x+18z (c3 + %) ((X (63 + %) z+ %y) :jfl (2) - % xfi (@) +f, (Z)))

(18c3 +12)z

nr =
@)
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where f;(Z) and f,(Z) are the arbitrary functions. By the
appropriate choice of the arbitrary functions of the above
equation, if f1(Z) = Z, f>(Z) = f{(Z) and c3 = 1, it leads to
the following characteristic equations:

ax _  dvy 4z

Z nYZ+nyZ3 mZ
S dF . @8

271,25 X+30 Z((3 XZ+3 Y) &f1(2)-1 Xf1(2)+2(2))
307
which yields

27 41Z 352 _ 19,225 In(2) 9 npr
3m2 3n 2m 4n,2 n 4n 7%
+G(r,s), (29)

where G(r, s) is a similarity function of variables r and s,
which are given by

r=X+£,s=X+§ 2

. 30

Thus, the second reduction by similarity of equation (4)
gives

12GrrrsGr + (41 — 185) Grrs + 24GrsGrr + 12GrirGs

= 6Grrrrs —8SGrss = 0 (31

We can see that, this is a nonlinear PDE with two inde-
pendent and one dependent variable. After applying the
similarity transform again, the following vector fields are
found to span the symmetry group of equation (31):

{r = 0, {s = O, nG = ml. (32)

Thus, the characteristic equation for the second reduction
of equation (4) is

dr ds dG
070 m 3
which leads to G = m,, where m; and m, are some real
constants. Thus, the invariant solution of equation (4) is

given by

1 2,10 2
m(lzmznl t3ZS
1

10 2 10 2 7. 4
+12n1t5 z51In(2) -20n,1 ¢35 z5 In(8) +16n1 2563 x

ulx,y,z,t) =

12 2.1 7 u
-8z5 +18n1z5t3 y+15n,t3z-27n1ny t3 x).

(34)
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(a) 3D plot fort = 107>

20

(b) 3D plot fort = 0.5

/

=20 x

(d) Contour plot for t = 107>

(e) Contour plot for t = 0.5
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=20

(c) 3D plotfort =1

(f) Contour plot fort = 1

Figure 1: Solution profiles for equation (34) with m, = 20, n; = 10, n, =20andy = 5.

4.2 ]P;Z =P, + C5IP>5

For this subalgebra, the similarity variables can be ob-
tained by the following characteristic equation:

de _dy _dz_de_du
s 2zt

X > (35)
3 3

then, we get the invariants as X = %, Y = y - ¢s In(t),
t3
Z=%andu = t3 F(X,Y,Z) with X, Y, Z as new inde-
t3
pendent variables and F as new dependent variable. Thus,
equation (4) is then transformed to

2 4 4
3Fxxz + §XFXXY +2¢5Fyyy + §ZFXYZ + §FXY

— Fxxxxy + 4FxyFxx + 2FxFxxy + 2FyFxxx = 0. (36)

Again, reducing the equation (36) by point symmetries,
the following vector fields are found to span the symme-

try group of equation (36):

3
¢y =f1(2), &y =n Y - 5mics n(Z) +ny, & =n1Z,
1 X

5 782 1D~ 4Zf1(2)-27ny cs)

3 ’
nr = 3 Yf1(2) +

+f(2),
(37)

where fi(Z)and f,(Z) are the arbitrary functions. It leads to
the following characteristic equations:

ax dy _dz
@) mY-3ncsin@+n, mZ
~ dF
3YAD + 52822 f1(2) - 4Zf1(2) - 27 ny cs) + fo(2)

(38)
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=10

(@) 3D plotfort=1 (b) 3D plot fort =5 (c) 3D plot for ¢t = 10

iy

(d) Contour plot for ¢t = 1 (e) Contour plot fort =5 (f) Contour plot for t = 10

Figure 2: Solution profiles for equation (44) with ny; = 1, n, = 2, m3 = 3,z =2 and R = 20sin(w).

By the appropriate choice of the arbitrary functions of the above equation, if f;(Z2) = Z, f»,(Z) = fi (Z)and c5 =1, we
obtain

_9(n(2)’ Lo, 1Z  35Z Vi ,n@ 3mhn

F

2) +G(r,s), (39)

8ny 4z 3n; 2nq 6n12 np 2)’112

where G(r, s) is a similarity function of variables r and s, which are given by
_x_Z _(y_3 _3,my Ll
r=X nl,S—<Y In(2) 2+n1) . (40)
Thus, the second reduction by similarity of equation (4) gives

2 4
35Grrs + §rGrrs - §SGrss = Grrrrs + 4GrsGrr + 2GrGrrs + 2GrirGs = 0. (41)

We can see that, this is a nonlinear PDE with two independent and one dependent variable. After applying the
similarity transform again, the following vector fields are found to span the symmetry group of equation (41),

1
& =my, & =0, NG = =3 Mar+m. (42)

Thus, the characteristic equation for the second reduction of equation (4) is

dr_ds___dG

, 43
m 0 -Imr+m (43)
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where m; and m, are some real constants.
This leads to G = - + m3 r + R(w), where R(w) is an arbitrary function of w with w = s and m3 = % Thus, an
invariant solution of equatlon (4) is given by

P § 9<m<z>>2+9t%<x_ z )+; z (1_ Z)
A \7{ 8m t% 4 z vt n1t% 3n1t§ \B/Z Tl1t%
1
6

31 3 z 3 m 22 1 z
*5 " (y In (£) 5 In (t§ 5+ n—l) + 3 + —1In (—2 (44)
2
3 ny z 1 X z X z
-~ —=In(lS5|->(=—=-—"5] +m3|=—=-—5|+R(w) |,
2 n12 <t%) 6 <\3/Z n1t§> 3(% n1t§> ( )>
6 3
w= (y ln(t)—fln<z) = 2)
t3 2

4.3 ]Is3 = P, + P3 + ¢c¢lPg + C7IP

where

For this subalgebra the similarity variables can be obtained by the following characteristic equations:

dx _dy dz _dt _du

Ce y z ¢ c7’ 43)

then we get the invariantsas X = x - ¢ In(z), Y = £, T = t + c; In(z) and u = c7 In(z) + F(X, Y, T) with X, Y, T as new
independent variables and F as new dependent variable. Thus, equation (4) gets transformed to

-3 ¢e Fxxx —3YFxxy -3 ¢2 Fxxz — 2 Fxyz — Fxxxxy + 4 Fxy Fxx + 2Fx Fxxy + 2 Fxxx Fy = 0. (46)

Again, reducing the equation (46) by point symmetries, the following vector fields are found to span the symmetry
group of equation (46):

£ = =3 HDX+f(T), & = LT Y +f5(D), & = Fi(D),

1 3 (47
Mr = 4 (C6Y +2F) fo(1) + 3 Xf5(T) + f5(T),

where f1(T), f>(T), f3(T), f4(T) and f5(T) are the arbitrary functions. By the appropriate choice of the arbitrary
functions in the above equation, If f1(T) = T, f>(T) = fi(T),f3(T) = my, f4(T) = m,, and f5(T) = m3, where my, m, and
ms are the arbitrary constants, it leads to the following characteristic equations:

dXx _ dYy _dT _ dF

= =25 - , 48
“ix+my Y+mi T 1(BcY+2F)+3mX+m; (48)
which yields,
3 my 3 3
F=—2fr+—sc6T+ my cg - 6mim, —2ms3 +VTR(,s), (49)
where G(r, s) is a similarity function of variables r and s, which are given by
r=ﬁ(X—2m2),s=%, (50)
Thus, the second reduction by similarity of equation (4) gives
2 GrrsGr + 4 GrsGrr + 2 GrrrGs — 35 Grrs — Grrrrs = 0. (51)

We can see that, this is a nonlinear PDE with two independent and one dependent variable. After using the similarity
transform again, the following vector fields are found to span symmetry group of equation (51):

En2r+1an+n4, (52)

1
§r=—§n1r+n3,{s=nls+n2,nG=2 5
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where n1, ny, n3 and n4 are the arbitrary constants. By the appropriate choice of these constants, If n; = 1, n, = n3 =
n, = 0, it leads to the following characteristic equations:
dr _ds _d

175 T 16 (53)

which leads to G = @, where R(w) is an arbitrary function of w = s rl.

cﬁ=].z=0.2 cﬁ=4.z=02 cﬁ=4,z=2

7 ‘0"0";""""“4

(@) 3D plot forcg =1andz=10.2 (b) 3D plot for cg = 4and z = 0.2 (c) 3D plot forcg = 4and z = 2.5

(d) Contour plot forcg = 1 and z = 0.2 (e) Contour plot for ¢ = 4 and z = 0.2 (f) Contour plot for cg = 4and z = 2.5

Figure 3: Solution profiles for equation (55) with m; =2, m; =1, m3 = land ¢7 = 2.

Thus, the second reduction by similarity of equation (4) gives

8w*R"" +16WR"R +16 W R )? -6w?R" -40w3R" - 4w R"R+12w?R'R’

mnr 1" " ! !’ (54)
-30w*R -9w’R +2wR R+2w([R)*-2RR=0.
Now, with a particular solution for equation (54) as R(w) = w, an invariant solution of equation (4) is given by
3 3 1y 3
u(x,y,z,t)=c; In(z2)- > (x—c¢ In(2) -2my)my + = (7 —ml) Co+=Comy—6mymy—2ms

" (g—m1> (x-agIn(z)-2my).
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4.4 P'z‘ = C[P + €4P4 + C5P5 + c6Pg + C7IP7
Solving the characteristic equations:

dx _dy _dz _dt _du

- ’ (56)
Cg Cs Cy Cy Cy

we obtain the invariantsas X = %2 x-t, Y= E—; y-t,Z = g—j z-tandu = % t+F(X, Y, Z)with X, Y, Z as new independent

=5k =5k=11=1 o5 =5ky =5k =1Lr=2

(@) 3D plotforcs = 5,k, = 5,k3 = 1and (b) 3D plot forcs = 5,k, = 5,k3 = 1and (c)3D plotforcs = 1,k; = 1, k3 = 2 and
t=1 t=2 t=2

I
=

(d) Contour plot forcs = 5,k = 5,k3 =1  (e) Contour plotforcs = 5,k; = 5,k3 = (f) Contour plot forcs = 1, k; = 1, k3 = 2
andt=1 andt =2 andt =2

Figure 4: Solution profiles for equation (58) with ¢c; =2, ¢4 =5,¢¢ =5,¢c7 =2,k; =8,ks =5,and z = 5.

variables and F as a new dependent variable. Thus, equation (4) gets transformed to

2 2 2 2
2 cyc4ceFxFyxy + 4 c3c4CeFxyFxx + 2 C3c4CeFxxxFy + 3 C2¢5Cs Fxxz

3 3 3 3
+2 C4C6FXXY +2 C4C6FXYY +2 C4C6FXYZ - C2C4FXXXXY =0. (57)

This is a nonlinear PDE in three variables X,Y,Z having the general solution F(X,Y,Z2) =

_ k2 Cy 2 k3 Cy (2 k23C23—k2 C63—k3 C63)Z
3 e tanh (kz X+ k3 Y+ 2B k> ¢, C32 k3 Ca Ca)
(4) as

+ k1> + k4, which provides an invariant solution for equation

u(x,y,z,t):%—%%cztanh (kz (%—t) + ks <%—t)

2k3¢, (23K -cko-clk3) [(crz
c2(3crcsky +2c4c6k3)

(58)
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5 Discussion and conclusion

In the previous sections, we have made a possible attempt
to analyze a (3+1)-dimensional nonlinear evolution equa-
tion ([5-8, 18]) by a well-organized Lie Symmetry method
to find the group invariant solutions of the equation so that
different types of solitary solutions can be obtained for the
same. We acquired the geometric symmetry encompassed
by seven basic symmetry algebra. For the classification
of all the subalgebra, an optimal system of subalgebras
is entrenched. Moreover, similarity solutions are also pre-
sented, along with solutions in terms of hypergeometric
function. Thus, we obtained a variety of different kinds
of multiple soliton solutions for the (3+1)-dimensional
nonlinear equation, where significant features and dis-
tinct physical structures can be noticed for each set of
specific solutions. To the best of our knowledge, the sim-
ilarity solutions through an optimal system for the same
nonlinear equation have not been obtained before. A dif-
ferent variety of soliton solutions has been obtained, and
in further work, it can be considered for other nonlin-
ear models by the same systematic approach. The results
would be of more importance in understanding different
phenomena of different types of nonlinear waves in non-
linear systems, optics, fluid dynamics, including water
waves. Also, in view of the availability of programming
languages like Mathematica or Maple (which makes te-
dious algebraic calculations easy), we observed that the
Lie Symmetry method is a direct, standard, and computer-
based method. The properties of new solutions for the
(3+1)-dimensional nonlinear equation are easy to observe
by the given figures.
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