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Abstract: We apply homotopy perturbation transforma-
tion method (combination of homotopy perturbation
method and Laplace transformation) and homotopy per-
turbationElzaki transformationmethodonnonlinear frac-
tional partial di�erential equation (fpde) to obtain a se-
ries solution of the equation. In this case, the fractional
derivative is described in Caputo sense. To avow the ade-
quacy and authenticity of the technique,we have applied
both the techniques to Fractional Fisher’s equation,time-
fractional Fornberg-Whithamequation and time fractional
Inviscid Burgers’ equation. Finally, we compare the re-
sults obtained from homotopy perturbation transforma-
tion technique with homotopy perturbation Elzaki trans-
formation.

Keywords: nonlinear fractional partial di�erential equa-
tion; HPTM; Caputo sense; He’s polynomial; Elzaki trans-
form; HPETM

1 Introduction
Most of the real world problems arising in the �eld of
biology, �uid mechanics, ecology and thermodynamics
etc. are modelled as nonlinear partial di�erential equa-
tion(PDE). The fractional calculus is important tool to re-
�ne the description of most of the natural phenomenon.
Fractional di�erential equations have attracted consider-
able interest of many researcher because of their succes-
sive appearance in diverse �elds of science and engineer-
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ing. Many numerical and semi-analytical techniques are
used to obtain the solution of linear and nonlinear partial
di�erential equations.
Dr. Ji Huan He in 1999, proposed homotopy perturbation
method (HPM) [11, 13] which is coupling of homotpoy
method and classical perturbation technique, has been
successfully implemented on linear and nonlinear prob-
lems like nonlinear wave equation[15, 16], fractional dif-
fusion equation [3], fractional convection–di�usion equa-
tion [19], space–time fractional advection–dispersion
equation [35], fractional Zakharov–Kuznetsov equations
[34], fractional partial di�erential equations in �uid me-
chanics [33], fractional Schrödinger equation [32]. The sig-
ni�cance of HPM is that it doesn’t require a small pa-
rameter in the equation , so it overcome the impedi-
ments of classical perturbation technique. The other semi-
analytical techniques such as HAM (Homotopy analysis
method) [18], Laplace homotopy analysis method [20]
Adomian decomposition method [4], HPTM(Homotopy
perturbation transformation method) [10, 17, 24, 26, 28]
and HPSTM(Homotopy perturbation Sumudu transform
method) [23, 27], we can always obtain better result than
the numerical one for partial di�erential equation. In re-
cent years, many researchers have used numerical and an-
alytical technique [1, 29–31] for the solution of fractional
partial di�erential equation. In[9], author suggested a new
form of fractional di�erentiation tomodel comlex physical
problems. In this work, we apply HPTM [17, 24, 25] tech-
nique (which is combination of homotopy perturbation
method and Laplace transformation) and HPETM [5–8, 21]
(Homotopy perturbation method with Elzaki transform)
to �nd the solution of Fractional Fisher’s equation,time-
fractional Fornberg-Whithamequation and time fractional
Inviscid Burgers’ equation and we get a power series so-
lution in the form of a rapidly convergent series and only
a few iterations lead to high accurate solutions. In these
techniques, there is no need of algorithm like discritiz-
ing the problem, no linearization is required for nonlin-
ear problem , only few iterations will lead to the solu-
tion which can be easily calculated. There are many sym-
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bolic computation software like Maple, Mathematica etc.
with which we can easily calculate more terms very easily,
hence it reduces the computational cost for solving such
complex problem. Finally, we compare the result obtained
by these methods.

2 Basic de�nitions and properties
De�nition 2.1. A real function g(t) ∈ Cµ , t > 0, µ ∈ R
if ∃ q ∈ R; (q > µ), such that g(t) = tqk(t), where k(t) ∈
C[0,∞) and g(t) ∈ Cmµ if g(m) ∈ Cµ ,m ∈ N.

De�nition 2.2. The Caputo fractional derivative of g(τ) [2,
22] is de�ned as

∂α
∂τα g(τ) = Jm−α ∂

m

∂τm g(τ)

= 1
Γ(m − α)

τ∫
0

(τ − η)m−α−1gm(η)dη,

g ∈ Cm−1,m − 1 < α ≤ m,m ∈ N, τ > 0. Here ∂α
∂τα and Γ de-

notes Caputo derivative operator and the Gamma function
respectively.

De�nition 2.3. The Elzaki transformation [5, 7] of g(τ) is
de�ned as

E[g(τ)] = v
∞∫

0

g(τ)e
−τ
v dτ = F(v), τ > 0. (2.1)

2.1 Properties

Elzaki transform of the Caputo fractional derivative is

E
{
∂α
∂τα g(τ)

}
= E{g(τ)}

vα −
n−1∑
k=0

vk−α+2g(k)(0), n − 1 < α ≤ n.

(2.2)

De�nition 2.4. The Laplace transformation of f (τ) is de-
�ned as

L[f (τ)] =
∞∫

0

f (τ)e−sτdτ = F(s), τ > 0. (2.3)

2.2 Properties

Laplace transform of the Caputo fractional derivative is
given by [2]

L

{
∂α
∂τα f (τ)

}
=sαL{f (τ)} −

n−1∑
k=0

sα−k−1f (k)(0), n − 1 < α ≤ n.

(2.4)

De�nition 2.5. The Mittag-Le�er function of two param-
eter α and β is given by [12]

Eα,β(τ) =
∞∑
n=0

τn
Γ(αn + β) , α, β > 0 (2.5)

3 Homotopy perturbation method
(HPM)

Consider the nonlinear partial di�erential equation

L(w) + N(w) = f (r), r ∈ Ω (3.1)

with boundary condition

B
(
w, ∂w∂n

)
= 0, r ∈ Γ (3.2)

where L and N are linear and nonlinear di�erential oper-
ator and f (r) is an analytic function. Ji-huan He [13], [14]
construct a homotopy of eq. (3.1) as H : Ω × [0, 1] → R
which satis�es

H(v, p) = (1 − p)(L(v) − L(w0)) + p(L(v) + N(v) − f (r)) = 0
(3.3)

or
H(v, p) = L(v) − L(w0) + pL(w0) + p(N(v) − f (r)) (3.4)

where p ∈ [0, 1] is an embedding parameter and w0 is an
initial approximation which satis�es the boundary condi-
tions. Clearly, from (3.3), we have

H(v, 0) = L(v) − L(w0) = 0 (3.5)
H(v, 1) = (L(v) + N(v) − f (r)) = 0 (3.6)

The process of changing of p from zero to unity is that v
varies from w0 to w(x, t). The basic assumption for this
method is that the solution of (3.1) can be expressed as

v = v0 + v1p + v2p2 + v3p3 + . . .

The solution of (3.1) is given by

w(x, t) = lim
p→1

(v0 + v1p + v2p2 + v3p3 + . . . ) (3.7)

= v0 + v1 + v2 + . . . (3.8)
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4 Homotopy perturbation Elzaki
transform method (HPETM)

Consider the following general fractional nonlinear partial
di�erential equation

∂α
∂tα w(x, t) + Lw(x, t) + Nw(x, t)

= f (x, t), t > 0, x ∈ R, n − 1 < α ≤ n, (4.1)

here, ∂
α

∂tα , is the fractional Caputo derivative with respect to
t, L and N are linear and non linear di�erential operators
respectivelywhich satisfy Lipschitz condition, f (x, t) is the
source term. Now applying Elzaki transform, we get

E
{
∂α
∂tα w + Lw + Nw

}
= E
{
f (x, t)

}
.

Using (2.2), we have

E
{
w
}

=
n−1∑
k=0

vk+2w(k)(x, 0) + vα
(
E
{
f (x, t) − Lw − Nw

})
.

Applying the inverse Elzaki transform, we have

w =
n−1∑
k=0

tk
k!w

(k)(x, 0) + E−1
{
vα
(
E
{
f (x, t) − Lw − Nw

})}
.

(4.2)

By applying HPM, we get

0 =(1 − p)
(
w(x, t) − w(x, 0)

)
+ p
(
w(x, t) −

n−1∑
k=0

tk
k!w

(k)(x, 0)

− E−1
{
vαE

{
f (x, t) − Lw − Nw

}})
,

Let

w(x, t) =
∞∑
n=0

pnwn(x, t), (4.3)

Nw(x, t) =
∞∑
n=0

pnHn(w(x, t))

where

Hn(w(x, t)) = 1
n!

∂n
∂pn

( ∞∑
i=0

piwi
)

(p=0)
, n = 0, 1, 2, 3, . . .

(4.4)
So, (4.2) becomes

∞∑
n=0

pnwn = w(x, 0) + p
(n−1∑
k=1

tk
k!w

(k)(x, 0)

+E−1
{
vα
(
E
{
f (x, t) − L

∞∑
n=0

pnwn −
∞∑
n=0

pnHn(w)
})})

.

Comparing the coe�cients of like powers of p,wehave

p0 : w0 =w(x, 0);

p1 : w1 =
n−1∑
k=1

tk
k!w

(k)(x, 0)

+ E−1 {vα (E {f (x, t) − Lw0(x, t) − H0
})}

;
p2 : w2 = − E−1 {vα (E {Lw1(x, t) + H1

})}
;

p3 : w3 = − E−1 {vα (E {Lw2(x, t) + H2
})}

,
...

therefore, the HPETM series solution is obtained as p → 1

w(x, t) = w0 + w1 + w2 + w3 + . . . .

5 Convergence analysis
In this section, we emphasis on the condition of conver-
gence of the proposedmethod for the series solution of eq.
(4.1).

Theorem 5.1. Let w and wn(x, t) be de�ned in Banach
space, then the condition that series solution de�ned by eq.
(4.3) converges to the solution of eq.(4.1) if ∃ η ∈ (0, 1) such
that ||wn+1|| ≤ η ||wn||.The condition of convergence has
been proved in [27, 28].

Theorem 5.2. The maximum absolute truncation error of
the series solution eq. (4.3) of eq. (4.1) is given by

|w(x, t) −
n∑
k=0

wk(x, t)| ≤ η
n+1

1 − η ||w0||

6 Application
Example 6.1. Consider the time fractional nonlinear
Fisher’s equation [21]

∂αw
∂tα = ∂2w

∂x2 + 6w(1 − w), t > 0, x ∈ R, 0 < α ≤ 1, (6.1)

with initial condition w(x, 0) = 1
(1+ex)2 .

By applying HPETM on (6.1), we have

∞∑
n=0

pnwn = 1
(1 + ex)2 + p

(
E−1
{
vα
(
E
{ ∞∑
n=0

(pnwn)xx

+ 6
{ ∞∑
n=0

pnwn − 6
∞∑
n=0

pnHn(w)
}})})

, (6.2)
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where Hn(w) represents He’s polynomial . The �rst few
components of He’s polynomial are given by

H0(w) = w2
0;

H1(w) = 2w0w1;
H2(w) = w2

1 + 2w0w2,
...

Comparing the like powers of p on both sides of (6.2), we
have

p0 : w0 = 1
(1 + ex)2 ,

p1 : w1 =10 ex tα
(1 + ex)3Γ(α + 1) ,

p2 : w2 =50 ex(2ex − 1)t2α
(1 + ex)4Γ(2α + 1) ,

p3 : w3 =
(

50 e
x(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6

+600e2x Γ(2α + 1)
(1 + ex)6Γ(α + 1)2

)
t3α

Γ(3α + 1) .

...

Hence the solution is

w(x, t) = 1
(1 + ex)2 + 10 ex tα

(1 + ex)3Γ(α + 1)

+ 50 ex(2ex − 1)t2α
(1 + ex)4Γ(2α + 1)

+
(

50 e
x(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6

+600e2x Γ(2α + 1)
(1 + ex)6Γ(α + 1)2

)
t3α

Γ(3α + 1) + . . . . (6.3)

The above solution obtained is equivalent to the
closed form solution when α = 1 i.e w(x, t) = 1

(1+ex−5t)2 up
to fourth order term approximation.

Example 6.2. Consider the time-fractional Fornberg-
Whitham equation [26]

∂α
∂tα w(x, t) = ∂3w

∂x2∂t −
∂w
∂x + w∂

3w
∂x3 − w

∂w
∂x + 3∂w∂x

∂2w
∂x2 ,

t > 0, x ∈ R, 0 < α ≤ 1, (6.4)

with initial condition w(x, 0) = e x
2 .

By applying HPETM on (6.4), we have

∞∑
n=0

pnwn = e
x
2 + p

(
E−1
{
vα
(
E
{ ∞∑
n=0

pn(wn)xxt

+
∞∑
n=0

pn(−wn)x +
{ ∞∑
n=0

pnHn(w)
}})})

, (6.5)

where Hn(w) are He’s polynomial represents nonlinear
terms. The �rst few components of He’s polynomial are
given by

H0(w) = w0w0xxx − w0w0x + 3w0xw0xx;
H1(w) = w0w1xxx + w1w0xxx − w0w1x − w1w0x

+3w0xw1xx + 3w1xw0xx;

H2(w) = w0w2xxx +w1w1xxx +w2w0xxx −w0w2x −w1w1x

− w2w0x + 3w2xw0xx + 3w1xw1xx + 3w0xw2xx .

Comparing the like powers of p on both sides of (6.5), we
have

p0 : w0 =e
x
2 ;

p1 : w1 =−e
x
2

2
tα

Γ(α + 1) ;

p2 : w2 =−e
x
2

8
t2α−1

Γ2α + e
x
2

4
t2α

Γ(2α + 1) ;

p3 : w3 =e
x
2

(
−1
32

t3α−2

Γ(3α − 1) + 1
8
t3α−1

Γ(3α) −
1
8

t3α
Γ(3α + 1)

)
,

...

Hence, the solution is

w(x, t) = e
x
2 − e

x
2

2
tα

Γ(α + 1) −
e
x
2

8
t2α−1

Γ2α + e
x
2

4
t2α

Γ(2α + 1)

+ e
x
2

(
−1
32

t3α−2

Γ(3α − 1) + 1
8
t3α−1

Γ(3α) −
1
8

t3α
Γ(3α + 1)

)
+ . . . .

(6.6)

From the above solution, it is clear that the approximate
solution(up to fourth order approximation) obtained from
above said technique is very closed to the exact solution
i.e. w(x, t) = e 1

2 (x− 4t
3 ) for α = 1.

Example 6.3. Consider the nonlinear nonhomogeneous
time fractional Inviscid Burgers’ equation [36]

Dαt w + wwx = 1 + x + t, w(x, 0) = x, 0 < α ≤ 1 (6.7)

By applying HPETM on eq.(6.7), we have
∞∑
n=0

pnwn = x+p
(
E−1
{
vαE

{
1+x+t

}
− 1
sα E

{ ∞∑
n=0

pnHn(w)
}})

(6.8)
where

wwx =
∞∑
n=0

pnHn(w)

i.e. ( ∞∑
n=0

pnwn
)( ∞∑

n=0
pnwn

)
x

=
∞∑
n=0

pnHn(w)
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The �rst few components of He’s polynomial i.e. Hn(w) are
given as

H0 = w0w0x;
H1 = w0w1x + w1w0x;
H2 = w0w2x + w1w1x + w2w0x ,

...

On comparing the like powers of p on both sides of (6.8),
we have

p0 : wo = x;

p1 : w1 = (1 + x) tα
Γ(1 + α) + tα+1

Γ(α + 2) − E
−1
{
vαE

{
H0
}}

= tα
Γ(1 + α) + tα+1

Γ(α + 2) ;

p2 : w2 = −E−1
{
vαE

{
H1
}}

= −
(

t2α
Γ(2α + 1) + t2α+1

Γ(2α + 2)

)
;

p3 : w3 = −E−1
{
vαE

{
H2
}}

=
(

t3α
Γ(3α + 1) + t3α+1

Γ(3α + 2)

)
,

...

Hence the solution of (6.7) is

w(x, t) = x + tα
Γ(1 + α) + tα+1

Γ(α + 2) −
(

t2α
Γ(2α + 1)

+ t2α+1

Γ(2α + 2)

)
+
(

t3α
Γ(3α + 1) + t3α+1

Γ(3α + 2)

)
+ . . .

or

w(x, t) = x +
(

tα
Γ(1 + α) −

t2α
Γ(2α + 1) + t3α

Γ(3α + 1) + . . .
)

+
(

tα+1

Γ(α + 2) −
t2α+1

Γ(2α + 2) + t3α+1

Γ(3α + 2) + . . .
)

or

w(x, t) = x −
∞∑
n=1

(−1)n tnα
Γ(nα + 1) − t

∞∑
n=1

(−1)n tnα
Γ(nα + 2)

or

w(x, t) = x + 1 + t − Eα,1(−tα) − tEα,2(−tα) (6.9)

where Eα,2(−tα) in eq. (6.9) is Mittag-Le�er function de-
�ned in (2.5). When α = 1, the exact solution of (6.7) is
w(x, t) = x + t.

7 Homotopy perturbation
transformation method (HPTM)

Now we present the solution of (4.1) using Laplace trans-
formation,

L

{
∂α
∂tα w + Lw + Nw

}
= L{f (x, t)}.

Using (2.4), we have

L
{
w
}

= 1
sα

(n−1∑
k=0

sα−k−1w(k)(x, 0)
)

+ 1
sαL

{
f (x, t)−Lw−Nw

}
.

L
{
w
}

=
n−1∑
k=0

s−k−1w(k)(x, 0) + 1
sαL

{
f (x, t) − Lw − Nw

}
.

Operating inverse Laplace transform , we get

w(x, t) =
n−1∑
k=0

tk
k!w

(k)(x, 0)+L−1
{

1
sαL

{
f (x, t)−Lw−Nw

}}
,

By applying HPM, we get

0 =(1 − p)
(
w(x, t) − w(x, 0)

)
+ p
(
w(x, t) −

n−1∑
k=0

tk
k!w

(k)(x, 0)

− L−1
{

1
sαL

{
f (x, t) − Lw − Nw

}})
,

w(x, t) = w(x, 0)

+ p
( n−1∑
k=1

tk
k!w

(k)(x, 0) + L−1
{

1
sαL

{
f (x, t) − Lw − Nw

}})
(7.1)

Let

w(x, t) =
∞∑
n=0

pnwn(x, t),

Nw(x, t) =
∞∑
n=0

pnHn(w(x, t)) and w(x, 0) = w0(x, t) (7.2)

where

Hn(w(x, t)) = 1
n!

∂n
∂pn

( ∞∑
i=0

piwi
)

(7.3)

Substituting (7.2) and (7.3) in (7.1), we get

∞∑
n=0

pnwn(x, t) = w0(x, t) + p
( n−1∑
k=1

tk
k!w

(k)(x, 0) + L−1
{

1
sαL{

f (x, t) − L
( ∞∑
n=0

pnwn(x, t)
)
−
∞∑
n=0

pnHn(w(x, t))
}})

(7.4)
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On comparing the coe�cients of the like powers of p, we
get

p0 : w0 =w(x, 0);

p1 : w1 =
n−1∑
k=1

tk
k!w

(k)(x, 0)

+ L−1
{

1
sαL

{
f (x, t) − Lw0 − H0(w)

}}
;

p2 : w2 = − L−1
{

1
sαL

{
Lw1 + H1(w)

}}
;

p3 : w3 = − L−1
{

1
sαL

{
Lw2 + H2(w)

}}
,

...

hence, the approximate solution is obtained as p → 1

w(x, t) = w0 + w1 + w2 + . . . .

8 Application
Example 8.1. Consider the time fractional nonlinear
Fisher’s equation[21]

∂αw
∂tα = ∂2w

∂x2 + 6w(1 − w), t > 0, x ∈ R, 0 < α ≤ 1, (8.1)

with initial condition w(x, 0) = 1
(1+ex)2 .

By applying HPTM on (8.1), we have

∞∑
n=0

pnwn = 1
(1 + ex)2 + p

(
L−1

{
1
sα

(
L

{ ∞∑
n=0

(pnwn)xx

+ 6
{ ∞∑
n=0

pnwn −
∞∑
n=0

pnHn(w)
}})})

(8.2)

where Hn(w) are He’s polynomial represents nonlinear
terms. The �rst few components of He’s polynomial are
given by

H0(w) = w2
0;

H1(w) = 2w0w1;
H2(w) = w2

1 + 2w0w2,
...

Comparing the like powers of p on both sides of (8.2), we
have

p0 : w0 = 1
(1 + ex)2 ;

p1 : w1 =10 ex tα
(1 + ex)3Γ(α + 1) ;

p2 : w2 =50 ex(2ex − 1)t2α
(1 + ex)4Γ(2α + 1) ;

p3 : w3 =
(

50 e
x(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6

+600e2x Γ(2α + 1)
(1 + ex)6Γ(α + 1)2

)
t3α

Γ(3α + 1) ,

...

Fig. 1: Surface graph of w(x, t) of eq. (8.1), when α = 0.6

Fig. 2: Surface graph of w(x, t) of eq. (8.1), when α = 0.8

Hence, the solution is given as

w(x, t) = 1
(1 + ex)2 + 10 ex tα

(1 + ex)3Γ(α + 1)

+ 50 ex(2ex − 1)t2α
(1 + ex)4Γ(2α + 1)

+
(

50 e
x(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6

+600e2x Γ(2α + 1)
(1 + ex)6Γ(α + 1)2

)
t3α

Γ(3α + 1) + . . . . (8.3)
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Fig. 3: Surface graph of w(x, t) of eq. (8.1), when α = 1

Fig. 4: Surface graph of w(x, t) of eq. (8.1), when α = 1(exact solu-
tion)

Fig. 5: Plot of of w(x, t) of eq. (8.1) when x = 0.4 and α =
0.6, 0.8 and 1

Example 8.2. Consider the time-fractional Fornberg-
Whitham equation [26]

∂α
∂tα w(x, t) = ∂3w

∂x2∂t −
∂w
∂x + w∂

3w
∂x3 − w

∂w
∂x + 3∂w∂x

∂2w
∂x2 ,

t > 0, x ∈ R, 0 < α ≤ 1, (8.4)

with initial condition w(x, 0) = e x
2 .

By applying HPTM on (8.4), we have
∞∑
n=0

pnwn = e
x
2 + p

(
L−1

{
1
sα

(
L

{ ∞∑
n=0

pn(wn)xxt

+
∞∑
n=0

pn(−wn)x +
{ ∞∑
n=0

pnHn(w)
}})})

(8.5)

where Hn(w) are He’s polynomial represents nonlinear
terms. The �rst few components of He’s polynomial are
given by

H0(w) = w0w0xxx − w0w0x + 3w0xw0xx;
H1(w) = w0w1xxx + w1w0xxx − w0w1x − w1w0x

+3w0xw1xx + 3w1xw0xx;

H2(w) = w0w2xxx +w1w1xxx +w2w0xxx −w0w2x −w1w1x

− w2w0x + 3w2xw0xx + 3w1xw1xx + 3w0xw2xx .

Comparing the like powers of p on both sides of (8.5), we
have

p0 : w0 =e
x
2 ;

p1 : w1 =−e
x
2

2
tα

Γ(α + 1) ;

p2 : w2 =−e
x
2

8
t2α−1

Γ2α + e
x
2

4
t2α

Γ(2α + 1) ;

p3 : w3 =e
x
2

(
−1
32

t3α−2

Γ(3α − 1) + 1
8
t3α−1

Γ(3α) −
1
8

t3α
Γ(3α + 1)

)
,

...

Hence, the solution is given as

w(x, t) = e
x
2 − e

x
2

2
tα

Γ(α + 1) −
e
x
2

8
t2α−1

Γ2α + e
x
2

4
t2α

Γ(2α + 1)

+ e
x
2

(
−1
32

t3α−2

Γ(3α − 1) + 1
8
t3α−1

Γ(3α) −
1
8

t3α
Γ(3α + 1)

)
+ . . . .

(8.6)

Example 8.3. Consider the nonlinear nonhomogeneous
time fractional Inviscid Burgers’ equation[36]

Dαt w + wwx = 1 + x + t, w(x, 0) = x, 0 < α ≤ 1 (8.7)

By applying HPTM on eq.(8.7), we have
∞∑
n=0

pnwn = x+p
(
L−1

{
1
sαL

{
1+x+t

}
− 1
sαL

{ ∞∑
n=0

pnHn(w)
}})

(8.8)
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Fig. 6: Surface graph of w(x, t) of eq. (8.4), when α = 0.6

Fig. 7: Surface graph of w(x, t) of eq. (8.4), when α = 0.8

Fig. 8: Surface graph of w(x, t) of eq. (8.4), when α = 1

Fig. 9: Surface graph of w(x, t) of eq. (8.4), when α = 1(exact solu-
tion)

where

wwx =
∞∑
n=0

pnHn(w)

i.e. ( ∞∑
n=0

pnwn
)( ∞∑

n=0
pnwn

)
x

=
∞∑
n=0

pnHn(w)

Fig. 10: Plot of of w(x, t) of eq. (8.4) when x = 2 and α =
0.6, 0.8 and 1

The �rst few components of He’s polynomial i.e. Hn(w) are
given as

H0 = w0w0x;
H1 = w0w1x + w1w0x;
H2 = w0w2x + w1w1x + w2w0x ,

...

On comparing the like powers of p on both sides of (8.8),
we have

p0 : wo = x;

p1 : w1 = (1 + x) tα
Γ(1 + α) + tα+1

Γ(α + 2) − L
−1
{

1
sαL

{
H0
}}

= tα
Γ(1 + α) + tα+1

Γ(α + 2) ;

p2 : w2 = −L−1
{

1
sαL

{
H1
}}

= −
(

t2α
Γ(2α + 1) + t2α+1

Γ(2α + 2)

)
;

p3 : w3 = L−1
{

1
sαL

{
H2
}}

=
(

t3α
Γ(3α + 1) + t3α+1

Γ(3α + 2)

)
,

...

Hence the solution of (8.7) is

w(x, t) = x + tα
Γ(1 + α) + tα+1

Γ(α + 2) −
(

t2α
Γ(2α + 1)

+ t2α+1

Γ(2α + 2)

)
+
(

t3α
Γ(3α + 1) + t3α+1

Γ(3α + 2)

)
+ . . .

or

w(x, t) = x +
(

tα
Γ(1 + α) −

t2α
Γ(2α + 1) + t3α

Γ(3α + 1) + . . .
)

+
(

tα+1

Γ(α + 2) −
t2α+1

Γ(2α + 2) + t3α+1

Γ(3α + 2) + . . .
)
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or

w(x, t) = x −
∞∑
n=1

(−1)n tnα
Γ(nα + 1) − t

∞∑
n=1

(−1)n tnα
Γ(nα + 2) .

or
w(x, t) = x + 1 + t − Eα,1(−tα) − tEα,2(−tα).

Fig. 11: Surface graph of w(x, t) of eq. (8.7), when α = 0.6

Fig. 12: Surface graph of w(x, t) of eq. (8.7), when α = 0.8

Fig. 13: Surface graph of w(x, t) of eq. (8.7), when α = 1

When α = 1, the exact solution of (8.7) isw(x, t) = x+t.

Fig. 14: Surface graph of w(x, t) of eq. (8.7), when α = 1(exact
solution)

Fig. 15: Plot of of w(x, t) of eq. (8.7) when x = 0.5 and α =
0.6, 0.8 and 1

9 Analysis and conclusion
We Know that

L{f (t)} =
∞∫

0

e−st f (t) = f̄ (s) (9.1)

Also from (2.1) and (9.1), we have

E{f (t)} = F(v) = vf̄
(

1
v

)
(9.2)

or

f̄
(

1
v

)
= 1

v F(v)

⇒ f̄ (s) = 1
v F(v), where v = 1

s

Hence

L{tn} = Γ(n + 1)
sn+1 . (9.3)

⇒ E{tn} = vn+2Γ(n + 1), using(9.2).
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Table 1: Approximate solution of Fisher’s equation (6.1) and (8.1) up to fourth order( when α = 1)

x t wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||
(approx.) (approx.) (exact sol.)

0.1 0.304691131 0.304691131 0.302317425 0.002373706 0.104031064 1.88E-02 7.49E-04
0.11 0.319292625 0.319292625 0.316042418 0.003250207 0.11443417 2.28E-02 9.97E-04

0.3 0.12 0.334319781 0.334319781 0.329984205 0.004335576 0.124837277 2.71E-02 1.29E-03
0.13 0.34977709 0.34977709 0.344120184 0.005656906 0.135240383 3.18E-02 1.65E-03
0.14 0.365669045 0.365669045 0.358426914 0.007242131 0.145643489 3.69E-02 2.05E-03

0.1 0.276611064 0.276611064 0.275603147 0.001007917 9.64E-02 1.92E-02 4.91507E-05
0.11 0.29026645 0.29026645 0.288830839 0.001435611 0.106061562 2.32E-02 6.54196E-05

0.4 0.12 0.304302372 0.304302372 0.302317425 0.001984947 0.115703523 2.76E-02 8.49324E-05
0.13 0.318718535 0.318718535 0.316042418 0.002676117 0.125345483 3.24E-02 0.000107984
0.14 0.333514645 0.333514645 0.329984205 0.00353044 0.134987443 3.76E-02 0.00013487

0.1 0.249765515 0.249765515 0.25 0.000234485 8.87E-02 1.92E-02 0.000734094
0.11 0.262435106 0.262435106 0.262653581 0.000218475 9.76E-02 2.33E-02 0.00097708

0.5 0.12 0.275441031 0.275441031 0.275603147 0.000162116 0.10646815 2.77E-02 0.001268515
0.13 0.288778885 0.288778885 0.288830839 5.19537E-05 0.115340496 3.25E-02 0.001612806
0.14 0.302444264 0.302444264 0.302317425 0.000126839 0.124212842 3.77E-02 0.002014355

Table 2: Approximate solution of Fornberg-Whitham equation (6.4) and (8.4) up to fourth order (when α = 1)

t x wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||
(approx.) (approx.) (exact sol.)

1 1.543580941 1.543580941 1.542390265 1.19E-03 0.082436064 0.018548114 0.004156152
2 2.544934731 2.544934731 2.542971638 1.96E-03 0.135914091 0.030580671 0.006852335

0.1 3 4.195888024 4.195888024 4.19265143 3.24E-03 0.224084454 0.050419002 0.011297591
4 6.917849834 6.917849834 6.912513593 5.34E-03 0.369452805 0.083126881 0.018626579
5 11.40560617 11.40560617 11.3968082 8.80E-03 0.609124698 0.137053057 0.030710037

1 1.351024036 1.351024036 1.349858808 1.17E-03 0.247308191 0.043278933 0.00711011
2 2.227462066 2.227462066 2.225540928 1.92E-03 0.407742274 0.071354898 0.01172259

0.3 3 3.672464088 3.672464088 3.669296668 3.17E-03 0.672253361 0.117644338 0.019327284
4 6.054869657 6.054869657 6.049647464 5.22E-03 1.108358415 0.193962723 0.031865304
5 9.982792395 9.982792395 9.974182455 8.61E-03 1.827374094 0.319790467 0.052537005

1 1.180724868 1.180724868 1.181360413 6.36E-04 0.412180318 0.05152254 0.004293545
2 1.946686205 1.946686205 1.947734041 1.05E-03 0.679570457 0.084946307 0.007078859

0.5 3 3.209542954 3.209542954 3.211270543 1.73E-03 1.120422268 0.140052783 0.011671065
4 5.291641738 5.291641738 5.29449005 2.85E-03 1.847264025 0.230908003 0.019242334
5 8.72444229 8.72444229 8.729138364 4.70E-03 3.04562349 0.380702936 0.031725245

Also using (9.2) in (2.4), we have

L

{
∂α
∂tα f (t)

}
= sαL{f (t)} −

n−1∑
k=0

sα−k−1f (k)(0), n − 1 < α ≤ n,

⇒ 1
v E{f

α(t)} = 1
vα
F(v)
v −

n−1∑
k=0

(
1
v

)α−k−1
f (k)(0), n − 1 < α ≤ n,

⇒ E{f α(t)} = F(v)
vα −

n−1∑
k=0

vk−α+2f (k)(0), n − 1 < α ≤ n.

In this work, we intend to study two semi-analytical
techniques to solve nonlinear fractional partial di�erential
equations: homotopy perturbation with Elzaki transform

and homotopy perturbation transformation method.So,
from above analysis, we conclude that the Elzaki trans-
formation and its properties could be derive from Laplace
transformation. This is the reason that eitherwe useHPTM
or HPETM, we come out with same series solution of non-
linear PDE or fractional PDE. Fig. 1-4, represent the surface
graph of approximate solution of (8.1) for various estima-
tions of α and the exact solution for α = 1 and we �nd that
approximate solution up to order 4 converges to exact so-
lution for α = 1, in Table 1, the condition of convergence
is veri�ed i.e. we analyse that ||w1|| < ||w2|| < ||w3||. More-
over, from Fig.5, we conclude that with the decrease in
the value of α, the value of w(x, t) increases. On the other
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Table 3: Approximate solution of Inviscid Burger’s Equation (6.7) and (8.7) up to fourth order( α = 1)

x t wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||
(approx.) (approx.) (exact sol.)

0.25 0.50016276 0.50016276 0.5 0.00016276 0.28125 0.033854167 0.002766927
0.25 0.5 0.752604167 0.752604167 0.75 0.002604167 0.625 0.145833333 0.0234375

0.75 1.013183594 1.013183594 1 0.013183594 1.03125 0.3515625 0.083496094
1 1.291666667 1.291666667 1.25 0.041666667 1.5 0.666666667 0.208333333

0.25 0.75016276 0.75016276 0.75 0.00016276 0.28125 0.033854167 0.002766927
0.5 0.5 1.002604167 1.002604167 1 0.002604167 0.625 0.145833333 0.0234375

0.75 1.263183594 1.263183594 1.25 0.013183594 1.03125 0.3515625 0.083496094
1 1.541666667 1.541666667 1.5 0.041666667 1.5 0.666666667 0.208333333

0.25 1.00016276 1.00016276 1 0.00016276 0.28125 0.033854167 0.002766927
0.75 0.5 1.252604167 1.252604167 1.25 0.002604167 0.625 0.145833333 0.0234375

0.75 1.513183594 1.513183594 1.5 0.013183594 1.03125 0.3515625 0.083496094
1 1.791666667 1.791666667 1.75 0.041666667 1.5 0.666666667 0.208333333

hand, Fig. 6-9 and Fig. 11-14 represents the surface graph
of (8.4) and (8.7) for various estimations of α and the ex-
act solution for α = 1, the approximate solution of w(x, t)
converges to exact solution when α = 1, but by slightly de-
creasing the value of α, the value of w(x, t) also decreases
which is shown in the Fig. 10 and Fig.15 . We have applied
both the techniques (i.e HPTM and HPETM) on nonlinear
homogeneous and non homogenous fractional PDE and
the outcome exhibit the e�ciency, simplicity andhigh rate
of accuracy of the suggested methodologies to solve this
type of complex equation.
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