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Abstract: In this paper, homotopy perturbation sumudu
transform method (HPSTM) is proposed to solve fractional
attractor one-dimensional Keller-Segel equations. The HP-
STMis a combined form of homotopy perturbation method
(HPM) and sumudu transform using He’s polynomials.
The result shows that the HPSTM is very efficient and
simple technique for solving nonlinear partial differential
equations. Test examples are considered to illustrate the
present scheme.
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1 Introduction

The fractional calculus deal with number of problem aris-
ing in the field of fluid mechanics, biology, diffusion, frac-
tional signal, image processing and many other physi-
cal process. Fractional differential equations are used to
model these types of the problems. In the various field of
engineering and science, it is very important to find the ap-
proximate or the exact solution of some nonlinear partial
differential equations [1]. There are several potent meth-
ods such as Homotopy perturbation [2, 3]; homotopy per-
turbation transformation method (HPTM) [4] and homo-
topy perturbation sumudu transformation method (HP-
STM) have been proposed to obtain the approximate or the
exact solutions of nonlinear equations [5-9].

In 1970, Keller and Segel presented a mathemati-
cal formulation of cellular slime mold aggregation pro-
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cess [10]. Recently many researchers use different meth-
ods to solve Keller- Segel equation [11-13]. Different types
of numerical methods are used to solve nonlinear par-
tial differential equations [14—19]. The solution of multidi-
mensional linear and nonlinear partial differential equa-
tions are established by using combination of least square
approximation and homotopy perturbation approxima-
tion [20]. A new semi-analytical method called the homo-
topy analysis Shehu transform method is used to solve
multidimensional fractional diffusion equations and this
method is combination of the homotopy analysis method
and the Laplace-type integral transform transform [21]. So-
lution of Reaction-Diffusion-Convection Problem and non-
linear equation is discussed by homotopy perturbation
technique [22, 23]. Non-linear Fisher equation is solved
with help of homotopy perturbation method then solu-
tion is compared with solution from Variational Itera-
tion Method (VIM) and Adomian Decomposition Method
(ADM) [24]. In this paper, we propose HPSTM for the so-
lution of fractional attractor one dimensional Keller Siegel
equation. The simplified form of the Keller Segel equation
in one dimension is given as [25]:

UM, ) _ 9*Ul,t) 9 (U(X 0 6)((,0))
7 ox

ot ox?2 ox

op(x, t) _ bc)zp(x, t)
ot ox2

Subject to the boundary conditions

U(a,t) _UB,1 _op(at) _pB0) _,
ox ox ox ox

+cU(x, t)—dp(x, t) @

And the initial conditions
U(x,0) = Up(x), p(x,0)=pox), x eI @

Where I = (a, ) is a bounded open interval and a, b, ¢
and d are positive constants. The unknown functions
U(x, t) denote the concentration of amoebae where p(x, t)
denote the concentration of the chemical substance in
I x (0, o0). The chemo tactic term £ (U(x, t) a)g—(f)) indi-
cates the sensitivity of the cells, y(p) called the sensitivity
function of p € (0, oo). Different form of y(p) like p, p? and
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log p have been suggested. But in this paper, we discuss
the two cases of the fractional attractor one dimensional
Keller- Siegel equations one with chemo tactic sensitivity
function y (p) = 1 and other with y (p) = p.

Definition: A real function f(f) is said to be in
space Cy, u € R, if 3 a real number p(> u) such
that f (t) = t?g(t), where g (t) € C[0, o) and it is said to
be in the space C}! iff f™ € Cy, me N

Definition: The Riemann- Liouville fractional integral op-
erator of order a > O of a function f(¢) € Cy, p = - 1is
defined as

t
IO i [ €0 FOdnF O - £
0

Definition: The Caputo fractional derivative of f(¢) in the
Caputo sense is given by Podlubny (1999) and Debnath
(2003)

t

[a=nmet o @r,

0

5 (0 =T D" 0 = o

Form-1<a <m,m € N, t > 0, where D is Caputo
derivative operator and I' («) is the Gamma function.

Sumudu Transformation: The Sumudu transformation
over the set of function

A :{f(t)HM! T1, T2 > Oy

If(6)] < Me% if te(-1y x [0,00)}

is defined by Watugala (1993) as
T 1 _t
S [F(0)] = / Lrwetatuc e, )
0

Some properties of the Sumudu transformations are
tm

S[1] =1, s{m

]=u"‘, m>0

The Sumudu transformation of the Caputo fractional
derivative is defined as

m-1

SIDEFOx, O] = w*S[f (e, 0] = > w ™ W04,

k=0
m-1<as<sm.
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2 Homotopy perturbation Sumudu
transformation method (HPSTM)

To illustrate the idea of HPSTM technique, we consider the
fractional attractor one dimensional Keller-Segel equation

0%U(x, 0 0
D U(x, ) =a#_ 2 (U(X, t)gT@)

Dlp(x,t)=b

2
% +cU (x, t) - dp(x, 1),

€©)

Subject to the conditions U (x, 0) = f(x) and p (x, 0) = g(x),

Where D} and D{ is the Caputo fractional derivative of
the function U(x, t) and p(x, t) respectively. Apply sumudu
transformation on both sides of the equation (3), we have

2

O<us<1,0<np=1

ox2 ox

S [D;’p(x, =5 [b()zgi);,tf) +cU (x, t) - dp(x, t)] (4)

Using differentiation property of the sumudu transforma-
tion and the initial conditions, we get

2
510001 =1 s [ 2050 - 2 (v 220

2
S[plx, t)] = g(x) +u's {b% +cU (x, t) - dop(x, t)}
5)

Operating with inverse sumudu transformation on both
sides,

2
00,0 - £ st o000 - 0 (0 X)) |

2
p(x, t)=g(x)+Stu's {b% +cU (x, t) - dp(x, t)}
(6)

Now we apply Homotopy perturbation method,

U, t)= Z Un(x, t)p™ and p(x, t) = an(x, Hp" @)
n=0 n=0

where the nonlinear term can be decomposed as

o (U(x, 9 a’gi(f)) - NY(x, ) = ip"Hn

n=0

ox (8)



372 — Dinkar Sharma et al., Approximate solution for fractional attractor one-dimensional Keller-Segel equations

for some He’s polynomial H, given by

1
n! opn

Hn=

)

Substituting these values in (5), we have

> p"U,(x,t)=U(x,0)+pS"
n=1

[u“s {a (ip"U,, (x, t)) - ip”Hn H
n=1 xx n=1
> P, (6 1)
n=1
[u"S {b (i p"p, (x, t)) +c (i U, (x, t))
n=1 Xx n=1

= p(x,0) +pSt

-d Zp"pn (x, t)H (10)
n=1
On comparing the like powers of p on both sides,
Uo = U(x,0) = f(x), Ur = S™' [u"S{aUoxx - Ho}l,
U, = S HutS{aU - Hy}) 1)

=p(x, 0) = g(x), p1= s [uTlS {prxx +cUo - dpo}]

py=S" [u'S{bpy,, +cUi —dp,}] (12)

Similarly we can find all the values of Uy , U1, U,, Us,....
and pg,pq,P5, .-

The approximate solution of equation (3) can be calculated
by setting p — 1.

U(x,t)=Up+Uy+Us+:-+, p(x,0) = po+p1+pa+--+ (13)

2.1 Application of HPSTM

In order to understand the solution procedure of the homo-
topy perturbation sumudu transform method, we consider
the following examples:

Solution of fractional attractor 1-D Keller Segel equation
Example: Consider the following coupled system:

, %) )

W‘“W‘ax

oPv o'y
ox

B
apb

St +cv—dp,0</3s1

(14)

{N (ZYMX,t)p")} ,n=0,1,2,3,....
n=0 p=0
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Subject to the boundary conditions

v(x,0) = m exp(-x?), p(x,0) = n exp(-x?) (15)

Case-I: Consider the sensitivity functiony (o) = 1, then the

chemo-tactic term i.e. 2 (v ( bx(p)) 0. Hence Keller Segel

equation reduces to:

oPv %y

ot %%

B
aaf bap+cv—dp,0<ﬁs1

By applying HPSTM on Eq. (36), we have
Zp”vn =v(x,0)+pS! [uﬁs {a (Zp"v,,) H 17)
n=0 n=1 XX
Zp Pn=p60)+pS {uﬁs{b<zp"pn> }}
n=0 XX
+pSt {uﬁS {c (Zp"vn> - d(Zp"pn)}} (18)
n=0 n=0

On looking at the like terms of p of Eq. (37) & (38) and using
(35), we have

(16)

po:v0= me‘xz;
.2
pO:p0= 5
pliv - 2ame™ 2x -1)——— tf
Tl r(1+py’

pt 1P = 1“(1tﬁ+ﬁ) [(cm -nd)-2bn (2x2 _ 1) e—xz] :

2,28
1, _ amt —x2 B 2 4] .
R Tk {12 48x +16x},
2 t?h
P V= T+ 2p)

+2b (—1 + 2x2) (cm - 2dn) + 4b*(3 - 12x° + 4x4)} ;

e [d (-cm +dn) + 2acm (—1 + 2x2)

3. 3B
3, _ amt 7x2[_ 2 4 6}_
p :vs 7F(1+3ﬁ)e 120+ 720x° — 480x™ + 64x° | ;
3B
3, _ P 2 _ _ 2 4
D’ ps F(1+3ﬁ)e {d (cm dn)+b<6 24x +8x)

+2acm (d - dez) +4b? (cm - 3dn) (3 —12x% + 4x4>
+8b°n (—15 +90x? — 60x* + 8x6>
+ha’cm (3 —12x°% + 4x4)

+2bd (-2cm + 3dn) (-1 + 2X2)} ;
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The approximation solution of Eq. (36) obtainedasp — 1,
ie.
VX, t)=vo+Vvi+Vva+...

PGt =py+py+py+

tB

v(x, t) = me™ (1 +a (—2 + 4x2) NCEY))

(28
4

+a*(12 - 48x% + 16x )1,(1 2,8))

+me ™ <a3(—120 +720x% - 480x* + 64x6> l ;
r@a+3p)’

p(x,t)=ne™ + L [(cm -nd) - 2bn (2)(2 - 1) e”‘z]

’ r'(1+p)
i d dn) +2 1+2x°

+m [ (-cm+dn) + acm(— +2x )

+2b (—1 + 2x2) (cm - 2dn) + 4b*(3 - 12x° + 4x4)}

+ le”‘2 {dz (cm-dn)+b (6 -24x° + 8x4)

ra+3p

+2acm (d - dez) +4b? (cm - 3dn) (3 —12x% + 4x4)
+8b°n (—15 +90x? - 60x* + 8x6)
+4a’cm (3 -12x% + 4x4) +2bd (-2cm + 3dn) (-1 + ZXZ)}

Case-II: Consider the sensitivity function y (p) = p, then

the chemo-tactic termi.e. 2 ( a)g(f)) g§ gﬁ

Keller —Segel equation reduces to

+v 2P ax2 ; hence

Pv_ o o (ovop 0%

ot ox2 odx \oxox ox2)’

B 2

9 ba—p+cv dp,0<B=<1 (19)

ot 0x?

Now, for the solution of Eq. (39), we apply HPSTM on Eq.
(37), we have

[eS)

anvn =v(x,0)

n=0
uﬁs{a<ip"vn> - (ip"H,,(x, t)> H
n=0 XX n=0

(20)
> p"py=p(x,0)+pS”

el
st ws{e(Som ) -a (S 1] @

+pSt
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pt: vi(x,t) =2m

— 373

Where
av ap

o’p

ox2

Zp"H x, )=

n=0

An initial couple of terms of He’s polynomial i.e. Hy, (x, t)
are given below:

Ho(X, t) = VoxPoy + VoPoxyxs

Hi(x,t) = VoxP1x t VixPox T VoP1xx T V1Poxx5

Hj (X, ) = VoxP o tV1xP1xHV2xPox TV0P2xx TV1P 1xxt V2P 0xxs

On looking at the like term of pof Eq. (40) and (41)
and using Eq. (35) and He’s polynomial we get

P°:vo(x, ) = me™

p° i pox, t) = ne™

{a (sz - 1) —ne™ (4x? - 1)} ;

B
ra+p

B
pl ip(x, t) = ﬁe’xz [an (sz - 1) +(cm - nd)} ;
28 ,-3x*
p’: vy (x, t) = 2m15(197+2ﬁ) {—Cexzm (—1 + 4x2)
120%™ (3 —12x% + 4x‘*) ~2ae'n (7 —58x% + 40x")

+nde* (-1 + 4x2) _ 2nbe* (3 —18x% + 8x“)

+2n%(1 - 18x2 + 24x“)} ;

tZﬁe—ZXZ
r+2p)
2 x? 2
+2cmn (1 - 4x ) +2e* (acm + b (cm - 2dn) (—1 +2x ))

P’ ip,(x,t) = {e"zd (-cm + nd)

+4b%ne* (3 -12x% + 4x4) } ;

t3ﬁe—4x2 22
{— me
r(1+3p) T (1+p)

2 2
n+ 14ceX mn - 2de* n® + 4n® + 4cde®

p’ 1v3(x, t)=2m

2
+d262X 2

2
mx
—4d*nx?e®™ + n3x* (1056 - 768x2) _156cmnx’e”

4 x?

+36dn’x%e* - 248n°x* + 144cmnx’e

—48dn*x"e* + 4a3e (—15 +90x% - 60x* + 8x6)
—4p2e?’ (—15 +120x% - 100x* + 16x6>
_4a*ne® (—75 +924x% —1252x" + 336x6)

—2bcme®* (3 -18x% + 8x4)
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+4nbe* (de"Z (3 -18x% + 8x4>
~2bne* (—3 +72x% - 148x" + 48)(6))

~2ae* cm (9 - 66x% + 40x4)

+4ane® (de"2 (3 - 24x% + 16x4)

—4be* (—6 +63x% - 72x" + 16x6))

~8ane* (—7 +162x% - 380x* + 168x6) (I'(1+P))>

~2¢*(n (-cm +dn) (1 -18x% + 24X4>

+bn? (6 — 120x% + 248x" - 96x6)

+ae® (cm - dn) (1 - 10x% + 8x4)

+2bn (—3 +36x2 - 52x" + 16x6))F(1 N 2/3)} ;
t3ﬁe—3x2

r(1+3p)

2 2
-nd*e* - 4cdmne® ) +4emn?

2.2 x*

pPips(x,t) = (cdzeX +2c"m’e

_8ctm?x%eX

2
X
—16cdmnx*e - 72cmn®x* + 96cmn?x*

+6bd*ne® n (—1 + 2x2) (—15 +90x% - 60x" + 80x6)
+ 4a*cme®™ (3 -12x° + 4x4) +8b3ne?™

~ 4bcme® (de"2 (—1 + 2x2) +n (9 - 66x° + 40x“>)

+ 2acme"z(—de"Z (—1 + ZXZ) +2be" (3 —12x% + 4)(4)
~2n (7 —58x% + 40x“))) 22)

On using Eq. (42) and as p — 1, the approximation solu-
tion of Eq. (39) is

VX, ) =vo+Vvi+Vat...

P, t)=po+py+py+

3 Homotopy perturbation
transform method (HPTM)

To elucidate the basic idea of this method, we consider
coupled attractor for one-dimensional Keller-Segel equa-
tion:

U (X, t) =aUxx (X, t) - (U(X! t)Xx (p))x

px,t) = bp,, +cU(x,t) - dp(x, t) (20)
Subjected to initial condition:
U (x,0) = Uo(x) 1)
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Taking Laplace transform on both sides of equation (20)

LUt (x, )] = aL [Uxx (x, )] = LI(U (x, ) x, (), ]  (22)

Llp,(x, )] = LIbp,, + U (x, t) - dp(x, t)] (23)

Applying the differentiation property of Laplace trans-
form, we have

Uee 9= 20 1 avg - W6 0k, (), )
4)
p(X, s)= w + % L{bp,, +U(x,t)-dp(x, )] (25)

Taking the inverse Laplace transform on both sides of
equation (24) and (25)

U(x,t)=U(x,0)+L " {% L[aUsxx (x, ) = (U (x, t) x, (), ]}
(26)

px, 0)
S

p(x, t)= +L” {%L[prX+U(x, t) - dp(x, t)]}

@27)
Now, apply homotopy perturbation method, with

Ux,t) = ip"Un(x, t), NU(x, t) = ip"Hn(U) (28)

n=0 n=0

Where Hj (U) is He’s polynomial use to decompose the
nonlinear terms. This polynomial is of the form:

(o))

(29)

1
n! op

HH(UO’ Ula'-'a Un)=

n=0,1,2,...

Substituting equation (28) in equation (27) and (26), we get

b oo

ip"Un (x,t)=U(x,0)

n=0

+pL” { [az (Unp") = >_ (Hnp")
n=0

anpn(x, t) = P(X: O)

n=0

+pL’1

{b(Zp pnlx, t))xx"'C(Zp Un(x, 1))

n=1
-d Zp"pn(x, t)H

n=0

(1)
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The Laplace transform and the homotopy perturbation
method are coupled here by using He’s polynomials. Com-
paring the coefficients of like powers of p, the following

approximations are obtained

p°: Uo = Ulx,0), p, = plx,0)
p':Ui=1L" {%L[a UOXX—Hol},
pr=L" EL {bPosx + cUo - dpo}}
p?:Up=L7! {%L[a Usex —Hll},

101
py=L" [sL {bp 1+ cUs - dp1}} ’

-1 J1
p’:Us= L7 {EL[“ UZXX—HZ]}

32)

And so on. Setting, p = 1 results the approximate solution

of equation (20)

U(X,t)=U0+U1+U2+...

3.1 Application of HPTM

s PG ) =po+prtpr+...,

(33)

In the order to understand solution of the homotopy per-
turbation transform method, we consider the following ex-

ample:

Example: The simplified form of the Keller Segel equation

in one dimension in given as

Pv_ v o (0
otF ~ %o " ox VoAV
aﬁp
Y b +cv—dp

Subject to the boundary condltlons

v(x,0) = m exp(-x%), p(x,0) = nexp(-x>)

v x(0)
ox =0

Hence Keller-Segel equation (14) reduced to

Case-I: Consider y (p) = 1, then % (

otf "~ ox?
Fp _p9P >° p
ot " ox?
By applying HPTM on equation (16), we have

+cv-dp

(34)

(35)

(36)

ip”vn =v(x,0)+pL! {;L{a(i’;p"v“) }}

(37)
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%19 Pn=p(x,0)+pL”" { { (Zp pn) X}}
G ]

On looking at the coefficients of like powers of p of Eq. (17)
and (18) and using (15), we have:

2
p° vy = me™;

p°:py=ne™;

1, amt —x?
p ivy= F(1+/3)( 2e7 +4x%e™* )
B
1, _ t -x2 2 : .
D P, 7]‘(1+ﬁ)e [2bn(2x 1)+(cm nd)},
2
2, _ 4a’me™ 28 B 2 4y,
p Z_W(B 12x° + 4x ),
2., _ X2 t2 _
p ip,=e m[d( cm + dn)

+2acm (—1 +2x2 ) +2b <—1 + 2x2) (cm - 2dn)

+4b*n(3 - 12x% + 4xM |

38
3 3. —x? 6 4
:vs = 8a’me™ (8x° - 60x* + 90x? 15)
Pebs F(A+3p)’
p’ip, = e L[dz (cm-dn)+b (6 -24x° + 8x4)
3 I'(1+3p)

+2acm (d - 2dx2) +4b? (cm - 3dn) (3 —12x% + 4x4)
+8b°n (—15 +90x% - 60x" + 8x6) +4a’cm (3 —12x% + 4x4)

+2bd (-2cm + 3dn) (—1 + 2x2)];
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The approximate solution is obtained by lettingp — 1, & 8 — 1i.e.
VX, t)=vo+Vvi+Va+V3+...

P, =py+py+py+p3+...
2 3
v(x,t) = me™ (1 +a (—2 + 4)(2) { +a’ (12 - 48x° + 16x4) t—) +me™ <a3 (—120 +720x% - 480x* + 64x6) %) ol

2
*Xz
1
Be [ d*(cm-dn)+b (6-24x* +8x*) + 2acm (d - 2dx?) + 4b* (cm - 3dn) (3 - 12x? + 4x*)

6 ( +8b°n (—15 +90x% - 60x* + 8x6) +4a’cm (3 - 12x2 + 4x*) + 2bd (-2cm + 3dn) (-1 + 2x?) )

2 -x*
p(x, t)= ne ® 4+ L€ te

((cm —-dn)-2nb (2)(2 - 1)) + (d (-cm +dn) + 2acm (—1 + 2x2>)

Case-II: Consider the Keller Siegel equation with sensitivity function y (p) = p. Then

2
0 <va)((p)) _ovop +Va D

ox ox ) oxox NV ox?

Hence Keller-segel equation (14) reduces to

o _ v (ava£+ bzp)

ot " %%x2 " \oxox Voxz
%=bﬁ+cv—dp (39)
ot ox2

Now, for the solution of Eq. (19), we apply HPTM on Eq. (19), we have

oo 2 oo oo
Zp"vn =v(x,0)+pL™? {1L{aaaxz (Zp"U,,) —anH,,H (40)
n=0 n=0

n=0

> p"p,= p(x,0)+pL" [SL {baxz <Zp"pn> H +pL™! [SL {Caxz (Zﬁ‘m) -d (Zﬂ’m) H (41)
n=0 n=0 n=0

Where X

o _(dvop 9%

nz:;p Hn (. 8) = (ax ox " Vox?

An initial couple of terms of He’s polynomial i.e. Hn (x, t) are given below:
Ho (X, t) = VoxPoy + VoPoxyxs

Hi (X, £) = VoxP1y + VixPox + V0P 1xx T V1Poxx>
Hy (X ) = VoxPax + VixP1x + VaxPox + VOPoxx + V1P 1xx + V2Poxxs

On looking at the like terms of p of Eq. (20) & (21) and using Eq. (15) and He’s polynomial, we get
2
PO ivo(x, t) = me™ ;
2
p° 1 pox, ) =ne™ ;
plivix, )= 2mte >’ {n —4nx® +ae” (-1 + 2x2)};
prip(x,t) = te™ [2bn (2x* - 1) + (cm - nd)];
p? vy (x, t) = mt? (—cme’z"2 (-1+4x?) + 2a%e™ (3-12x%+ 4x4))
- mt? (Zane‘z"2 (7 - 58x% + 40x*) + dne=2¥ (-1+ 4x2)) ~ mt2(2be >’ (3-18x% +8x%)
+2ne > (1-18x% + 24x4));
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P’ ip,(x,y) = e X2 (—cdme"2 + dzne"2>

+ e’ ¢ (2cmn - 8emnx? + 2acme” (-1 + 2x2))

+le2p (Zbe"2 (cm-2dn) (-1 + ZXZ))

+ e 2(4b?e n (3 - 12x7 + 4x*))
The solution of Eq. (19) obtained as p — 1, i.e.

VX, t)=vo+Vvi+Vva+...

X, t) = +0,+05+...
P, t)=py+py+p; @

v t)=me™ +2mte (n —4nx® + ae*’ (—1 + ZXZ)) A

~mt?(2ae > n (7 —58x% + 40x‘*) tn (de‘z"z (-1 + 4x2))

+... 0.0002
"l -
i t)0.0001 %
0.0000

p(x, t) = ne™ +te™ (cm - (nd +b (2 - 4x2)>)

+ %l‘ze"z"2 (—cde"zm + dze"zn>
20
+ %tze"z"2 (Zcmn — 8cmnx® + 2ace’ m (—1 + 2x2)) ®)
+ %tze'z"2 (Zbex2 (cm - 2dn) (—1 + ZXZ))
+ %tze"z"2 (4b2e"2n (3 —12x% + 4x4)) ...,
0.00010
llljxc.l]n’un’usk'l
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—D.U’DU’DE»[
0.0
(c)

(d)

Figure 1: The surface graph of approximate solution v (x, t) for case-
I:@)v(x,t) for =0.4(b)v(x,t)forf = 0.6 () v(x,t)for = 0.8
dvx,t)forp=1
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Figure 2: The surface graph of approximate solution p (x, t) for case-  figure 3: The surface graph of approximate solution v (x, ¢) for case-
l:@p (x, ) for B = 0.4(b) p (x, t) for B = 0.6 (c) p (x, t) for B = I1: @) v (x, t) for B = 1(b) v (x, t) for B = 0.8 () v (x, t) for B = 0.6 (d)
0.8(d)p(x,t)forp=1 v(x, t) for B = 0.4
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Figure 5: The surface graph of approximate solution v(x, t)
Figure 4: The surface graph of approximate solution p (x, t) for case- andp(x, t) for B = 1: (a) v(x, t) for case-I (b) p(x, t) for case-l (c)
l: @) p (x, t)for f=1(b) p(x,t)for f=0.8(c)p (x, t)for f = 0.6 (d)  v(x, t) for case-Il (d) p(x, t) for case-lI
p(x,t)forf=0.4
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4 Results and discussion

In this section, the numerical solution of examples ob-
tained by HPSTM and HPTM through a graphical represen-
tation are studied. The surface graphs of Keller-Segel equa-
tion for respective cases (I & II) at different values of 8 are
represented in Figures 1-4. For graphical representation of
solution we take m = 0.000012, n = 0.000016, a =
0.5, b = 3, c =1, d = 2.Figure 1 represents solution
v(x,t)atf = 0.4, = 0.6, B = 0.8, B = 1, respectively,
whereas Figure 2 indicates p (x, t) corresponding to differ-
ent values of 8 for Case-I.

Figures 3 and 4 show surface graphs of solution v (x, t)
and p (x, t) for Case-II at different values of . Figure 5 rep-
resents solution v (x, t) and p (x, t) obtained from HPTM
for both cases. It is clear from the graphs that results of
HPSTM and HPTM are in good harmony with each other
forp =1.

5 Conclusion

In this work, homotopy perturbation transform method
(HPTM) combined with sumudu transform has been
successfully applied to approximate solution for a system
of nonlinear partial differential equations derived from an
attractor for a one-dimensional Keller-Segel dynamics sys-
tem. On comparing the results of this method with HPTM,
it is observed HPSTM is extremely simple, straightforward
and easy to handle the nonlinear terms. Maple 13 package
is used to calculate series obtained from iteration. Further,
the method needs much less computational work which
shows fast convergent for solving nonlinear system of
partial differential equations.
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