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Abstract: The study of oscillating �ow of a Couple Stress
�uid past a permeable sphere is considered. Analytical
solution for the �ow �eld in terms of stream function is
obtained using modi�ed Bessel functions. The formula
for Drag acting on the sphere due external �ow is eval-
uated. Pressure �eld for the �ow region past and inside
the sphere is obtained. E�ects of physical parameters like
couple stress parameter, permeability, frequency and ge-
ometric parameters on the drag due to internal and exter-
nal �ows are represented graphically. It is observed that
the drag for viscous �uid �ow will be less than the case
of couple-stress �uid �ow and hence couple stress �uids
o�er resistance for �ow.

Keywords: couple stress �uid, oscillatory �ow, permeable
sphere, non-stick and hyper stick conditions

Nomenclature
a: radius of the sphere
Q̄: �uid velocity vector with dimensional and non-
dimensional form.
R, r: Non-dimensional and dimensional distances from
origin to a generic point
P, p: the non- dimensional and dimensional pressures
η: couple stress viscosity coe�cient
ρ: density of couple stress �uid
ω: frequency parameter
, Ψ: the non-dimensional and dimensional stream func-
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tions
λ1, λ2: roots of the main equation for stream function
µ: material constants known as viscosity coe�cient
S: couple stress parameter
σ: frequency parameter
Re: reynolds number
M: couple stress tensor
U∞: velocity at in�nity
V0: �ltration velocity
m: normal couple stress component
θ: angle between z axis and radius vector
Ω: angular velocity of the sphere

1 Introduction
By the heavy technical demand of industries, many re-
searchers are using Non-Newtonian �uids extensively in
the problems of extraction of petrol from porous wells,
sedimentation, dilute polymers, suspensions and lubrica-
tions of journal bearings. The polar e�ects namely cou-
ple stresses and non-symmetric tensors are well explained
by a simple model of couple stress �uids introduced by
Stokes [1]. Stokes solved creeping �ow of couple stress
�uid across a sphere [2]. The study of the �ow of couple
stress �uid past axi-symmetric bodies was carried out [3].
Ramkisson [4] has derived an elegant and useful formula
for drag on an axi-symmetric body in terms of a limit on
the stream function. Uniform �ow of a Couple stress �uid
past a permeable sphere was analyzed by Ramana Murthy
and et al. [5]. Devakar et al. [6] studied analytical solu-
tions of some fully developed �ows of Couple Stress �u-
ids between two cylinders with slip boundary conditions.
Couple stress �uid �ow past a porous spheroidal shell
with solid core under Stokesian assumption was studied
and analyzed by Iyengar and Radhika [7]. A study of a
Couple acting on a couple- stress �uid for rotary �ows
across a permeable sphere was carried out [8]. Vandana
Mishra and Ram Gupta [9] studied the concept of analyt-
ically uniform �ow of steady axi-symmetric creeping �ow
of an incompressible micro-polar �uid around the perme-
able sphere. They considered non homogeneous bound-
ary conditions for micro-rotation vector. Arbitrary oscilla-
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tory Stokes �ow past a porous sphere for viscous �uid was
studied by Prakesh et al. [10]. The slow and stationary �ow
of a viscous �uid was investigated by Leonov [11]. The con-
cept of micro-polar �uids was �rst found by Eringen [12].
Gupta and Deo [13] examined Stokes �ow of micro-polar
�uid past a porous sphere with hyper-stick condition on
micro-rotation vector. Recently, Choudhuri et al. [14] de-
veloped a method to �nd a solution to Stokes �ow of a vis-
cous and incompressible �uid �ow across a sphere coated
by a thin �uid of di�erent viscosity. Ramkissoon [15] ob-
tained a formula for drag coe�cient of a micropolar �uid
�ow past a sphere. Recently, Vainshtein and Shapiro [16]
have examined the forces acting on a porous sphere oscil-
lating in a viscous �uid. Newtonian �uid �ow inside and
outside sphere is governed by Darcy–Brinkman equations
of porous medium. Jai Prakash and Raja Sekhar [17] an-
alyzed the arbitrary oscillatory Stokes �ow past a porous
sphere using Brinkman model. Crittenden et al. [18] stud-
ied the in�uence of oscillatory �ow on axial dispersion in
packed bed of spheres. They observed that the best reduc-
tion of axial dispersion coe�cient (up to 50%) from the
non-oscillation base value occurs when the column par-
ticle size is the smallest.

Many elastic properties of dilute polymers can be de-
tected and measured conveniently by a suitable choice of
oscillatory �ows. The problems that are concerned with
the e�ects of free stream oscillations are of physical sig-
ni�cance. The problems of unsteady �ows are initiated by
Lighthill [19] by giving analytical solution of functions in
stream function due to heat transfer. Fatter [20] has dis-
cussed the problems of oscillating sphere in an elastic vis-
cous �uid. Latter many authors have studied the phenom-
ena of oscillations of external �ow over a non- zero mean
velocity. Thomas and Walters [21] examined the �ow due
to the oscillatory motion of a sphere with convective terms
present in a elastic viscous liquid using Laplace Transform
technique. Lai and Fan [22] have considered the �ow due
to oscillating sphere in an elastico viscous �uid by neglect-
ing the nonlinear terms. They also studied the �ow past
a sphere accelerating with aperiodic and arbitrary mo-
tion in the visco-elastic �uid using Fourier Transform tech-
nique and obtained expressions for drag experienced by
the sphere. Entropy generation on non-Newtonian Eyring-
Powell nano�uid has been analysed through a permeable
stretching sheet by Bhatti et al. [23]. Variable viscosity and
inclined magnetic �eld on the peristaltic motion of a non-
Newtonian �uid in an inclined asymmetric channel was
studied by Khan et al. [24]. New analytical method for
the study of natural convection �ow of a non-Newtonian
�uid was studied by Rashidi et al. [25]. A steady �ow of a
sphere in a rotationmotion in amicro-polar �uid was ana-

lyzed by the author [26]. Webster [27] has considered non-
Newtonian and turbulent �uid models. He developed a �-
nite di�erence numerical technique to solve incompress-
ible �uid �ow problems. Casanellas and Ortin [28] stud-
ied the laminar oscillatory �ow of Maxwell and Oldroyd-
B �uids [28]. Jayalakshmamma et al. [29] studied numer-
ically the steady �ow of an incompressible micropolar
�uid past an impervious sphere. Mishra and Gupta [30]
studied creeping �ow of micro polar �uid past composite
sphere. Numerical and analytical study of �owpast porous
sphere embedded inmicropolar �uidbyRamalakshmi and
Pankaj Shukla [31]. Ashmawy [32] developed a simple for-
mula for drag acting ona sphere for couple stress �uid. The
problem of rotary oscillation of a rigid sphere in an incom-
pressible couple stress �uid is investigated by Shehadeh
andAshmawy [33]. Ashmawy [34] studied unsteady Stokes
�ow of a couple stress �uid around a rotating sphere with
slip condition on the boundary. Jaiswal and Gupta [35]
have considered the �ow over composite sphere: liquid
core with permeable shell. Jaiwal [36] studied analyti-
cally, Stokes �ow over Reiner-Rivlin liquid sphere embed-
ded in a porous medium �lled with micropolar �uid us-
ing Brinkman’s model. Nagaraju and Mahesh [37] studied
the analytical investigation of two-dimensional heat trans-
fer behavior of anaxisymmetric incompressible dissipative
viscous �uid �ow in a circular pipe.

The oscillatory �ow of incompressible couple stress
�uid �ow past a permeable sphere is considered in the
present study due to its practical importance. The veloc-
ity and pressure �eld on the sphere are obtained. The drag
experienced by the sphere is evaluated. E�ects of couple
stress parameter, permeability parameter, frequency pa-
rameter and geometric parameter on the drag due to in-
ternal and external �ows are found numerically and are
shown graphically.

2 Fundamental equations and
formulation of the problem

Here we consider an oscillating �ow of the form U∞eiωt k̄
of incompressible couple stress �uid, the direction of the
oscillation being along k̄. A spherical membrane of radius
awith porous surface is introduced into the �ow and held
�xed at the origin. Since the sphere is having a porous
membrane, the couple stress �uid �ows across a �xed
permeable sphere and divides the entire region into �ow
region-I external to the sphere and region-II internal to the
sphere.
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The basic equations governing the �ow of an incom-
pressible couple stress �uid as proposed by V.K. Stokes are

∇ · Q̄ = 0 (1)

ρ dQ̄dt = −∇P − µ∇ ×∇ × Q̄ − η∇ ×∇ ×∇ ×∇ × Q̄ (2)

Neglecting convective terms, on the basis of Stokes as-
sumption that �ow is very slow and Reynolds number Re
is very small (Re� 1), equation (2) reduces to

ρ ∂Q̄∂t = −∇P − µ∇ ×∇ × Q̄ − η∇ ×∇ ×∇ ×∇ × Q̄ (3)

Spherical coordinate systemwith origin at the center of the
sphere and Z axis along the �ow direction is considered.
Velocity �eld and pressure suitable for this oscillating �ow
are of the form,

Q̄ = ∇ ×
(Ψēϕ
h3

)
eiωt

′
=
(

1
R2 sin θ

∂Ψ
∂θ −

1
R sin θ

∂Ψ
∂R ēθ

)
eiωt

′

and P = P0eiωt
′

(4)

where the scale factors for spherical coordinate system are
h1=1, h2= R and h3 = Rsinθ and Ψ the stream function is
taken to satisfy equation (1).

By the choice of equation for velocity in (4), we note
that

∇ × Q̄ = −E
2
0Ψ
h3

ēϕ and ∇ ×∇ ×∇ × Q̄ = E4
0Ψ
h3

ēϕeiωt
′
(5)

By taking curl to equation (3), the pressure is eliminated
and we get,

ρiω∇ × Q̄ = −µ∇ ×∇ ×∇ × Q̄ − η∇ ×∇ ×∇ ×∇ × Q̄. (6)

Using (5) in (6), the equation for stream function Ψ is ob-
tained as is

E2
0

(
E2

0 −
λ2

1
a2

)(
E2

0 −
λ2

2
a2

)
Ψ = 0 (7)

where

λ2
1 + λ2

2 = µa2

η = S and λ2
1λ2

2 = iρωa4

η = i.Re.S.σ (8)

and E2
0 = E2

a2 and E2 = ∂2

∂r2 − cot θ
R2

∂
∂θ + 1

R2
∂2

∂θ2 = Stokes stream
function operator

We introduce the non-dimensional scheme and the
non-dimensional parameters like σ the frequency parame-
ter, “Re” Reynolds number and S the couple stress param-
eter as follows;

R = ra, Ψ = I∞a2ψ, P0 = pρI2∞, t′ = t/ω, σ = ωa
U∞

,

Re = ρU∞a
µ , S = µa2

η (9)

In equation (9), the small letters on RHS indicate non-
dimensional quantities and the capital letters on LHS in-
dicate dimensional quantities.

By this non-dimensional scheme the equation (7) re-
duces to

E2(E2 − λ2
1)(E2 − λ2

2)ψ = 0 (10)

Figure 1: Flow geometry

Let

ψ = ψe , p = pe for region I for r ≥ 1 (11)

ψ = ψi , p = pi for region II for r ≤ 1 (12)

Now we �nd the solution of the equation
(10) for ψ under the following conditions:

Region- I Region - II
E2(E2 − λ2

1)(E2 − λ2
2)ψe = 0 E2(E2 − λ2

1)(E2 − λ2
2)ψi = 0

(i) Ltr→∞ψe = 1
2 r

2 sin2 θ Ltr→∞ψi = �nite
(ii) ∂ψe∂r = 0 on r = 1 ∂ψi

∂r = 0 on r = 1
(iii) mrϕ = 0 on r = 1 mrϕ = 0 on r = 1 type A (13.i-iv)
Or E2ψe = 0 on r = 1 E2ψi = 0 on r = 1 type B
(iv) ψe = ψi = V0 on r = 1

Condition (i) of (13) represents the uniform �ow condition
(after removing oscillation term eiωt) far away from the
sphere and �nite velocity at the origin (centre of the
sphere).

Condition (ii) of (13) represents no slip tangential ve-
locity on the surface of sphere.

Condition (iii) represents vanishing of couple stresses
on the surface (this is called type A condition) or rep-
resents hyper-stick condition which means vanishing of
micro-rotations (this condition is called type B condition).
Here either type A or type B condition is taken. Both con-
ditions are not valid simultaneously. Long chain �uids sat-
isfy type A condition and suspension like �uids satisfy
type B condition.
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Condition (iv) represents continuity condition for nor-
mal velocity which is equal to suction velocity V0 on the
surface.

3 Solution for the problem
undertaken

The solution for (10) is sought in the form,

ψ = ψ0+ψ1+ψ2 = f (r) sin2 θ = {f0 + b1f 1(r)+c1f2 (r)} sin2 θ

for r≥ 1
ψ= {f0 + b2f 1(r) + c2f2 (r)} sin2 θ

for r≤ 1
For external �ow

f0(r)= r2 +a1/r ; f1(r )=
√rK3/2(λ1r) and f2(r )=

√rK3/2(λ2r)
For internal �ow

f0(r)= a2r2 ; f1(r )=
√rI3/2(λ1r) and f2(r )=

√rI3/2(λ2r)
The suitable solutions for regularity condition are

given by

ψe = {r2 + a1
r + b1

√
rK3/2(λ1r)c1

√
rk3/2(λ2r)}l2(x) (14)

ψi = {a2r2 + b2
√
rI3/2(λ1r) + c2

√
rI3/2(λ2r)}l2(x) (15)

Now from the condition (i) – (iv) we obtain the equations
as given below:

2 − a1 − b1K3/2(λ1)∆1(λ1) − c1K3/2(λ2)∆1(λ2) = 0, (16a)

2a2 − b2I3/2(λ1)∆2(λ1) − c2I3/2(λ2)∆2(λ2) = 0, (16b)

1 + a1 + b1K3/2(λ1) + c1K3/2(λ2)
= a2 + b2I3/2(λ1) + c2I3/2(λ2) = V0 (16c)

λ2
1b1K3/2(λ1) + λ2

2c1K3/2(λ2) = 0
and λ2

1b2I3/2(λ1) + λ2
2c2I3/2(λ2) = 0 (16d)

b′1, b′2,c′1 and c′2 are de�ned as given below:

b′1 = b1K3/2(λ1) and b′2 = b2I3/2(λ1)

c′1 = c1K3/2(λ2) and c′2 = c2I3/2(λ2)

Now from (16.e), we get the constants as,

b′1 = −ϵc′1, b′2 = −ϵc′2

where
ϵ = λ2

2
λ2

1
.

By solving the equations (16.a – d), in the following form,
we get the constants 1 ∆3 0

0 0 ∆4
1 1 − ϵ ϵ − 1


 a1
c1

′

c2
′

 =

 2
2a2
a2 − 1



c′1 = −3∆4 + (∆4 − 2ϵ + 2)τ
∆4∆5

; c′2 = 2τ
∆4

and a1 = 2 − ∆3c′1
(17)

where
∆1(x) = 1 +

xK1/2(x)
K3/2(x)

and
∆2(x) = 1 −

xI1/2(x)
I3/2(x) ,

∆3 = ∆1(λ2) − ϵ∆1(λ1),

∆4 = ∆2(λ2) − ϵ∆2(λ1),

∆5 = (1 − ϵ − ∆3) and I2(x) = 1
2 (1 − x2)

The arbitrary constants a1, a2,b1, b2, c1, c2 in (16) are
expressed as a1, a2, b′1, b′2, c′1, c′2 in (17). The arbitrary
constants are six (6) in number, but the number of equa-
tions are �ve (5). b′1, b′2, are expressed in terms of c′1, c′2.
Hence 4 arbitrary constants are expressed in 3 equations
as in (17). Hence one of the constants is arbitrary.

τ is arbitrary which is taken in the place of a2. Hence
τ need not take real values and need not start from zero
value. Now τ is de�ned as permeability parameter.

4 Pressure distribution
From equation (3) pressure is given by

∇P = −iρωQ̄ − µ∇ ×∇ × Q̄ − η∇ ×∇ ×∇ ×∇ × Q̄

The equations in non-dimensional form along radial and
transverse directions are given by

Re S ∂p∂r = 1
r2sinθ

∂
∂θ (−iRe.Sσψ + SE2ψ − E4ψ)

Re S ∂p∂θ = 1
sinθ

∂
∂r (iRe.Sσψ − SE2 + E4ψ)

From these pressure can be obtained as

Re.S.p = − ddr

(
D4f − S.D2f + iRe.S.σf

)
.cosθ

= −λ2
1λ2

2f ′0 (r) cosθ
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For external and internal �ows this reduces to,

Pe = iρU∞aω
(

2r − a1
r2

)
cos θ = iρU2

∞σ
(

2r − a1
r2

)
cos θ,

i.e.
pe = iσ

(
2r − a1

r2

)
cos θ

Pi = 2iρaU∞ωτr cos θ = i2ρU2
∞σ.τr cos θ,

i.e.
pi = 2iσ.τr cos θ

5 Bounds for permeability
parameter τ

On the surface the �ltration velocity V0 = 0 gives τ = 0
And ∆P = Pe − Pi = 0 gives τ = 3∆3∆4

3∆3∆4+2(1−ϵ)(∆4−∆3)
Hence bounds for τ are as follows:

0 ≤ |τ| ≤
∣∣∣∣ 3∆3∆4

3∆3∆4 + 2∆3(ϵ2 + 1) − 2∆4(ϵ1 + 1)

∣∣∣∣ (18)

It is to be observed that τ takes complex values. For the
sake of calculations, for τ any real value between 0 and
the maximum bound can be taken.

6 Drag on the sphere
The drag D on the sphere is given by the formula

Drag = Dr =
π∫

0

(Trr cos θ − Trθ sinΘ)2πR2 sin θdθ

on r = 1 (19)

Stress tensor for couple stress �uid is given by the consti-
tutive equation

T = − PI + λ∇ · Q + 2µE + 1
2 I ×∇ ·M (20)

The constitutive equation for Couple stress tensor M is
given by

M = mI + 2η∇ (∇ × Q) + 2η
′
[∇ (∇ × Q)]T (21)

The strain tensor E in (20) is calculated by

E = ∂U
∂R erer + 1

2

(
∂V
∂R + 1

R .
∂U
∂θ −

V
R

)
(ereθ + eθer)

+ 1
R

(
∂V
∂θ + U

)
eθeθ + 1

R (U + cotθV) eφeφ

This strain in non-dimensional form in terms of stream
function is given by

E = U∞
a

[ 1
r2sinθ

{
∂2ψ
∂r∂θ −

2
r
∂ψ
∂θ

}
erer

+ 1
2rsinθ

{
E2ψ − 2∂

2ψ
∂r2 + 2

r
∂ψ
∂r

}
(ereθ + eθer)

+ 1
r2sinθ

{
1
r
∂ψ
∂θ + cotθ ∂ψ∂r −

∂2ψ
∂r∂θ

}
eθeθ

+ 1
r2sinθ

{
1
r
∂ψ
∂θ − cotθ

∂ψ
∂r

}
eφeφ

]
The couple stress tensor M in (21) is given by

M = ρU2
∞
a mI + ρηU2

∞
a

[ 1
sinθ

{
ϵE2ψ
r2 − ∂

∂r

(
E2ψ
r

)}
ereφ

+ 1
sinθ

{
E2ψ
r2 − ϵ∂∂r

(
E2ψ
r

)}
eφer

+ 1
r

{
ϵE2ψ
rsinθ −

∂
∂θ

(
E2ψ
rsinθ

)}
eθeφ

+ 1
r

{
E2ψ
rsinθ − ϵ

∂
∂θ

(
E2ψ
rsinθ

)}
eφeθ

]
where ϵ = η′/η.+-

Now the following quantities can be evaluated.

∇ ·M = −ρηU
2
∞

a2 2E4ψeφ

and I ×∇ ·M = − ρηU
2
∞

a2 2E4ψ(ereθ − eθer)

Trr = µU∞
a

{
iσ.Ref

′

0 + 2
r2

(
f
′
− 2f
r

)}
cosθ

Trθ = µU∞
a r

{(
D2f − 2f

′′
+ 2
r2 f

′
)

+ 1
S D

4f
}
sinθ

From this we get that the non -dimensional drag D′
ex due

to external �ow and D′
in.

Drag due to external �ow Dex is given by,

Dex = 2πµU∞a.eiσt

π∫
0

[{
iσRef

′

0 + 2
(
f
′
− 2f

)}
cos2 θ

−
{
D4f
S − D2f − 2f + 2f

′
}

sin2 θ
]

sin θ.dθ

By taking f ′ = 0 and f = V0 on r = 1, the drag simpli�es to

Dex = 8πµU∞a
3 .iσRe

(
V0 −

3a1
2

)
eiσt (22)

Similarly Drag due to internal �ow=

Din = 8πµU∞a
3 .iσReV0eiσt (23)
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The non-dimensional drag D* is obtained by comparing
the drag with Stokes drag.

D*ex = Dex
6πµU∞a

= 4
9 iσRe

(
V0 −

3a1
2

)
eiσt

and D*in = 4
9 iσReV0eiσt (24)

7 Results and discussion
The geometric parameters λ1

2 and λ2
2 of equation (8) are

computed by solving the quadratic equation

λ4 − Sλ2 + iσ.Re.S = 0. (25)

Then, the constants in the stream function ψ in (14) and
(15) for internal �ow and external �ow are obtained by us-
ing the equations (17).

Figure 2: Filtration velocity V0 vs. permeability parameter τ

Filtration velocity V0 on the surface: Then the perme-
ability parameter τ is �xed by choosing a value within the
bounds given in (18). It is to be noted that τ is not real. For
choosing a value for τ we can �x a real value which is less
than the maximum bound in (18). Now �ltration velocity
V0 in (16.4) can be computed. This �ltration velocity V0 is
presented in �gure2. With an increase of S there is an in-
crease in the �ltration velocity also. But for any value of S,
�ltration velocity is less than 50%of the velocity at in�nity.

Radial velocity: The stream function ψ in terms of ra-
dial function f(r) is shown in Figure 3 at di�erent values of
τ and S. As τ or S increases, f (radial velocity) increases. i.e
as couple stresses increase, they increase the radial veloc-
ity. Thismeans in the case of viscous �ow, the radial veloc-
ity will be less than that in couple stress �uid �ow (since
as S→ ∞, the �ow reduces to viscous �ow).

Drag: Drag on the sphere because of the �ow of couple
stress �uid without the time factor eiσt is computed in Fig-
ure 4. Couple stress parameter S is not involved directly in
the formula for drag. But it is found that with the increase
in parameter S, there is a decrease in drag and tends to

(a)

(b)

Figure 3: Stream function F for various values of a) permeability
parameter τ; b) couple stress parameter S

Figure 4: Drag vs. couple stress parameter

a �xed quantity. (in the �gure near to 45 at σ = 100 and
Re = 0.5). This indicates that the drag for viscous �uid
�ow will be less than the case of couple-stress �uids.

In Figure 5, drag is shown by including the time factor
eiσt. Drag is drawn for a time period 2π/σ.We notice that as
σ increases drag increases and as τ increases, magnitude
of drag decreases. This can be expected. As frequency of
oscillations increase, it is natural to expect high drag on
the body.

Stream function: The stream function without time
factor eiσt is shown in Figure 6. Three stream lines ψ=0.01,
0.05 and 0.12 are shown at di�erent permeability param-
eter τ. The �ow is as perceived by an observer travel-
ling with the �ow. It is to be noted that all stream lines
are with positive sign only. The stream line ψ=0 passes
through center of the sphere. As the value of ψ increases,
the stream lines move away from the sphere and take uni-
form �ow far away from the sphere. Three stream lines
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(a)

(b)

(c)

Figure 5: Drag vs. time for time period 2π/σ at a) σ = 20; b) σ = 50;
c) σ = 100

ψ=0.01, 0.05 and 0.12 are coming near to the axis of sphere
as τ increases, which indicates that as τ increases more
number of stream lines are �owing through the sphere. It
is observed that when τ is small, below the top pole near
to it there is small circulation. When τ increases, this cir-
culation disappears.

In Figure 7, the stream lines with time factor eiσt are
shown. It is interesting to note that pattern of stream lines
with time factor including and excluding di�er completely.
Now the stream lines take both negative and positive val-
ues. The �ow is as per the observations of an observer �xed
in space. It is exciting to note that near the sphere there is
another �uid spherical region in which �ow circulations
take place. Within this �uid sphere ψ takes negative val-
ues. Outside this �uid sphereψ is positive and�ow is same
as that of �owpast an impermeable sphere. As τ increases,

Figure 6: Stream lines without time factor eiσt at di�erent perme-
abilities; ψ=0.01, ψ= 0.05 and ψ=0.12 are passing through the
sphere

the circulation is more prominent and the centre of the cir-
culation is below the top pole near to it.

8 Conclusions
The following observations are made in the study of the
oscillating �ow of couple stress �uid past a permeable
sphere.
1. As permeability parameter τ increases, �ltration ve-

locity increases.
2. As couple-stress parameter increases, there is an in-

crease in �ltration velocity.
3. The observer with the �ow (�ow pattern excluding

eiσt) , observes a small circulation near the pole at
small permeabilities.
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Figure 7: Stream lines with time factor eiσt. Stream lines with circu-
lations are negative.

4. The observer �xed in space (�ow pattern including
eiσt) observes a circulation of �uid within a �uid
sphere which passes through the permeable sphere.
The center of circulation is below the pole of the
sphere.
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