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Abstract: In this paper, homotopy perturbation sumudu
transformmethod (HPSTM) is proposed to solve fractional
attractor one-dimensional Keller-Segel equations. The HP-
STM is a combined formof homotopyperturbationmethod
(HPM) and sumudu transform using He’s polynomials.
The result shows that the HPSTM is very e�cient and
simple technique for solving nonlinear partial di�erential
equations. Test examples are considered to illustrate the
present scheme.
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1 Introduction
The fractional calculus deal with number of problem aris-
ing in the �eld of �uid mechanics, biology, di�usion, frac-
tional signal, image processing and many other physi-
cal process. Fractional di�erential equations are used to
model these types of the problems. In the various �eld of
engineering and science, it is very important to �nd the ap-
proximate or the exact solution of some nonlinear partial
di�erential equations [1]. There are several potent meth-
ods such as Homotopy perturbation [2, 3]; homotopy per-
turbation transformation method (HPTM) [4] and homo-
topy perturbation sumudu transformation method (HP-
STM) have been proposed to obtain the approximate or the
exact solutions of nonlinear equations [5–9].

In 1970, Keller and Segel presented a mathemati-
cal formulation of cellular slime mold aggregation pro-
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cess [10]. Recently many researchers use di�erent meth-
ods to solve Keller- Segel equation [11–13]. Di�erent types
of numerical methods are used to solve nonlinear par-
tial di�erential equations [14–19]. The solution of multidi-
mensional linear and nonlinear partial di�erential equa-
tions are established by using combination of least square
approximation and homotopy perturbation approxima-
tion [20]. A new semi-analytical method called the homo-
topy analysis Shehu transform method is used to solve
multidimensional fractional di�usion equations and this
method is combination of the homotopy analysis method
and the Laplace-type integral transform transform [21]. So-
lution of Reaction-Di�usion-Convection Problemandnon-
linear equation is discussed by homotopy perturbation
technique [22, 23]. Non-linear Fisher equation is solved
with help of homotopy perturbation method then solu-
tion is compared with solution from Variational Itera-
tion Method (VIM) and Adomian Decomposition Method
(ADM) [24]. In this paper, we propose HPSTM for the so-
lution of fractional attractor one dimensional Keller Siegel
equation. The simpli�ed form of the Keller Segel equation
in one dimension is given as [25]:

∂U(x, t)
∂t = a ∂

2U(x, t)
∂x2 − ∂

∂x

(
U (x, t) ∂χ(ρ)∂x

)

∂ρ(x, t)
∂t = b ∂

2ρ(x, t)
∂x2 + cU (x, t) − dρ(x, t) (1)

Subject to the boundary conditions

∂U (α, t)
∂x = ∂U (β, t)

∂x = ∂ρ (α, t)∂x = ∂ρ (β, t)∂x = 0

And the initial conditions

U (x, 0) = U0(x), ρ(x, 0) = ρ0(x), x ∈ I (2)

Where I = (α, β) is a bounded open interval and a, b, c
and d are positive constants. The unknown functions
U(x, t) denote the concentration of amoebae where ρ(x, t)
denote the concentration of the chemical substance in
I × (0,∞). The chemo tactic term ∂

∂x

(
U (x, t) ∂χ(ρ)∂x

)
indi-

cates the sensitivity of the cells, χ(ρ) called the sensitivity
function of ρ ∈ (0,∞). Di�erent form of χ(ρ) like ρ, ρ2 and
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log ρ have been suggested. But in this paper, we discuss
the two cases of the fractional attractor one dimensional
Keller- Siegel equations one with chemo tactic sensitivity
function χ (ρ) = 1 and other with χ (ρ) = ρ.

De�nition: A real function f (t) is said to be in
space Cµ , µ ∈ R, if ∃ a real number p(> µ) such
that f (t) = tpg(t), where g (t) ∈ C [0,∞) and it is said to
be in the space Cmµ i� fm ∈ Cµ , m ∈ N

De�nition: The Riemann- Liouville fractional integral op-
erator of order α > 0 of a function f (t) ∈ Cµ, µ ≥ − 1 is
de�ned as

Jα f (t) = 1
Γ (α)

t∫
0

(t − τ)α−1 f (τ) dτ, J0f (t) = f (t)

De�nition: The Caputo fractional derivative of f (t) in the
Caputo sense is given by Podlubny (1999) and Debnath
(2003)

Dαt f (t) = Jm−αDm f (t) =
1

Γ (m − α)

t∫
0

(t − τ)m−α−1f (m) (τ) dτ,

For m − 1 < α ≤ m, m ∈ N, t > 0, where Dαt is Caputo
derivative operator and Γ (α) is the Gamma function.

Sumudu Transformation: The Sumudu transformation
over the set of function

A =
{
f (t)∃M, τ1, τ2 > 0,∣∣f (t)∣∣ < Me |t|

τj if t ∈ (−1)j × [0,∞)
}

is de�ned by Watugala (1993) as

S
[
f (t)
]
=

∞∫
0

1
u f (t) e

− t
u dt, u ∈ (−τ1, τ2)

Some properties of the Sumudu transformations are

S [1] = 1, S
[

tm
Γ (m + 1)

]
= um , m > 0

The Sumudu transformation of the Caputo fractional
derivative is de�ned as

S[Dαt f (x, t)] = u−αS[f (x, t)] −
m−1∑
k=0

u−α+k f (k)(0+),

m − 1 < α ≤ m.

2 Homotopy perturbation Sumudu
transformation method (HPSTM)

To illustrate the idea of HPSTM technique, we consider the
fractional attractor one dimensional Keller-Segel equation

Dµt U(x, t) = a
∂2U(x, t)
∂x2 − ∂

∂x

(
U(x, t)∂χ(ρ)∂x

)

Dηt ρ(x, t) = b
∂2ρ(x, t)
∂x2 + cU (x, t) − dρ(x, t),

0 < µ ≤ 1, 0 < η ≤ 1 (3)

Subject to the conditionsU (x, 0) = f (x) and ρ (x, 0) = g(x),
Where Dµt and D

η
t is the Caputo fractional derivative of

the functionU(x, t) and ρ(x, t) respectively. Apply sumudu
transformation on both sides of the equation (3), we have

S
[
Dµt U(x, t)

]
= S
[
a ∂

2U(x, t)
∂x2 − ∂

∂x

(
U (x, t) ∂χ(ρ)∂x

)]

S
[
Dηt ρ(x, t)

]
= S
[
b ∂

2ρ(x, t)
∂x2 + cU (x, t) − dρ(x, t)

]
(4)

Using di�erentiation property of the sumudu transforma-
tion and the initial conditions, we get

S [U (x, t)] = f (x)+uαS
[
a ∂

2U(x, t)
∂x2 − ∂

∂x

(
U (x, t) ∂χ(ρ)∂x

)]

S
[
ρ(x, t)

]
= g (x) + uηS

[
b ∂

2ρ(x, t)
∂x2 + cU (x, t) − dρ(x, t)

]
(5)

Operating with inverse sumudu transformation on both
sides,

U (x, t) = f (x)+S−1uαS
[
a ∂

2U(x, t)
∂x2 − ∂

∂x

(
U (x, t) ∂χ(ρ)∂x

)]

ρ (x, t) = g (x) + S−1uηS
[
b ∂

2ρ(x, t)
∂x2 + cU (x, t) − dρ(x, t)

]
(6)

Now we apply Homotopy perturbation method,

U (x, t) =
∞∑
n=0

Un(x, t)pn and ρ(x, t) =
∞∑
n=0

ρn(x, t)pn (7)

where the nonlinear term can be decomposed as

∂
∂x

(
U (x, t) ∂χ(ρ)∂x

)
= NY(x, t) =

∞∑
n=0

pnHn (8)
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for some He’s polynomial Hn given by

Hn =
1
n!

∂n

∂pn

[
N
( ∞∑
n=0

Yn (x, t) pn
)]

p=0

, n = 0, 1, 2, 3, . . . .

(9)

Substituting these values in (5), we have
∞∑
n=1

pnUn (x, t) = U (x, 0) + pS−1[
uµS

{
a
( ∞∑
n=1

pnUn (x, t)

)
xx

−
∞∑
n=1

pnHn

}]

∞∑
n=1

pnρn (x, t) = ρ (x, 0) + pS−1[
uηS

{
b
( ∞∑
n=1

pnρn (x, t)

)
xx

+ c
( ∞∑
n=1

pnUn (x, t)

)

−d
∞∑
n=1

pnρn (x, t)

}]
(10)

On comparing the like powers of p on both sides,

U0 = U (x, 0) = f (x), U1 = S−1[uµS{aU0xx − H0}],
U2 = S−1[uµS{aU1xx − H1}] (11)

ρ0 = ρ (x, 0) = g(x), ρ1 = S
−1 [uηS {bρ0xx + cUo − dρo}]

ρ2 = S
−1 [uηS {bρ1xx + cU1 − dρ1

}]
(12)

Similarlywe can�ndall the values ofU0 , U1, U2, U3, . . . .
and ρ0, ρ1, ρ2, . . . .
The approximate solutionof equation (3) canbe calculated
by setting p → 1.

U (x, t) = U0+U1+U3+· · · , ρ(x, 0) = ρ0+ρ1+ρ2+· · · (13)

2.1 Application of HPSTM

In order tounderstand the solutionprocedure of thehomo-
topy perturbation sumudu transformmethod,we consider
the following examples:
Solution of fractional attractor 1-D Keller Segel equation
Example: Consider the following coupled system:

∂βv
∂t = a ∂

2v
∂x2 −

∂
∂x

(
v ∂χ(ρ)∂x

)

∂βρ
∂t = b ∂

2ρ
∂x2 + cv − dρ, 0 < β ≤ 1 (14)

Subject to the boundary conditions

v (x, 0) = m exp(−x2), ρ(x, 0) = n exp(−x2) (15)

Case-I:Consider the sensitivity function χ (ρ) = 1, then the
chemo-tactic term i.e. ∂

∂x

(
v ∂χ(ρ)∂x

)
= 0. Hence Keller Segel

equation reduces to:

∂βv
∂t = a ∂

2v
∂x2 ,

∂βρ
∂t = b ∂

2ρ
∂x2 + cv − dρ, 0 < β ≤ 1 (16)

By applying HPSTM on Eq. (36), we have

∞∑
n=0

pnvn = v (x, 0)+pS
−1
[
uβS

{
a
( ∞∑
n=1

pnvn

)
xx

}]
(17)

∞∑
n=0

pnρn = ρ (x, 0) + pS−1
{
uβS

{
b
( ∞∑
n=0

pnρn

)
xx

}}

+ pS−1
{
uβS

{
c
( ∞∑
n=0

pnvn

)
− d(

∞∑
n=0

pnρn)
}}

(18)

On looking at the like terms of p of Eq. (37) & (38) andusing
(35), we have

p0 : v0 = me−x
2
;

p0 : ρ0 = ne−x
2
;

p1 : v1 = 2ame−x
2
(2x2 − 1) tβ

Γ (1 + β)
,

p1 : ρ1 =
tβ

Γ (1 + β)

[
(cm − nd) − 2bn

(
2x2 − 1

)
e−x

2]
;

p1 : ρ1 =
a2mt2β
Γ (1 + 2β)

e−x
2 [
12 − 48x2 + 16x4

]
;

p2 : v2 =
t2β

Γ (1 + 2β)
e−x

2 [
d (−cm + dn) + 2acm

(
−1 + 2x2

)
+2b

(
−1 + 2x2

)
(cm − 2dn) + 4b2(3 − 12x2 + 4x4)

]
;

p3 : v3 =
a3mt3β
Γ (1 + 3β)

e−x
2 [
−120 + 720x2 − 480x4 + 64x6

]
;

p3 : ρ3 =
t3β

Γ (1 + 3β)
e−x

2 [
d2 (cm − dn) + b

(
6 − 24x2 + 8x4

)
+2acm

(
d − 2dx2

)
+ 4b2 (cm − 3dn)

(
3 − 12x2 + 4x4

)
+8b3n

(
−15 + 90x2 − 60x4 + 8x6

)
+4a2cm

(
3 − 12x2 + 4x4

)
+2bd (−2cm + 3dn) (−1 + 2x2)

]
;
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The approximation solution of Eq. (36) obtained as p → 1,
i.e.

v (x, t) = v0 + v1 + v2 + . . .

ρ (x, t) = ρ0 + ρ1 + ρ2 + . . .

v (x, t) = me−x
2
(
1 + a

(
−2 + 4x2

) tβ
Γ (1 + β)

+a2(12 − 48x2 + 16x4) t2β
Γ (1 + 2β)

)
+ me−x

2
((
a3(−120 + 720x2 − 480x4 + 64x6

) t3β
Γ (1 + 3β)

)
;

ρ (x, t) = ne−x
2
+ tβ
Γ (1 + β)

[
(cm − nd) − 2bn

(
2x2 − 1

)
e−x

2]
+ t2β
Γ (1 + 2β)

[
d (−cm + dn) + 2acm

(
−1 + 2x2

)
+2b

(
−1 + 2x2

)
(cm − 2dn) + 4b2(3 − 12x2 + 4x4)

]
+ t3β
Γ (1 + 3β)

e−x
2 [
d2 (cm − dn) + b

(
6 − 24x2 + 8x4

)
+2acm

(
d − 2dx2

)
+ 4b2 (cm − 3dn)

(
3 − 12x2 + 4x4

)
+8b3n

(
−15 + 90x2 − 60x4 + 8x6

)
+4a2cm

(
3 − 12x2 + 4x4

)
+ 2bd (−2cm + 3dn) (−1 + 2x2)

]
Case-II: Consider the sensitivity function χ (ρ) = ρ, then
the chemo-tactic term i.e. ∂

∂x

(
v ∂χ(ρ)∂x

)
= ∂v
∂x

∂ρ
∂x +v

∂2ρ
∂x2 ; hence

Keller –Segel equation reduces to

∂βv
∂t = a ∂

2v
∂x2 −

∂
∂x

(
∂v
∂x
∂ρ
∂x + v ∂

2ρ
∂x2

)
,

∂βρ
∂t = b ∂

2ρ
∂x2 + cv − dρ, 0 < β ≤ 1 (19)

Now, for the solution of Eq. (39), we apply HPSTM on Eq.
(37), we have

∞∑
n=0

pnvn = v (x, 0)

+ pS−1
[
uβS

{
a
( ∞∑
n=0

pnvn

)
xx

−
( ∞∑
n=0

pnHn(x, t)
)}]

(20)

∞∑
n=0

pnρn = ρ (x, 0) + pS−1
[
uβS

{
b
( ∞∑
n=0

pnρn

)
xx

}]

+ pS−1
[
uβS

{
c
( ∞∑
n=0

pnvn

)
− d
( ∞∑
n=0

pnρn

)}]
. (21)

Where
∞∑
n=0

pnHn (x, t) =
∂v
∂x
∂ρ
∂x + v ∂

2ρ
∂x2

An initial couple of terms of He’s polynomial i.e. Hn (x, t)
are given below:
Ho(x, t) = v0xρ0x + v0ρ0xx;
H1(x, t) = v0xρ1x + v1xρ0x + v0ρ1xx + v1ρ0xx;
H2 (x, t) = v0xρ2x+v1xρ1x+v2xρ0x+v0ρ2xx+v1ρ1xx+v2ρ0xx;
...

On looking at the like term of pof Eq. (40) and (41)
and using Eq. (35) and He’s polynomial we get

p0 : v0(x, t) = me−x
2
;

p0 : ρ0(x, t) = ne−x
2
;

p1 : v1 (x, t) = 2m tβ
Γ (1 + β)

{
a
(
2x2 − 1

)
− ne−x

2
(4x2 − 1)

}
;

p1 : ρ1(x, t) =
tβ

Γ (1 + β)
e−x

2 [
2bn

(
2x2 − 1

)
+ (cm − nd)

]
;

p2 : v2 (x, t) = 2m t2βe−3x
2

Γ (1 + 2β)

{
−cex

2
m
(
−1 + 4x2

)
+2a2e2x

2 (
3 − 12x2 + 4x4

)
− 2aex

2
n
(
7 − 58x2 + 40x4

)
+ndex

2 (
−1 + 4x2

)
− 2nbex

2 (
3 − 18x2 + 8x4

)
+2n2(1 − 18x2 + 24x4)

}
;

p2 : ρ2 (x, t) =
t2βe−2x

2

Γ (1 + 2β)

{
ex

2
d (−cm + nd)

+2cmn
(
1 − 4x2

)
+ 2ex

2
(acm + b (cm − 2dn)

(
−1 + 2x2

)
)

+4b2nex
2 (

3 − 12x2 + 4x4
)}

;

p3 : v3 (x, t) = 2m t3βe−4x
2

Γ (1 + 3β) (Γ (1 + β))2
{
−cdme2x

2

+d2e2x
2
n + 14cex

2
mn − 2dex

2
n2 + 4n3 + 4cde2x

2
mx2

−4d2nx2e2x
2
+ n3x4

(
1056 − 768x2

)
− 156cmnx2ex

2

+36dn2x2ex
2
− 248n3x2 + 144cmnx4ex

2

−48dn2x4ex
2
+ 4a3e3x

2 (
−15 + 90x2 − 60x4 + 8x6

)
−4b2e2x

2 (
−15 + 120x2 − 100x4 + 16x6

)
−4a2ne2x

2 (
−75 + 924x2 − 1252x4 + 336x6

)
−2bcme2x

2 (
3 − 18x2 + 8x4

)
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+4nbex
2 (
dex

2 (
3 − 18x2 + 8x4

)
−2bnex

2 (
−3 + 72x2 − 148x4 + 48x6

))
−2ae2x

2
cm
(
9 − 66x2 + 40x4

)
+4anex

2 (
dex

2 (
3 − 24x2 + 16x4

)
−4bex

2 (
−6 + 63x2 − 72x4 + 16x6

))
−8anex

2 (
−7 + 162x2 − 380x4 + 168x6

)
(Γ (1 + β))2

−2ex
2
(n (−cm + dn)

(
1 − 18x2 + 24x4

)
+bn2

(
6 − 120x2 + 248x4 − 96x6

)
+aex

2
(cm − dn)

(
1 − 10x2 + 8x4

)
+2bn

(
−3 + 36x2 − 52x4 + 16x6

)
)Γ (1 + 2β)

}
;

p3 : ρ3 (x, t) =
t3βe−3x

2

Γ (1 + 3β)

(
cd2ex

2
+ 2c2m2ex

2

−nd2ex
2
− 4cdmnex

2)
+ 4cmn2 − 8c2m2x2ex

2

− 16cdmnx2ex
2

− 72cmn2x2 + 96cmn2x4

+ 6bd2ne2x
2
n
(
−1 + 2x2

)(
−15 + 90x2 − 60x4 + 80x6

)
+ 4a2cme2x

2 (
3 − 12x2 + 4x4

)
+ 8b3ne2x

2

− 4bcmex
2 (
dex

2 (
−1 + 2x2

)
+ n
(
9 − 66x2 + 40x4

))
+ 2acmex

2
(−dex

2 (
−1 + 2x2

)
+ 2bex

2 (
3 − 12x2 + 4x4

)
− 2n

(
7 − 58x2 + 40x4

)
)) (22)

On using Eq. (42) and as p → 1, the approximation solu-
tion of Eq. (39) is

v (x, t) = v0 + v1 + v2 + . . .

ρ (x, t) = ρ0 + ρ1 + ρ2 + . . .

3 Homotopy perturbation
transform method (HPTM)

To elucidate the basic idea of this method, we consider
coupled attractor for one-dimensional Keller-Segel equa-
tion:

Ut (x, t) = aUxx (x, t) − (U (x, t) χx (ρ))x

ρt(x, t) = bρxx + cU (x, t) − dρ(x, t) (20)

Subjected to initial condition:

U (x, 0) = U0(x) (21)

Taking Laplace transform on both sides of equation (20)

L [Ut (x, t)] = aL [Uxx (x, t)] − L[(U (x, t) χx (ρ))x] (22)

L[ρt(x, t)] = L[bρxx + U (x, t) − dρ(x, t)] (23)

Applying the di�erentiation property of Laplace trans-
form, we have

U (x, s) = U(x, 0)s + 1
s L [aUxx (x, t) − (U (x, t) χx (ρ))x ]

(24)

ρ (x, s) = ρ(x, 0)s + 1
s L [ bρxx + U (x, t) − dρ(x, t)] (25)

Taking the inverse Laplace transform on both sides of
equation (24) and (25)

U (x, t) = U (x, 0)+L−1
{
1
s L [aUxx (x, t) − (U (x, t) χx (ρ))x ]

}
(26)

ρ (x, t) = ρ(x, 0)s + L−1
{
1
s L [bρxx + U (x, t) − dρ(x, t)]

}
(27)

Now, apply homotopy perturbation method, with

U (x, t) =
∞∑
n=0

pnUn(x, t), NU(x, t) =
∞∑
n=0

pnHn(U) (28)

Where Hn (U) is He’s polynomial use to decompose the
nonlinear terms. This polynomial is of the form:

Hn (U0, U1, . . . , Un) =
1
n!

∂n

∂pn

[
N
( n∑
i=0

piUi(x, t)
)]

,

n = 0, 1, 2, . . . (29)

Substituting equation (28) in equation (27) and (26), we get
∞∑
n=0

pnUn (x, t) = U (x, 0)

+ pL−1
{
1
s L

[
a
∞∑
n=0

(
Unpn

)
xx −

∞∑
n=0

(
Hnpn

)]}
(30)

∞∑
n=0

pnρn(x, t) = ρ(x, 0)

+ pL−1
[
1
s

{
b(

∞∑
n=1

pnρn(x, t))xx + c(
∞∑
n=1

pnUn(x, t))

−d
∞∑
n=0

pnρn(x, t)
}]

(31)



Dinkar Sharma et al., Approximate solution for fractional attractor one-dimensional Keller-Segel equations | 375

The Laplace transform and the homotopy perturbation
method are coupled here by using He’s polynomials. Com-
paring the coe�cients of like powers of p, the following
approximations are obtained

p0 : U0 = U(x, 0), ρ0 = ρ(x, 0)

p1 : U1 = L−1
{
1
s L[a U0xx − H0]

}
,

ρ1 = L
−1
[
1
s L
{
bρ0xx + cUo − dρo

}]
p2 : U2 = L−1

{
1
s L[a U1xx − H1]

}
,

ρ2 = L
−1
[
1
s L
{
bρ1xx + cU1 − dρ1

}]
,

p3 : U3 = L−1
{
1
s L[a U2xx − H2]

}
(32)

And so on. Setting, p = 1 results the approximate solution
of equation (20)

U (x, t) = U0 + U1 + U2 + . . . , ρ(x, t) = ρ0 + ρ1 + ρ2 + . . . ,
(33)

3.1 Application of HPTM

In the order to understand solution of the homotopy per-
turbation transformmethod,we consider the following ex-
ample:
Example: The simpli�ed form of the Keller Segel equation
in one dimension in given as

∂βv
∂tβ

= a ∂
2v
∂x2 −

∂
∂x

(
v ∂∂x χ(ρ)

)
∂βρ
∂tβ

= b ∂
2ρ
∂x2 + cv − dρ (34)

Subject to the boundary conditions

v (x, 0) = m exp(−x2), ρ(x, 0) = nexp(−x2) (35)

Case-I: Consider χ (ρ) = 1, then ∂
∂x

(
v ∂χ(ρ)∂x

)
= 0

Hence Keller-Segel equation (14) reduced to

∂βv
∂tβ

= a ∂
2v
∂x2 (36)

∂βρ
∂tβ

= b ∂
2ρ
∂x2 + cv − dρ

By applying HPTM on equation (16), we have
∞∑
n=0

pnvn = v (x, 0) + pL
−1
{

1
sβ
L
{
a
( ∞∑
n=0

pnvn

)
xx

}}
(37)

∞∑
n=0

pnρn = ρ (x, 0) + pL−1
{

1
sβ
L
{
b
( ∞∑
n=0

pnρn

)
xx

}}

+ pL−1
{

1
sβ
L
{
c
( ∞∑
n=0

pnvn

)
− d(

∞∑
n=0

pnρn)
}}

(38)

On looking at the coe�cients of like powers of p of Eq. (17)
and (18) and using (15), we have:

p0 : v0 = me−x
2
;

p0 : ρ0 = ne
−x2 ;

p1 : v1 =
amtβ
Γ (1 + β)

(−2e−x
2
+ 4x2e−x

2
);

p1 : ρ1 =
tβ

Γ (1 + β)
e−x

2 [
2bn

(
2x2 − 1

)
+ (cm − nd)

]
;

p2: v2 =
4a2me−x

2
t2β

Γ (1 + 2β)
(3 − 12x2 + 4x4);

p2 : ρ2 = e
−x2 t2β

Γ (1 + 2β)
[d (−cm + dn)

+ 2acm
(
−1 + 2x2

)
+ 2b

(
−1 + 2x2

)
(cm − 2dn)

+ 4b2n(3 − 12x2 + 4x4) ];

p3 : v3 = 8a3me−x
2
(8x6 − 60x4 + 90x2 − 15) t3β

Γ (1 + 3β)
;

p3 : ρ3 = e
−x2 t3β

Γ (1 + 3β)
[d2 (cm − dn) + b

(
6 − 24x2 + 8x4

)
+ 2acm

(
d − 2dx2

)
+ 4b2 (cm − 3dn)

(
3 − 12x2 + 4x4

)
+ 8b3n

(
−15 + 90x2 − 60x4 + 8x6

)
+ 4a2cm

(
3 − 12x2 + 4x4

)
+ 2bd (−2cm + 3dn)

(
−1 + 2x2

)
];
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The approximate solution is obtained by letting p → 1, & β → 1 i.e.

v (x, t) = v0 + v1 + v2 + v3 + . . .

ρ (x, t) = ρ0 + ρ1 + ρ2 + ρ3 + . . .

v (x, t) = me−x
2
(
1 + a

(
−2 + 4x2

) t
1 + a2

(
12 − 48x2 + 16x4

) t2
2

)
+me−x

2
(
a3
(
−120 + 720x2 − 480x4 + 64x6

) t3
6

)
+. . . .

ρ (x, t) = ne−x
2
+ te

−x2

1

(
(cm − dn) − 2nb

(
2x2 − 1

))
+ t

2e−x
2

2

(
d (−cm + dn) + 2acm

(
−1 + 2x2

))
+ t

3e−x
2

6

(
d2 (cm − dn) + b

(
6 − 24x2 + 8x4

)
+ 2acm

(
d − 2dx2

)
+ 4b2 (cm − 3dn)

(
3 − 12x2 + 4x4

)
+8b3n

(
−15 + 90x2 − 60x4 + 8x6

)
+ 4a2cm

(
3 − 12x2 + 4x4

)
+ 2bd (−2cm + 3dn)

(
−1 + 2x2

) ) + . . . .

Case-II: Consider the Keller Siegel equation with sensitivity function χ (ρ) = ρ. Then

∂
∂x

(
v ∂χ(ρ)∂x

)
= ∂v
∂x
∂ρ
∂x + v ∂

2ρ
∂x2 ;

Hence Keller-segel equation (14) reduces to

∂v
∂t = a

∂2v
∂x2 −

(
∂v
∂x
∂ρ
∂x + v ∂

2ρ
∂x2

)
,

∂ρ
∂t = b

∂2ρ
∂x2 + cv − dρ (39)

Now, for the solution of Eq. (19), we apply HPTM on Eq. (19), we have

∞∑
n=0

pnvn = v (x, 0) + pL
−1
[
1
s L
{
a ∂

2

∂x2

( ∞∑
n=0

pnUn

)
−
∞∑
n=0

pnHn

}]
(40)

∞∑
n=0

pnρn = ρ (x, 0) + pL−1
[
1
s L
{
b ∂

2

∂x2

( ∞∑
n=0

pnρn

)}]
+ pL−1

[
1
s L
{
c ∂

2

∂x2

( ∞∑
n=0

pnρn

)
− d
( ∞∑
n=0

pnρn

)}]
(41)

Where
∞∑
n=0

pnHn (x, t) =
(
∂v
∂x
∂ρ
∂x + v ∂

2ρ
∂x2

)
An initial couple of terms of He’s polynomial i.e. Hn (x, t) are given below:

Ho(x, t) = v0xρ0x + v0ρ0xx;

H1 (x, t) = v0xρ1x + v1xρ0x + v0ρ1xx + v1ρ0xx;

H2 (x, t) = v0xρ2x + v1xρ1x + v2xρ0x + v0ρ2xx + v1ρ1xx + v2ρ0xx;

On looking at the like terms of p of Eq. (20) & (21) and using Eq. (15) and He’s polynomial, we get
p0 : v0(x, t) = me−x

2
;

p0 : ρ0(x, t) = ne−x
2
;

p1 : v1(x, t) = 2mte−2x
2
{
n − 4nx2 + aex

2
(−1 + 2x2)

}
;

p1 : ρ1(x, t) = te−x
2 [

2bn
(
2x2 − 1

)
+ (cm − nd)

]
;

p2 : v2 (x, t) = mt2
(
−cme−2x

2 (
−1 + 4x2

)
+ 2a2e−x

2 (
3 − 12x2 + 4x4

))
− mt2

(
2ane−2x

2 (
7 − 58x2 + 40x4

)
+ dne−2x

2 (
−1 + 4x2

))
− mt2(2be−2x

2 (
3 − 18x2 + 8x4

)
+ 2ne−3x

2 (
1 − 18x2 + 24x4

)
);
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p2 : ρ2 (x, y) = 1
2 e
−2x2 t2

(
−cdmex

2
+ d2nex

2
)

+ 1
2 e
−2x2 t2

(
2cmn − 8cmnx2 + 2acmex

2 (
−1 + 2x2

))
+ 1

2 e
−2x2 t2

(
2bex

2
(cm − 2dn)

(
−1 + 2x2

))
+ 1

2 e
−2x2 t2(4b2ex

2
n
(
3 − 12x2 + 4x4

)
)
...

The solution of Eq. (19) obtained as p → 1, i.e.

v (x, t) = v0 + v1 + v2 + . . .

ρ (x, t) = ρ0 + ρ1 + ρ2 + . . .

v (x, t) = me−x
2
+ 2mte−2x

2 (
n − 4nx2 + aex

2 (
−1 + 2x2

))
− mt2(2ae−2x

2
n
(
7 − 58x2 + 40x4

)
+ n
(
de−2x

2 (
−1 + 4x2

))
+ . . .

ρ (x, t) = ne−x
2
+ te−x

2 (
cm −

(
nd + b

(
2 − 4x2

)))
+ 1
2 t

2e−2x
2 (
−cdex

2
m + d2ex

2
n
)

+ 1
2 t

2e−2x
2 (

2cmn − 8cmnx2 + 2acex
2
m
(
−1 + 2x2

))
+ 1
2 t

2e−2x
2 (

2bex
2
(cm − 2dn)

(
−1 + 2x2

))
+ 1
2 t

2e−2x
2 (

4b2ex
2
n
(
3 − 12x2 + 4x4

))
+ . . . .

(a)

(b)

(c)

(d)

Figure 1: The surface graph of approximate solution v (x, t) for case-
I: (a) v (x, t) for β = 0.4(b) v (x, t) for β = 0.6 (c) v (x, t) for β = 0.8
(d) v (x, t) for β = 1
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(a)

(b)

(c)

(d)

Figure 2: The surface graph of approximate solution ρ (x, t) for case-
I: (a) ρ (x, t) for β = 0.4 (b) ρ (x, t) for β = 0.6 (c) ρ (x, t) for β =
0.8 (d) ρ (x, t) for β = 1

(a)

(b)

(c)

(d)

Figure 3: The surface graph of approximate solution v (x, t) for case-
II: (a) v (x, t) for β = 1(b) v (x, t) for β = 0.8 (c) v (x, t) for β = 0.6 (d)
v (x, t) for β = 0.4
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(a)

(b)

(c)

(d)

Figure 4: The surface graph of approximate solution ρ (x, t) for case-
II: (a) ρ (x, t) for β = 1 (b) ρ (x, t) for β = 0.8 (c) ρ (x, t) for β = 0.6 (d)
ρ (x, t) for β = 0.4

(a)

(b)

(c)

(d)

Figure 5: The surface graph of approximate solution v(x, t)
andρ(x, t) for β = 1: (a) v(x, t) for case-I (b) ρ(x, t) for case-I (c)
v(x, t) for case-II (d) ρ(x, t) for case-II
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4 Results and discussion
In this section, the numerical solution of examples ob-
tained byHPSTMandHPTM through a graphical represen-
tation are studied. The surface graphs of Keller-Segel equa-
tion for respective cases (I & II) at di�erent values of β are
represented in Figures 1-4. For graphical representation of
solution we take m = 0.000012, n = 0.000016, a =
0.5, b = 3, c = 1, d = 2. Figure 1 represents solution
v (x, t) at β = 0.4, β = 0.6, β = 0.8, β = 1, respectively,
whereas Figure 2 indicates ρ (x, t) corresponding to di�er-
ent values of β for Case-I.

Figures 3 and 4 show surface graphs of solution v (x, t)
and ρ (x, t) for Case-II at di�erent values of β. Figure 5 rep-
resents solution v (x, t) and ρ (x, t) obtained from HPTM
for both cases. It is clear from the graphs that results of
HPSTM and HPTM are in good harmony with each other
for β = 1.

5 Conclusion
In this work, homotopy perturbation transform method
(HPTM) combined with sumudu transform has been
successfully applied to approximate solution for a system
of nonlinear partial di�erential equations derived from an
attractor for a one-dimensional Keller-Segel dynamics sys-
tem. On comparing the results of this method with HPTM,
it is observed HPSTM is extremely simple, straightforward
and easy to handle the nonlinear terms. Maple 13 package
is used to calculate series obtained from iteration. Further,
the method needs much less computational work which
shows fast convergent for solving nonlinear system of
partial di�erential equations.

Acknowlegement: Authors wish to acknowledge DST-
FIST sponsored research computational laboratory of
Lyallpur Khalsa College, Jalandhar for providing neces-
sary assistance.
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