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Abstract: Studies on Non-linear evolutionary equations
have becomemore critical as time evolves. Such equations
are not far-fetched in �uidmechanics, plasma physics, op-
tical �bers, and other scienti�c applications. It should be
an essential aim to �nd exact solutions of these equations.
In this work, the Lie group theory is used to apply the sim-
ilarity reduction and to �nd some exact solutions of a (3+1)
dimensional nonlinear evolution equation. In this report,
the groups of symmetries, Tables for commutation, and
adjoints with in�nitesimal generators were established.
The subalgebra and its optimal system is obtainedwith the
aid of the adjoint Table. Moreover, the equation has been
reduced into a new PDE having less number of indepen-
dent variables and at last into an ODE, using subalgebras
and their optimal system, which gives similarity solutions
that can represent the dynamics of nonlinear waves.

Keywords: (3 + 1) - dimensional nonlinear evolution equa-
tion; optimal system; Lie symmetry analysis; group invari-
ant solutions

1 Introduction
Recently, non-linear governing equations suitable to ana-
lyze quartic autocatalysis were presented by Makinde and
Animasaun in [1] and [2]. There has been an increasing in-
terest in the studyofNLEEs in thepast fewyears. The (3+1) -
dimensional nonlinear evolution equationswas �rst intro-
duced by Zhaqilao [3] in the study of algebraic-geometrical
solutions. An evolution equation refers to a partial di�er-
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ential equation having partial derivatives of the depen-
dent variable u with respect to the time t and space vari-
ables x = (x1, ..., xn), which are the independent vari-
ables. The (3+1)-dimensional equation possesses the KdV
equation ut − 6uux + uxxx = 0 as its main term under
the transformations v(x, t) → u(x′, t′), x′ → 1√

3 x and
t′ → 1

6
√
3 t. Based on this, the (3+1)-dimensional nonlin-

ear evolution equation may be used to study the shallow-
water waves and short waves in nonlinear dispersive mod-
els [4]. A physicist should be well aware of all new as-
pects of thenonlinearwave theory. It is always a goodprac-
tice to study a new equation of the theory of nonlinear
evolution equations. The proper understanding of qualita-
tive signi�cances ofmany incidents andprocedures can be
achieved by exact solitary wave solutions of NLEEs in dif-
ferent �elds of appliedmathematics, engineering, physics,
biology, chemistry, and many more. So, to gain a clear
understanding of the qualitative and quantitative prop-
erties of these equations, it is necessary to �nd some ex-
act solutions to these equations. For illustration, the soli-
ton pulse implies an ideal balance between nonlinearity
and dispersion e�ects. The soliton is a crucial character
of nonlinearity [5–16]. Soliton solutions are of special type
PDEs solutions that model phenomena from the balance
between nonlinear and dispersive e�ects in systems like
light pulses propagation in optical �bers andwater waves.
For the nonlinear PDEs, the exact solutions graphically
demonstrate and determine the structure of many nonlin-
ear complex phenomena such as absence of multiplicity
steady states under di�erent conditions, spatial localiza-
tion of transfer processes, presence of peaking regimes,
and many others. First of all, Geng [13] introduced equa-
tion (1) in the algebraic geometrical solutions [17]. In [6] N-
soliton solutions of the (3+1)-d NEE was studied by Geng
and Wazwaz [5, 18, 19] found some multiple soliton solu-
tions and a collection of traveling wave solutions of the
(3 + 1)-d NEE (1). Soliton and rogue wave solutions can
be found in [3, 20–25]. There are many powerful meth-
ods to understand the nonlinear evolution equations that
have been used, for instance, the Hietarinta approach [15],
Hirota bilinear method [5–14], the Bäcklund transforma-
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tionmethod, Pfa�an technique, Darboux transformation,
the inverse scattering method, the generalized symmetry
method, the Painlevé analysis, and other methods. To in-
vestigate nonlinear dynamical phenomena using a gen-
eralised model in shallow water, plasma and nonlinear
optics, a generalized (2 + 1)- dimensional Hirota bilinear
equation was proposed by Hua et al. [26]. Xin Zhao et al.
[27] have investigated the generalized (2 + 1)-dimensional
nonlinear wave equation in nonlinear optics, �uid me-
chanics and plasma physics. They have used the Hirota
Bilinear method, and obtained bilinear Bäcklund trans-
formation, to construct the Lax pair and obtained Mixed
Rogue–SolitaryWaveSolutions, Rogue–PeriodicWaveSo-
lutions andLump-PeriodicWave Solutions. Theyhave also
explained the interactions between the rogue wave, peri-
odic wave and the solitary wave. Here, we shall study such
a (3+1)-dimensional nonlinear evolution equation [5] - [8]
and [18].

3vxz − (2vt + vxxx − 2vvx)y + 2(vx∂−1x vy)x = 0, (1)

where

(∂−1x f )(x) =
x∫

−∞

f (t)dt. (2)

Obviously, ∂x∂−1x f = ∂−1x ∂x f = 1 under the decay-
ing condition at ∞. As per the coe�cients of x, y and z,
the multiple soliton solutions exist for equation (1) ([5]
and [6]). Several soliton solutions, as well as singular soli-
ton solutions, were obtained by the simpler form of the
Hirota’s method in [1]. An N-soliton solution of a (3+1)-
dimensional nonlinear evolution equation is obtained by
using the Hirota bilinear method with the perturbation
technique in [6]. A new Wronskian condition was set for
equation (1), with the aid of theHirota bilinear transforma-
tion, a novelWronskian determinant solution is presented
for the equation (1). The Wronskin determinant is di�er-
ent for both [5] and [6]. We aim to extend the work in [8],
where the classical Lie symmetry of the (3+1)-dimensional
nonlinear evolution equation (1) was found. Here, we ob-
tained an optimal system for further results and then some
new solutions which can explain new nonlinearity fea-
tures with the approach applied in [28], [29] and [30].
To remove the integral term in equation (1) by introducing
the potential

v(x, y, z, t) = ux(x, y, z, t), (3)

we get

∆ := 3uxxz − (2uxt + uxxxx − 2uxuxx)y + 2(uxxuy)x = 0. (4)

Generally, it is not easy to get every possible combina-
tion of group generators to obtain the invariant solutions,

as there may be in�nitely many solutions. Researchers
have always discussed relatively independent solutions,
this inspires many other researchers to obtain a new sys-
tem called an optimal system. Thus, in this paper, we con-
structed a one-dimensional optimal system of subalgebra
for equation (4). The Norwegian mathematician Sophus
Lie introduced the term invariant solutions and developed
the Lie point symmetry analysis (1842–1899). The research
conducted so far motivates us to obtain some new exact
solutions using an optimal system, of equation (4), which
has not been found in research yet.
One may �nd in this article some acceptable answers, as
a result, shown in the graphs and solutions presented in
the closed-form.Do the soliton solutions of the given equa-
tion exist? If so, how do they behave? Can one speculate
the "soliton" nature of the solution even if solutions are
not well known in some real systems? How can one �nd
some precise solutions that can be useful "if the complex-
ity of the methods a�ects the solution results"? Are there
solutions to test stability and estimate errors for the newly
proposed numerical algorithms"? The authors have tried
to �nd the answers of the above mentioned questions in
the present article.

This work has two main objectives. The �rst is to ob-
tain an optimal system, and the second is to obtain sev-
eral types of new exact solutions. In section (2), we have
applied the Lie group approach to obtain the symmetries
of equation (4). An optimal system of vector �elds is es-
tablished in section (3). In section (4), we investigated the
reduced equations to �nd exact solutions, and in the end,
some remarks are presented in the conclusion.

2 Lie point symmetries
Lie group of transformations with parameter (ϵ) acting on
variables (dependent and independent) for equation (4)
are as follows

x̃ = x + ϵψx(x, y, z, t, u) + O(ϵ2),
ỹ = y + ϵψy(x, y, z, t, u) + O(ϵ2),
z̃ = z + ϵψz(x, y, z, t, u) + O(ϵ2),
t̃ = t + ϵτ(x, y, z, t, u) + O(ϵ2),
ũ = u + ϵη(x, y, z, t, u) + O(ϵ2),

(5)

where ϵ is a small Lie group parameter and ψx, ψy, ψz, τ
and η are the in�nitesimals of the transformation which
are to be found for independent and dependent variables,
respectively. Thus, the associated Lie algebra will be of the
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form Olver [31]

P =ψx(x, y, z, t, u) ∂∂x + ψ
y(x, y, z, t, u) ∂∂y

+ ψz(x, y, z, t, u) ∂∂z + τ(x, y, z, t, u)
∂
∂t

+ η(x, y, z, t, u) ∂∂u .

(6)

The above vector �eld generates a symmetry of equation
(4). Also, for the invariance, pr(5)P(∆) = 0, when ∆ = 0 for
equation (4), where pr(5)P is the �fth prolongation of P. To
obtain an overdetermined system of the coupled PDEs, we
applied pr(5)P to equation (4)

pr(5)P =P + ηxxz ∂
∂uxxz

+ ηxyt ∂
uxyt

+ ηxxxxy ∂
uxxxxy

+ ηxy ∂uxy

+ ηxx ∂
uxx

+ ηx ∂ux
+ ηxxy ∂

uxxy
+ ηxxx ∂

uxxx
+ ηy ∂uy

,

(7)

and get

3ηxxz − 2ηxyt − ηxxxxy + 4uxxηxy + 4uxyηxx

+ 2uxηxxy + 2uxxyηx + 2uxxxηy + 2uyηxxx = 0.
(8)

After this, we use a computer algebra software (Maple) to
obtain the following system of PDEs:

3ηu = −ψtt , 2ηx = 3ψyz − 2ψxt , 2ηy = 3ψxz , ψtu = 0, ψtx = 0,
ψty = 0, ψtz = 0, ψttt = 0, ψxu = 0, 3ψxx = ψtt , ψxy = 0, ψyt = 0,
ψyu = 0, ψyx = 0, 3ψyy = 3ψzz − 2ψtt , ψzt = 0, ψzu = 0, ψzx = 0,
ψzy = 0, ψzzz = 0,

(9)

and, thus, we obtained the required in�nitesimal genera-
tor as follows:

ψx = 1
3 c1x + f2(z, t), ψ

y = c3y + f1(z),

ψz = 1
3(3c3 + 2c1)z + c4, τ = c1t + c2,

η = −13 c1u +
3
2 y

∂
∂z f2(z, t) − x

∂
∂t f2(z, t)

+ 3
2 x

∂
∂z f1(z) + f3(z, t),

(10)

where ci ′s, (i = 1, 2, 3, 4) and fj ′s, (j = 1, 2, 3) are ar-
bitrary. Following the Lie symmetry method explained in
[31], we get the Lie algebra of symmetries for equation (4)
as follows:

P1 =
1
3 x

∂
∂x +

2
3 z

∂
∂z + t

∂
∂t −

1
3u

∂
∂u ,

P2 =
∂
∂t , P3 = y

∂
∂y + z

∂
∂z , P4 =

∂
∂z ,

P5 =
∂
∂y , P6 =

∂
∂x , P7 =

∂
∂u .

(11)

Table 1: Commutator Table

* P1 P2 P3 P4 P5 P6 P7

P1 0 −P2 0 −23P4 0 −13P6
1
3P7

P2 P2 0 0 0 0 0 0

P3 0 0 0 −P4 −P5 0 0

P4 2
3P4 0 P4 0 0 0 0

P5 0 0 P5 0 0 0 0

P6 1
3P6 0 0 0 0 0 0

P7 −13P7 0 0 0 0 0 0

Now, for convenience, we obtain the Table 1 of commuta-
tor with entries as [Pi , Pj] = Pi · Pj − Pj · Pi (see [31]).

Clearly, the in�nite-dimensional Lie algebra spanned
by vector �elds (11) generates an in�nite continuous group
of transformations of equation (4). These generators are
linearly independent. Thus, it is very much appropriate to
represent any in�nitesimal of equation (4) as a linear com-
bination of Pi, given as

X = c1P1 + c2P2 + c3P3 + c4P4 + c5P5 + c6P6 + c7P7.

The group of transformation Gi : (x, y, z, t, u) →
(x̃, ỹ, z̃, t̃, ũ) which is generated by the in�nitesimal gen-
erator Pi for i = 1, 2, 3, 4, 5, 6, 7 are as follows [31]:

G1 :(xeϵ/3, y, ze2ϵ/3, teϵ , ue−ϵ/3),
G2 :(x, y, z, t + ϵ, u),
G3 :(x, yeϵ , zeϵ , t, u),
G4 :(x, y, z + ϵ, t, u),
G5 :(x, y + ϵ, z, t, u),
G6 :(x + ϵ, y, z, t, u),
G7 :(x, y, z, t, u + ϵ).

(12)

The right hand side gives the transformed point
exp(ϵPi)(x, y, z, t, u) = (x̃, ỹ, z̃, t̃, ũ). As each group Gi is a
symmetry group (by [31]), if u = f (x, y, z, t) is a solution of
equation (4) so are the functions

u(1) =e−
ϵ
3 f (e−

ϵ
3 x, y, e−

2
3 z, e−ϵ t),

u(2) =f (x, y, z, t − ϵ),

u(3) =f (x, e−ϵy, e−ϵz, t),

u(4) =f (x, y, z − ϵ, t),

u(5) =f (x, y − ϵ, z, t),

u(6) =f (x − ϵ, y, z, t),

u(7) =f (x, y, z, t) + ϵ,

(13)
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where ϵ is any real no. For a detailed description, the
reader can see [31].

Generally, there is an in�nite number of subalgebras
for this Lie algebra formed from linear combinations of
generators P1, P2, P3, P4, P5, P6 and P7. If two subalge-
bras are equivalent, i.e., each has conjugate in the sym-
metry group, then their corresponding invariant solutions
are connected by the same transformation. Thus, it is suf-
�cient to place all similar subalgebras in one class and se-
lect a representative for every class. The set of all these
representatives is called an optimal system (for details, see
[31] and [32]). A detailed discussion is given in the next sec-
tion.

3 Optimal system of subalgebra
Now, we �nd an optimal system of one dimensional Lie
subalgebra. As an application of Lie group analysis, the
primary use of an optimal system is to classify the group
invariant solutions of partial di�erential equations to
shorten the problem of categorizing subgroups of the com-
plete symmetry group. A set of subalgebras forms an opti-
mal system if each subalgebra of the Lie algebra is equiv-
alent to a unique member of the set of subalgebras un-
der some element of adjoint representation. Ovsiannnikov
and Olver [31, 32] suggested the construction of an optimal
system for the Lie subalgebra. The method made useful
progress under thework of Petera,Winternitz, and Zassen-
haus [33, 34], where various illustrations of an optimal sys-
tem of subgroups can be seen for the Lie groups of math-
ematical physics. Based on the systematic algorithm [35],
we �nd an optimal system of one-dimensional subalge-
bras of the equation (4). The symmetry Lie algebra having
a basis {P1, P2, P3,P4, P5, P6, P7} of section (2) and iden-
tify this with R7 as a vector space using the map Pi → ei
where {e1, e2, e3, e4, e5, e6, e7} is the standard basis ofR7.
Then, from the Table 1, we obtain the followingmatrix de-
scription of Ad(Pi):

Ad
(
exp(ϵPi)

)
Pj = Pj − ϵ[Pi , Pj] +

1
2! ϵ

2[Pi , [Pi , Pj]] − ...,

where [Pi , Pj] is the commutator of the two operators. A
real function ϕ on the Lie algebra g is called an invariant
if it satis�es the following condition:

ϕ(Adg(M)) = ϕ(M) for allM ∈ g.

For the Lie algebra g, we consider any subgroup g =
exp(ϵS), where S =

∑7
j=1bjPj to act on M =

∑7
i=1aiPi, we

get

Adg(M) =e−ϵSMeϵS

=(a1P1 + a2P2 + a3P3 + a4P4 + a5P5 + a6P6 + a7P7)
− ϵ(θ1P1 + θ2P2 + θ3P3 + θ4P4
+ θ5P5 + θ6P6 + θ7P7) + O(ϵ2),

(14)

where θi = θi(a1, a2, a3, a4, a5, a6, a7, b1, b2, b3, b4, b5, b6, b7),
i = 1, 2, 3, 4, 5, 6, 7 can be obtained from the commutator
table (1), and for invariance

ϕ(a1, a2, a3, a4, a5, a6, a7) = ϕ(a1 − ϵθ1, a2 − ϵθ2,
a3 − ϵθ3, a4 − ϵθ4, a5 − ϵθ5, a6 − ϵθ6, a7 − ϵθ7).

(15)

Expanding the right-hand side of eq. (15), we obtain

θ1
∂ϕ
∂a1

+ θ2
∂ϕ
∂a2

+ θ3
∂ϕ
∂a3

+ θ4
∂ϕ
∂a4

+ θ5
∂ϕ
∂a5

+ θ6
∂ϕ
∂a6

+ θ7
∂ϕ
∂a7

= 0, (16)

where

θ1 = 0, θ2 = −b1a2 + b2a1, θ3 = 0,

θ4 = −
2
3b1a4 − b3a4 +

2
3b4a1 + b4a3,

θ5 = −b3a5 + b5a3,

θ6 = −
1
3b1a6 +

1
3b6a1,

θ7 =
1
3b1a7 −

1
3b7a1.

(17)

Substitution of equations (17) into equation (16) and
collection of the coe�cients of all b

′s
i gives the following

linear over determined system of PDEs in ϕ:

b1 : −a2
∂ϕ
∂a2

− 2
3a4

∂ϕ
∂a4

− 1
3a6

∂ϕ
∂a6

+ 1
3a7

∂ϕ
∂a7

= 0,

b2 : a1
∂ϕ
∂a2

= 0,

b3 : −a4
∂ϕ
∂a4

− a5
∂ϕ
∂a5

= 0,

b4 :
2
3a1

∂ϕ
∂a4

+ a3
∂ϕ
∂a4

= 0,

b5 : a3
∂ϕ
∂a5

= 0,

b6 :
1
3a1

∂ϕ
∂a6

= 0,

b7 : −
1
3a1

∂ϕ
∂a7

= 0.

(18)

Looking the solutions of the above system, we get the
invariant form given as, ϕ(a1, a2, a3, a4, a5, a6, a7) =
F(a1, a3), where F can be chosen as an arbitrary function.
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Thus, the following two basic invariants of the Lie algebra
g exist:

Γ1 = a1 and Γ2 = a3,

also the function η(P) = 5
3a

2
1 + 2a23 + 4

3a1a3, is invariant
of the full adjoint action known as the Killing’s form for
g ([31] and [36]). It can be seen that the Killing form is a
combination of the basic invariants of the Lie Algebra g.
Thus, the basic invariants of the Lie algebra g are used to
�nd the one-dimensional optimal system of the equation
(4).
Now, we need to prepare the general adjoint trans-
formation matrix A, which is obtained by the prod-
uct of the individual matrices of the adjoint actions
A1, A2, A3, A4, A5, A6, A7, which are the adjoint action
of P1, P2, P3, P4, P5, P6, P7 to A.
Let ϵi, i = 1, 2, 3, 4, 5, 6, 7 be real constants and g = eϵiPi ,
then we get

A1 =



1 0 0 0 0 0 0
0 eϵ1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 e 2

3 ϵ1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 e

ϵ1
3 0

0 0 0 0 0 0 −e
ϵ1
3


,

A2 =



1 −ϵ2 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 eϵ3 0 0 0
0 0 0 0 eϵ3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A4 =



1 0 0 −23 ϵ4 0 0 0
0 1 0 0 0 0 0
0 0 1 −ϵ4 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A5 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 −ϵ5 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A6 =



1 0 0 0 0 −13 ϵ6 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

A7 =



1 0 0 0 0 0 1
3 ϵ7

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

The adjoint action ofPj onPi can be obtained from the
adjoint representation, (see Table 2) for more detail, one
may refer to Hu et al. [35].

The formation of an optimal system of subalgebras of
a Lie algebra is not an easy assignment. An optimal system
of Lie subalgebras can be obtained by solving the system
of algebraic equations, and the equivalent Lie subalgebras
can be identi�ed by the use of adjoint action on the set of
these Lie subalgebras. Let

X = c1P1 + c2P2 + c3P3 + c4P4 + c5P5 + c6P6 + c7P7, (19)

where c1, c2, c3, c4, c5, c6, c7 are the real constants. Here,
X can be considered as a column vector with entries
c1, c2, c3, c4, c5, c6, c7. Let A(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7) =
A7A6A5A4A3A2A1, which gives

A =


1 −ϵ2eϵ1 0 − 2

3
ϵ4e

2

3
ϵ1+ϵ3 0 − 1

3
ϵ6e

1

3
ϵ1 1

3
ϵ7e

− 1

3
ϵ1

0 eϵ1 0 0 0 0 0

0 0 1 −ϵ4e
2

3
ϵ1+ϵ3 −ϵ5eϵ3 0 0

0 0 0 e
2

3
ϵ1+ϵ3 0 0 0

0 0 0 0 eϵ3 0 0

0 0 0 0 0 e
ϵ1
3 0

0 0 0 0 0 0 e−
ϵ1
3

.
Now, to construct an optimal system of equation (4),

we consider X =
∑7

j=1 cjPj and Y =
∑7

j=1 djPj as two el-
ements of Lie algebra g. Adjoint transformation equation
for equation (4) is

(d1, d2, d3, d4, d5, d6, d7) = (c1, c2, c3, c4, c5, c6, c7) · A
(20)
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Table 2: Adjoint Table

Ad P1 P2 P3 P4 P5 P6 P7

P1 P1 eϵP2 P3 e 2
3P4 P5 e 1

3 ϵP6 e− 1
3 ϵP7

P2 P1 − ϵP2 P2 P3 P4 P5 P6 P7

P3 P1 P2 P3 eϵP4 eϵP5 P6 P7

P4 P1 − 2
3 ϵP4 P2 P3 − ϵP4 P4 P5 P6 P7

P5 P1 P2 P3 − ϵP5 P4 P5 P6 P7

P6 P1 − 1
3 ϵP6 P2 P3 P4 P5 P6 P7

P7 P1 + 1
3 ϵP7 P2 P3 P4 P5 P6 P7

In addition, A(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7) transform X as fol-
lows

A(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7) · X = c1P1

+ (−c1ϵ2eϵ1 + c2eϵ1 )P2 + c3P3 +
(
−23 c1ϵ4e

2
3 ϵ1+ϵ3

−c3ϵ4e
2
3 ϵ1+ϵ3 + c4e

2
3 ϵ1+ϵ3

)
P4 +

(
−c3ϵ5eϵ3 + c5eϵ3

)
P5

+
(
−13 c1ϵ6e

1
3 ϵ1 + c6e

1
3 ϵ1
)
P6

+
(
1
3 c1ϵ7e

− 1
3 ϵ1 + c7e−

1
3 ϵ1
)
P7.

(21)

By de�nition, X and A(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7) · X
generate equivalent one dimensional Lie subalgebras for
any ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7. This provides the liberty of
choosing various values of ϵi to represent the equivalence
class of X that might be much simpler than X. In order to
distinguish the one dimensional Lie subalgebras of equa-
tion (4), we consider the cases as follows:

Case-1

c1 = 1, c3 = l1. Here, l1 ∈ ̸
{
−23 , 0

}
is an arbitrary real

constant. Now, choosing a representative element X̃ = P1+
c2P2+c3P3+c4P4+c5P5+c6P6+c7P7, and putting d1 = 1,
d2 = d3 = d4 = d5 = d6 = d7 = 0, d3 = l1 in equation (20),
we get the solution as

ϵ2 = c2, ϵ4 =
c4

2
3 + c3

, ϵ5 =
c5
c3

, ϵ6 = 3a6, ϵ7 = −3a7.

(22)
Thus, the action of adjoint maps Ad(exp(ϵ2P2)),
Ad(exp(ϵ4P4)), Ad(exp(ϵ5P5)), Ad(exp(ϵ6P6)) and

Ad(exp(ϵ7P7)) will eliminate the coe�cients of P2, P4,
P5, P6 and P7 , respectively, from X̃. Thus, X̃ = P1 + c3P3 is
equivalent to P1 + c2P2 + l1P3 + c4P4 + c5P5 + c6P6 + c7P7.

Case-2

c1 = 1, c3 = 0. Now, choosing a representative element
X̃ = P1 + c2P2 + c4P4 + c5P5 + c6P6 + c7P7, and putting
d1 = 1, d2 = d3 = d4 = d5 = d6 = d7 = 0 in equation (20),
we get the solution as

ϵ2 = c2, ϵ4 =
3
2 c4, ϵ6 = 3a6, ϵ7 = −3a7. (23)

Thus, the actions of adjoint maps Ad(exp(ϵ2P2)),
Ad(exp(ϵ4P4)), Ad(exp(ϵ6P6)) and Ad(exp(ϵ7P7)) will
eliminate the coe�cients of P2, P3, P4, P6 and P7 from X̃.
Thus, X̃ = P1 + c5P5 is equivalent to P1 + c2P2 + c4P4 +
c5P5 + c6P6 + c7P7.

Case-3

c1 = 0, c3 = 1. Now, choosing a representative element
X̃ = c2P2 + P3 + c4P4 + c5P5 + c6P6 + c7P7, and putting
d1 = 0, d2 = d4 = d5 = d6 = d7 = 0, d3 = 1 in equation
(20), we get the solution as

ϵ4 = c4, ϵ5 = a5. (24)

Thus, the action of adjoint maps Ad(exp(ϵ4P4)),
Ad(exp(ϵ5P5)) will eliminate the coe�cients of P4 and
P5 fron X̃. Thus, X̃ = c2P2 + P3 + c6P6 + c7P7.
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Case-4

c1 = 0, c3 = 0. Now, choosing a representative element
X̃ = c2P2+c4P4+c5P5+c6P6+c7P7, and putting d1 = d2 =
d3 = d4 = d5 = d6 = d7 = 0 in equation (20), we get, X̃ =
c2P2+c4P4+c5P5+c6P6+c7P7. To summarize, an optimal
system of one-dimensional subalgebras of equation (4) is
obtained to be those generated by

P̃1 = P1 + c3P3,
P̃2 = P1 + c5P5,
P̃3 = c2P2 + P3 + c6P6 + c7P7,
P̃4 = c2P2 + c4P4 + c5P5 + c6P6 + c7P7.

i.e., any subalgebra spanned by P1, P2, P3, P4, P5, P6, P7
is equivalent to some P̃i in the set

{
P̃1, P̃2, P̃3, P̃4

}
.

4 Invariant solutions
After the formation of one-dimensional optimal system of
equation (4), we reach the equivalence class of group in-
variant solutions of equation (4). We will present the de-
tails of the calculation for some of the vector �elds and di-
rectly give the calculation results for the remaining vector
�elds.

4.1 P̃1 = P1 + c3P3

Solving the characteristic equation, similarity variables
can be obtained as

dx
x
3

= dy
c3y

= dz
(c3 + 2

3 )z
= dtt = du

− u3
, (25)

then, we get the invariants as X = x
t
1
3
, Y = y

tc3 , Z = z
tc3+

2
3
,

u = t− 1
3 F(X, Y , Z) with X, Y, Z as new independent vari-

ables and F as a new dependent variable. Thus, equation
(4) transforms to

6c3YFXYY + 6c3ZFXYZ + 2XFXXY + 4ZFXYZ + 6FXFXXY
+12FXYFXX + 6c3FXY + 6FXXXFY + 9FXXZ + 4FXY

−3FXXXXY = 0. (26)

Again, reducing the equation (26) by point symme-
tries, the following vector �elds are found to span the sym-
metry group of equation (26):

ξX = f1(Z), ξY = n1Y + n2Z

 1

1+
2

3c3


, ξZ = n1Z,

ηF =

(
27 z

3 c3
3 c3 +2 n2 c3 x + 18 z

(
c3 + 2

3

) ((
x
(
c3 + 2

3

)
z + 3

2
y
)

d
dz
f1 (z) − 1

3
xf1 (z) + f2 (z)

))
(18 c3 + 12) z

,

(27)

where f1(Z) and f2(Z) are the arbitrary functions. By the
appropriate choice of the arbitrary functions of the above
equation, if f1(Z) = Z, f2(Z) = f

′

1(Z) and c3 = 1, it leads to
the following characteristic equations:

dX
Z = dY

n1 YZ + n2 Z
3
5
= dZ
n1Z

= dF
27 n2Z

3
5 X+30 Z(( 53 XZ+ 3

2 Y) d
dZ f1(Z)−

1
3 Xf1(Z)+f2(Z))

30 Z

, (28)

which yields

F = 2
3
Z2
n12

+ 4
3
rZ
n1

+ 3
2
sZ
n1
− 19 n2 Z3/5

4 n12
+ ln (Z)

n1
− 9
4

n2 r
n1 Z

2
5

+ G (r, s) , (29)

where G(r, s) is a similarity function of variables r and s,
which are given by

r = X + Z
n1

, s = YZ + 5
2

n2
n1Z

2
5
. (30)

Thus, the second reduction by similarity of equation (4)
gives

12GrrrsGr + (4r − 18s)Grrs + 24GrsGrr + 12GrrrGs
− 6Grrrrs − 8sGrss = 0. (31)

We can see that, this is a nonlinear PDE with two inde-
pendent and one dependent variable. After applying the
similarity transform again, the following vector �elds are
found to span the symmetry group of equation (31):

ξr = 0, ξs = 0, ηG = m1. (32)

Thus, the characteristic equation for the second reduction
of equation (4) is

dr
0 = ds0 = dGm1

, (33)

which leads to G = m2, where m1 and m2 are some real
constants. Thus, the invariant solution of equation (4) is
given by

u(x, y, z, t) = 1
12 n12 t

11
3 z 2

5

(
12m2 n12 t

10
3 z

2
5

+ 12 n1 t
10
3 z

2
5 ln (z) − 20 n1 t

10
3 z

2
5 ln (t) + 16 n1 z

7
5 t

4
3 x

−8 z
12
5 + 18 n1 z

2
5 t

7
3 y + 15 n2 t

7
3 z − 27 n1 n2 t

11
3 x
)
.
(34)



Ashish Tiwari, Kajal Sharma, and Rajan Arora, ie symmetry analysis, optimal system | 139

(a) 3D plot for t = 10−5 (b) 3D plot for t = 0.5 (c) 3D plot for t = 1

(d) Contour plot for t = 10−5 (e) Contour plot for t = 0.5 (f) Contour plot for t = 1

Figure 1: Solution pro�les for equation (34) with m2 = 20, n1 = 10, n2 = 20 and y = 5.

4.2 P̃2 = P1 + c5P5

For this subalgebra, the similarity variables can be ob-
tained by the following characteristic equation:

dx
x
3

= dyc5
= dz

2
3 z

= dtt = du
− u3

, (35)

then, we get the invariants as X = x
t
1
3
, Y = y − c5 ln(t),

Z = z
t
2
3
and u = t− 1

3 F(X, Y , Z) with X, Y, Z as new inde-
pendent variables and F as newdependent variable. Thus,
equation (4) is then transformed to

3FXXZ +
2
3XFXXY + 2c5FXYY +

4
3ZFXYZ +

4
3FXY

− FXXXXY + 4FXYFXX + 2FXFXXY + 2FYFXXX = 0. (36)

Again, reducing the equation (36) by point symmetries,
the following vector �elds are found to span the symme-

try group of equation (36):

ξX = f1(Z), ξY = n1Y −
3
2 n1 c5 ln(Z) + n2, ξZ = n1Z,

ηF =
3
2 Y f

′

1(Z) +
1
12

X
Z (8 Z

2 f
′

1(Z) − 4 Z f1(Z) − 27 n1 c5)

+ f2(Z),
(37)

where f1(Z)and f2(Z) are the arbitrary functions. It leads to
the following characteristic equations:

dX
f1(Z)

= dY
n1Y − 3

2 n1 c5 ln(Z) + n2
= dZ
n1Z

= dF
3
2 Y f

′
1(Z) +

X
12 Z (8 Z2 f

′
1(Z) − 4 Z f1(Z) − 27 n1 c5) + f2(Z)

.

(38)
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(a) 3D plot for t = 1 (b) 3D plot for t = 5 (c) 3D plot for t = 10

(d) Contour plot for t = 1 (e) Contour plot for t = 5 (f) Contour plot for t = 10

Figure 2: Solution pro�les for equation (44) with n1 = 1, n2 = 2, m3 = 3, z = 2 and R = 20sin(w).

By the appropriate choice of the arbitrary functions of the above equation, if f1(Z) = Z, f2(Z) = f
′

1(Z) and c5 = 1, we
obtain

F =9 (ln (Z))2
8 n1

+ 9r
4Z + rZ

3n1
+ 3sZ
2n1

+ Z2
6n12

+ ln (Z)
n1

− 3n2 ln (Z)
2n12

+ G (r, s) , (39)

where G(r, s) is a similarity function of variables r and s, which are given by

r = X − Z
n1

, s =
(
Y − 3

2 ln(Z) −
3
2 + n2n1

)
· 1Z . (40)

Thus, the second reduction by similarity of equation (4) gives

3sGrrs +
2
3 rGrrs −

4
3 sGrss − Grrrrs + 4GrsGrr + 2GrGrrs + 2GrrrGs = 0. (41)

We can see that, this is a nonlinear PDE with two independent and one dependent variable. After applying the
similarity transform again, the following vector �elds are found to span the symmetry group of equation (41),

ξr = m1, ξs = 0, ηG = −13 m1r + m2. (42)

Thus, the characteristic equation for the second reduction of equation (4) is

dr
m1

= ds0 = dG
−13 m1r + m2

, (43)
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where m1 and m2 are some real constants.
This leads to G = − r

2

6 + m3 r + R(w), where R(w) is an arbitrary function of w with w = s and m3 = m2
m1

. Thus, an
invariant solution of equation (4) is given by

u(x, y, z, t) = 1
3√t

(
9

8 n1

(
ln
(
z
t 23

))2
+ 9
4
t 23
z

(
x
3√t
− z
n1t

2
3

)
+ 1
3

z
n1t

2
3

(
x
3√t
− z
n1t

2
3

)
+32

1
n1

(
y − ln (t) − 3

2 ln
(
z
t 23

)
− 3
2 + n2n1

)
+ 1
6

z2

n21t
4
3
+ 1
n1

ln
(
z
t 23

)

−32
n2
n12

ln
(
z
t 23

)
− 1
6

(
x
3√t
− z
n1t

2
3

)2
+ m3

(
x
3√t
− z
n1t

2
3

)
+ R (w)

)
,

(44)

where

w = t
2
3

z

(
y − ln (t) − 3

2 ln
(
z
t 23

)
− 3
2 + n2n1

)
.

4.3 P̃3 = c2P2 + P3 + c6P6 + c7P7

For this subalgebra the similarity variables can be obtained by the following characteristic equations:

dx
c6

= dyy = dzz = dtc2
= duc7

, (45)

then we get the invariants as X = x − c6 ln(z), Y = y
z , T = t + c2 ln(z) and u = c7 ln(z) + F(X, Y , T) with X, Y, T as new

independent variables and F as new dependent variable. Thus, equation (4) gets transformed to

−3 c6 FXXX − 3 Y FXXY − 3 c2 FXXZ − 2 FXYZ − FXXXXY + 4 FXY FXX + 2 FX FXXY + 2 FXXX FY = 0. (46)

Again, reducing the equation (46) by point symmetries, the following vector �elds are found to span the symmetry
group of equation (46):

ξX = −
1
2 f2(T)X + f4(T), ξY = f2(T) Y + f3(T), ξT = f1(T),

ηF =
1
4 (3 c6Y + 2F) f2(T) +

3
2 Xf3(T) + f5(T),

(47)

where f1(T), f2(T), f3(T), f4(T) and f5(T) are the arbitrary functions. By the appropriate choice of the arbitrary
functions in the above equation, If f1(T) = T, f2(T) = f

′

1(T), f3(T) = m1, f4(T) = m2, and f5(T) = m3, where m1,m2 and
m3 are the arbitrary constants, it leads to the following characteristic equations:

dX
−12 X + m2

= dY
Y + m1

= dTT = dF
1
4 (3 c6 Y + 2 F) + 3

2 m1X + m3
, (48)

which yields,
F = −32

m1√
T
r + 3

2 s c6T +
3
2 m1 c6 − 6m1m2 − 2m3 +

√
T R(r, s), (49)

where G(r, s) is a similarity function of variables r and s, which are given by

r =
√
T (X − 2m2) , s =

Y + m1
T , (50)

Thus, the second reduction by similarity of equation (4) gives

2GrrsGr + 4GrsGrr + 2GrrrGs − 3 s Grrs − Grrrrs = 0. (51)

We can see that, this is a nonlinear PDE with two independent and one dependent variable. After using the similarity
transform again, the following vector �elds are found to span symmetry group of equation (51):

ξr = −
1
2 n1 r + n3, ξs = n1 s + n2, ηG = 3

2 n2r +
1
2 n1G + n4, (52)
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where n1, n2, n3 and n4 are the arbitrary constants. By the appropriate choice of these constants, If n1 = 1, n2 = n3 =
n4 = 0, it leads to the following characteristic equations:

dr
− r2

= dss = dG
1
2 G

. (53)

which leads to G = R(w)
r , where R(w) is an arbitrary function of w = s r2.

(a) 3D plot for c6 = 1 and z = 0.2 (b) 3D plot for c6 = 4 and z = 0.2 (c) 3D plot for c6 = 4 and z = 2.5

(d) Contour plot for c6 = 1 and z = 0.2 (e) Contour plot for c6 = 4 and z = 0.2 (f) Contour plot for c6 = 4 and z = 2.5

Figure 3: Solution pro�les for equation (55) with m1 = 2, m2 = 1, m3 = 1 and c7 = 2.

Thus, the second reduction by similarity of equation (4) gives

−8w4R
′′′′′

+ 16w3R
′′′
R

′
+ 16w3(R

′′
)2 − 6w3R

′′′
− 40w3R

′′′′
− 4w2R

′′′
R + 12w2R

′′
R

′

− 30w2R
′′′
− 9w2R

′′
+ 2wR

′′
R + 2w(R

′
)2 − 2 R

′
R = 0.

(54)

Now, with a particular solution for equation (54) as R(w) = w, an invariant solution of equation (4) is given by

u(x, y, z, t) =c7 ln (z) − 3
2 (x − c6 ln (z) − 2m2)m1 +

3
2

( y
z − m1

)
c6 +

3
2 c6 m1 − 6m1 m2 − 2m3

+
( y
z − m1

)
(x − a6 ln (z) − 2m2) .

(55)
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4.4 P̃4 = c2P2 + c4P4 + c5P5 + c6P6 + c7P7

Solving the characteristic equations:
dx
c6

= dyc5
= dzc4

= dtc2
= duc7

, (56)

we obtain the invariants as X = c2
c6 x− t, Y = c2

c5 y− t, Z = c2
c4 z− t and u =

c7
c2 t+F(X, Y , Z) with X, Y, Z as new independent

(a) 3D plot for c5 = 5, k2 = 5, k3 = 1 and
t = 1

(b) 3D plot for c5 = 5, k2 = 5, k3 = 1 and
t = 2

(c) 3D plot for c5 = 1, k2 = 1, k3 = 2 and
t = 2

(d) Contour plot for c5 = 5, k2 = 5, k3 = 1
and t = 1

(e) Contour plot for c5 = 5, k2 = 5, k3 = 1
and t = 2

(f) Contour plot for c5 = 1, k2 = 1, k3 = 2
and t = 2

Figure 4: Solution pro�les for equation (58) with c2 = 2, c4 = 5, c6 = 5, c7 = 2, k1 = 8, k5 = 5, and z = 5.

variables and F as a new dependent variable. Thus, equation (4) gets transformed to

2 c22c4c6FXFXXY + 4 c22c4c6FXYFXX + 2 c22c4c6FXXXFY + 3 c2c26c5FXXZ
+2 c4c36FXXY + 2 c4c36FXYY + 2 c4c36FXYZ − c32c4FXXXXY = 0. (57)

This is a nonlinear PDE in three variables X, Y , Z having the general solution F(X, Y , Z) =

−3 k2 c2
c6 tanh

(
k2 X + k3 Y + 2 k3 c4 (2 k23c23−k2 c63−k3 c63)Z

c62(3 k2 c2 c5+2 k3 c4 c6) + k1
)
+ k4, which provides an invariant solution for equation

(4) as

u(x, y, z, t) = c7 tc2
− 3 k2 c2

c6
tanh

(
k2
(
c2 x
c6

− t
)
+ k3

(
c2 y
c5

− t
)

+
2 k3 c4

(
2 c32 k32 − c36 k2 − c36 k3

)
c26 (3 c2 c5 k2 + 2c4 c6 k3)

(
c2 z
c4

− t
)
+ k1

)
+ k4.

(58)
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5 Discussion and conclusion
In the previous sections, we have made a possible attempt
to analyze a (3+1)-dimensional nonlinear evolution equa-
tion ([5–8, 18]) by a well-organized Lie Symmetry method
to �nd the group invariant solutions of the equation so that
di�erent types of solitary solutions can be obtained for the
same. We acquired the geometric symmetry encompassed
by seven basic symmetry algebra. For the classi�cation
of all the subalgebra, an optimal system of subalgebras
is entrenched. Moreover, similarity solutions are also pre-
sented, along with solutions in terms of hypergeometric
function. Thus, we obtained a variety of di�erent kinds
of multiple soliton solutions for the (3+1)-dimensional
nonlinear equation, where signi�cant features and dis-
tinct physical structures can be noticed for each set of
speci�c solutions. To the best of our knowledge, the sim-
ilarity solutions through an optimal system for the same
nonlinear equation have not been obtained before. A dif-
ferent variety of soliton solutions has been obtained, and
in further work, it can be considered for other nonlin-
ear models by the same systematic approach. The results
would be of more importance in understanding di�erent
phenomena of di�erent types of nonlinear waves in non-
linear systems, optics, �uid dynamics, including water
waves. Also, in view of the availability of programming
languages like Mathematica or Maple (which makes te-
dious algebraic calculations easy), we observed that the
Lie Symmetrymethod is a direct, standard, and computer-
based method. The properties of new solutions for the
(3+1)-dimensional nonlinear equation are easy to observe
by the given �gures.
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