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Abstract: We apply homotopy perturbation transforma-
tion method (combination of homotopy perturbation
method and Laplace transformation) and homotopy per-
turbation Elzaki transformation method on nonlinear frac-
tional partial differential equation (fpde) to obtain a se-
ries solution of the equation. In this case, the fractional
derivative is described in Caputo sense. To avow the ade-
quacy and authenticity of the technique,we have applied
both the techniques to Fractional Fisher’s equation,time-
fractional Fornberg-Whitham equation and time fractional
Inviscid Burgers’ equation. Finally, we compare the re-
sults obtained from homotopy perturbation transforma-
tion technique with homotopy perturbation Elzaki trans-
formation.

Keywords: nonlinear fractional partial differential equa-
tion; HPTM; Caputo sense; He’s polynomial; Elzaki trans-
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1 Introduction

Most of the real world problems arising in the field of
biology, fluid mechanics, ecology and thermodynamics
etc. are modelled as nonlinear partial differential equa-
tion(PDE). The fractional calculus is important tool to re-
fine the description of most of the natural phenomenon.
Fractional differential equations have attracted consider-
able interest of many researcher because of their succes-
sive appearance in diverse fields of science and engineer-
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ing. Many numerical and semi-analytical techniques are
used to obtain the solution of linear and nonlinear partial
differential equations.

Dr. Ji Huan He in 1999, proposed homotopy perturbation
method (HPM) [11, 13] which is coupling of homotpoy
method and classical perturbation technique, has been
successfully implemented on linear and nonlinear prob-
lems like nonlinear wave equation[15, 16], fractional dif-
fusion equation [3], fractional convection—diffusion equa-
tion [19], space-time fractional advection—dispersion
equation [35], fractional Zakharov-Kuznetsov equations
[34], fractional partial differential equations in fluid me-
chanics [33], fractional Schrédinger equation [32]. The sig-
nificance of HPM is that it doesn’t require a small pa-
rameter in the equation , so it overcome the impedi-
ments of classical perturbation technique. The other semi-
analytical techniques such as HAM (Homotopy analysis
method) [18], Laplace homotopy analysis method [20]
Adomian decomposition method [4], HPTM(Homotopy
perturbation transformation method) [10, 17, 24, 26, 28]
and HPSTM(Homotopy perturbation Sumudu transform
method) [23, 27], we can always obtain better result than
the numerical one for partial differential equation. In re-
cent years, many researchers have used numerical and an-
alytical technique [1, 29-31] for the solution of fractional
partial differential equation. In[9], author suggested a new
form of fractional differentiation to model comlex physical
problems. In this work, we apply HPTM [17, 24, 25] tech-
nique (which is combination of homotopy perturbation
method and Laplace transformation) and HPETM [5-8, 21]
(Homotopy perturbation method with Elzaki transform)
to find the solution of Fractional Fisher’s equation,time-
fractional Fornberg-Whitham equation and time fractional
Inviscid Burgers’ equation and we get a power series so-
lution in the form of a rapidly convergent series and only
a few iterations lead to high accurate solutions. In these
techniques, there is no need of algorithm like discritiz-
ing the problem, no linearization is required for nonlin-
ear problem , only few iterations will lead to the solu-
tion which can be easily calculated. There are many sym-
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bolic computation software like Maple, Mathematica etc.
with which we can easily calculate more terms very easily,
hence it reduces the computational cost for solving such
complex problem. Finally, we compare the result obtained
by these methods.

2 Basic definitions and properties

Definition 2.1. A real function g(¢t) € Cy,t > O,y € R
if3q € R;(g > ), such that g(t) = t7k(t), where k(t) €
C[0, o) and g(1) € Crif g™ e Cy, m € N.

Definition 2.2. The Caputo fractional derivative of g(7) [2,
22] is defined as

alX
oT?

am

80 =" 5

g(7)

— 1 I _ o ym-a-1_m
= m /(T ) g"(ndn,
0

geC,m-1<as<m,meN,t > 0. Here (;’:a and I de-
notes Caputo derivative operator and the Gamma function

respectively.

Definition 2.3. The Elzaki transformation [5, 7] of g(1) is
defined as

oo

Elg(1)] = v/g(r)e%dr =F(), > 0.

0

21

2.1 Properties

Elzaki transform of the Caputo fractional derivative is

a n-1
E{ aara g(T)} _ E{i&r)} S kezg®0) o1 <acn.
k=0

(2.2)

Definition 2.4. The Laplace transformation of f(7) is de-
fined as

LIF()] = / f(D)eTdr = F(s),1>0.  (23)
(0]
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2.2 Properties
Laplace transform of the Caputo fractional derivative is

given by [2]

oT«

a n-1
L{Lf(T)} =s"L{f(1)} - Zsa_k_lf(k)(o), n-1<asn.
k=0
(2.4)

Definition 2.5. The Mittag-Leffler function of two param-
eter a and f is given by [12]

= o
Eqp(1) = HZ; Fansp)’ a,B>0 (2.5)

3 Homotopy perturbation method
(HPM)

Consider the nonlinear partial differential equation

Lw)+Nw) = f(r),reQ (3.1
with boundary condition
ow

B<w, %> = 0,rel (3.2

where L and N are linear and nonlinear differential oper-
ator and f(r) is an analytic function. Ji-huan He [13], [14]
construct a homotopy of eq. 3.1)as H : Qx[0,1] — R
which satisfies

H(v,p) = (1 - p)L(v) - L(wo)) + p(L(v) + N(v) - f(r)) =0
(3.3)
or

H(v, p) = L(v) - L(wo) + pL(wo) + p(N(v) - f(r)) (3.4)

where p € [0, 1] is an embedding parameter and wy is an
initial approximation which satisfies the boundary condi-
tions. Clearly, from (3.3), we have
H(v,0) =
H(v,1)

L(v)-L(wg) =0
(L) +NW)-f(r) =0

(3.5)
(3.6)

The process of changing of p from zero to unity is that v
varies from wq to w(x, t). The basic assumption for this
method is that the solution of (3.1) can be expressed as

V=V0+V1p+V2pz+V3p3 +...
The solution of (3.1) is given by

wix,t) = lim(vo+vip+vap®+vsp> +...) B.7)
p—1

Vo+Vi+Vy+... (3.8)
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4 Homoto py perturb ati on Elz aki Comparing the coefficients of like powers of p, we have
transform method (HPETM) p° s wo =wlx, 0;
-1
w®
Consider the following general fractional nonlinear partial Z ]T Y(x,0)
differential equation k=1
+E v (E{f(x, ) - Lwo(x, ) —Ho }) } 5
:ta w(x, t) + Lw(x, t) + Nw(x, t) p?rwy=-E " [V (E{Lwi(x,0) + H1})};
=f(x,0),t>0,xeR,n-1<as<n, (4.1) p3:w3=—E"1{v“ (E{Lwa(x, )+ Ha})},

here, g—:,, is the fractional Caputo derivative with respect to
t, L and N are linear and non linear differential operators
respectively which satisfy Lipschitz condition, f(x, t) is the
source term. Now applying Elzaki transform, we get

therefore, the HPETM series solution is obtainedasp — 1

wx,t)=wo+wi+Wwr+ws+....
aa
{WW+LW+NW} =E{f(x,t)}.
Using (2.2), we have 5 Convergence analysis

-1
E {W} _ nz v"+2w(k)(x, 0) + V% ( E { Fx, ) = Lw - Nw}). In this section, we emphasis on the condition of conver-
_ gence of the proposed method for the series solution of eq.

4.).
Applying the inverse Elzaki transform, we have ()

-1 Theorem 5.1. Let w and wn(x, t) be defined in Banach
Z F w®(x,0)+E! {Va (E {f (x,t) - Lw - NW}) } space, then the condition that series solution defined by eq.
(4.3) converges to the solution of eq.(4.1) if 3n € (0, 1) such
that ||Wn+1|| < 1 ||wn||-The condition of convergence has
By applying HPM, we get been proved in [27, 28].

(4.2)

Theorem 5.2. The maximum absolute truncation error of

n-1
-(1- _ N
0=(1-p) (W(X’ 0 -wlx, O)) TP (W(X’ ) Z " (x, 0) the series solution eq. (4.3) of eq. (4.1) is given by

k=0
-1 n+1
~E {V“E{f G, ) —LW—NW}})’ W0 0 -3 wiloe, 0] < 7 Iwol
k=0
Let
W(X’ t) = ann(X, t)’ (4'3) . o
Z; 6 Application
Nw(x,t) = anH"(W(X’ t) Example 6.1. Consider the time fractional nonlinear
n=0 Fisher’s equation [21]
where
o“w  d’w
St —W+6W(1 w),t>0,xeR,0<a<1, (6.1)
Hn(w(x, ) = pr ,n=0,1,2,3,...
n! 6p” -0 (p=0)

with initial condition w(x, 0) = m

(4.4) By applying HPETM on (6.1), we have

So, (4.2) becomes

S

n = Aggigggg, -1) . a = n
Zp Wn = W(X 0 +p (Z k' (k)(x O) Zp Wn = (1+eX)2 +p<E {V (E{ ;(p WH)XX

n=0
n=0

+E {v“ <E {f(x, 0-LY p"wn- Zp"Hn(w)}> }) o 6{ niop"W" i 6§p"Hn(W)}}) }) (6.2)

n=0 n=0
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where Hp(w) represents He’s polynomial . The first few
components of He’s polynomial are given by

Ho(w) = wp;
Hi(w) = 2wowy;
H,(w) = wi+2wows,

Comparing the like powers of p on both sides of (6.2), we
have
0. e = 1
Priwo = e
1 e*tt
Wy =10 ————
bt 1+e)3r(a+1)
eX(2e* - 1)t
1+e)TrRa+1)’
3. n€X(-16€>* - 15e** + 30e* + 5)
W3 = (50 (1 n ex)6

p° 1wy =50

I'a+1)

t3a
600e* .
robbe (1 +eX)eI'(a + 1)2) I'Ga+1)

Hence the solution is
1 . e*ts
(1 +ex)2 (1+e¥)3r(a+1)
e*(2e¥ - 1t*
1+e)4TrQa+1)
X(_ 3x _ 2x X
N 50e( 16e 15e“* + 30e* + 5)
(1 +ex)6

w(x, t) =

+50

I'a+1)

t3a
600e>*
robbe (1+e")61"(a+1)2) I"(30z+1)Jr

(6.3)

The above solution obtained is equivalent to the
closed form solution when a = 1i.e w(x, t) = W up
to fourth order term approximation.

Example 6.2. Consider the time-fractional Fornberg-
Whitham equation [26]
a—aw(x t) = Sw _ow + W—a3W - wa—W + Ba—w—azw
ota T 9x29t ox 0x3 ox ox ox2’
t>0,xceR,0<ac<1, (6.4)

with initial condition w(x, 0) = ez.
By applying HPETM on (6.4), we have

ip”wn —e’+p (E"l{v“ (E{ ipn(wn)xxt
n=0 n=0
S {Eomen)])

n=0 n=0

(6.5)
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where Hn(w) are He’s polynomial represents nonlinear

terms. The first few components of He’s polynomial are

given by
Ho(w)
Hi(w)

WoWoxxx — WoWox + 3WoxWoxx;

WoWixxx ¥ W1iWoxxx = WoWix — W1Wox

+3WoxWixx + 3W1xWoxx;

H) (W) = WoWoxxx + W1 W1xxx + W2 Woxxx — WoWax = W1W1ix

— WaWox + 3WZXWOXX + 3Wlxwlxx + 3WOXWZXX-

Comparing the like powers of p on both sides of (6.5), we
have

p°: wo =e?;
1, w —eg t*
P iwi=— I'a+1)’
) —6% t2a—1 e% tZa
: = +— ;
P W= e T 4 TQa+ 1)
3 X _1 t3a—2 1 t3a—1 1 t3a
: =e? | —— + = - = ,
priws=e (32 IGa-1)  8I(Ga) 8F(3a+1))
Hence, the solution is
W(X t) _ e% B é ta B étsz—l . é tZa
’ 2 I'(a+1) 8 I2a 4 I'Ca+1)

-1 t3a—2

x t3ﬂ
2 -
te <32 IGa-1) "

1 t3a—1 1
8IGa) 8I(Ga+ 1)) T

(6.6)

From the above solution, it is clear that the approximate
solution(up to fourth order approximation) obtained from
above said technique is very closed to the exact solution
ie.w(x, t) = e:%) fora = 1.

Example 6.3. Consider the nonlinear nonhomogeneous

time fractional Inviscid Burgers’ equation [36]
wHwwy=1+x+t,w(x,0)=x,0<as<1 (6.7)

By applying HPETM on eq.(6.7), we have

nz:;pnwn = X+p (E‘1 {V“E{1+x+t}—siaE{ HX_;an"(W)} })
(6.8)
where

Wwy = anHn(W)
n=0

<§p"wn> (gp"wn)

i.e.

= anHn(W)

X n=0
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The first few components of He’s polynomial i.e. H,(w) are
given as

Ho = wowoy;
Hy = wowix + WiWoy;

Hjy = wowoy + WiWix + WaWoy,

On comparing the like powers of p on both sides of (6.8),
we have

p° i wo = x;
Liwi=(1+x) ¢ + e -E1 V*E{Ho}
p:w I'l+a) TI(a+2) 0
ta th+l
= + ;
I'l+a) I'(a+2)
priw, =- "1{V“E{H1}}
t2a t2a+l
_(1"(20( +1)  TQa+ 2))’
piws = —E’l{v“E{Hz}}
t3a t3a+1
B (F(3a+ " F(3a+2))’
Hence the solution of (6.7) is
ta ta+1 tZa
wlx, ) = x+ I'l+a) +1"(a+2) B (F(2a+1)

t2a+1

£
* F(2a+2)) * (F(3a+1)

t3(1+1
+ +
I'Ga+ 2))

or
ta t21x tBa
wlx, 0) = x+ (1"(1+a) T TQRa+1) +1"(30(+1) * )
ta+1 t2a+1 t3a+1
+ - + +.o.
(F(a+2) I'Qa+2) TBa+2) )
or
( 1)” tl’llX ( 1)Yltan
wix, ) = x - Zf(na+1) Zf(na+2)
or

W(x, t) =x+ 1+t —Eg1(—t%) - tEq 2(-t%) (6.9)

where E, »(-t%) in eq. (6.9) is Mittag-Leffler function de-
fined in (2.5). When a = 1, the exact solution of (6.7) is
wx, t)=x+t.
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7 Homotopy perturbation
transformation method (HPTM)

Now we present the solution of (4.1) using Laplace trans-
formation,
aa
L{WW +Lw+ Nw} = L{f(x, O)}.

Using (2.4), we have

n-1
L{w} - (Zsa =1y R 0)) {f(x t)-Lw- NW}.
k=0

n-1
L{w} = Z s 1y ®(x, 0) + S%L{f(x, t)-Lw- Nw}.
k=0

Operating inverse Laplace transform , we get

n-1
w(x, t) = Z %w(k)(x, 0)+£7! { Slail {f(x, t)—Lw—Nw} },
k=0

By applying HPM, we get

n-1
0=(1-p) (w(x, t) - w(x, 0)> +p (w(x, t) - Z %w(k)(x, 0)

k=0
—L"l{siaL {f(x, t)-Lw- Nw}}),

w(x, t) = w(x, 0)

(Zkl w(x,0)+ £ { {f(x -Lw- Nw}})

(7.1)
Let
wix, ) =Y p"walx, 1),
n=0

Nw(x, t) = ip"Hn(w(x, t)) and w(x, 0) = wo(x, t) (7.2)
n=0

where

Hp(w(x, t)) = (7.3)

.apn(ZPW)

Substituting (7.2) and (7.3) in (7.1), we get

n-1

oo tk ) .
Zp”Wn(X, t) = wolx, t) +p<z Pw(k)(x’ 0)+ 4L 1{37,5
k=1

n=0

{160 -1( X pmwnte, 0) =3 p"Halwir, 0} )

n=0 n=0
(74)
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On comparing the coefficients of the like powers of p, we
get

D wo =w(x, 0);
n-1 k
t
pliw; =Z Fw(k)(x, 0)
k=1
+47 {si,,ﬂ{f(x, t) - Lwo —Ho(W)}} ;
pPiwy=-L" {S%L{Lwl +H1(W)}} ;
_ 1
p3 cwy=-L"1 {s—aL{sz +H2(w)}} ,

hence, the approximate solution is obtained as p — 1

wx, t) =wo+wy+Wwy+....

8 Application

Example 8.1. Consider the time fractional nonlinear
Fisher’s equation[21]

%w  d’w

i@ = W+6w(1—w),t>0,xe]R,0<o(s 1, (8.1)

with initial condition w(x, 0) = ﬁ

By applying HPTM on (8.1), we have

hnd n 1 - 1 - n

gp Wn = m+p<£ 1{50((5{;(}7 Wn)xx

+6{anWn—anHn(W)}})})
n=0 n=0

where Hn(w) are He’s polynomial represents nonlinear
terms. The first few components of He’s polynomial are
given by

(8.2)

Ho(w) = wg;
Hi(w) = 2wowg;
Hy(w) = w% +2woWws,
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Comparing the like powers of p on both sides of (8.2), we

have

I S
b Wo 1+e0?’

1 e*ts

: =10 ————;
pw 0(1+e")31"(0(+1)
eX(2e* - 1%
1+e)rQa+1)’

X(_ 3x _ 2x X
3w = 50e( 16e 15e“* +30e* +5)
(1 +ex)6

ra+1) ) 3¢

p%:wy =50

+600e%*

1+e9)r(a+1)2) IrGa+1)’

Fig. 1: Surface graph of w(x, t) of eq. (8.1), when a = 0.6

Fig. 2: Surface graph of w(x, t) of eq. (8.1), when a = 0.8

Hence, the solution is given as
1 ext®
+1

(1 +ex)2 1+e)3r(a+1)

eX(2eX - 1%
1+e)4rQRa+1)

X(_ 3x _ 2x X
N 50e( 16e 15e** + 30e* + 5)
(1 +ex)6

w(x, t) =

+50

I'a+1)

t3lX
0e*
+600e 1 +e0ér(a+ 1)2) I'Ga+1) *

(8.3)
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with initial condition w(x, 0) = eZ.
By applying HPTM on (8.4), we have

S}

ip"wn —e’+p (Ll { siﬂ (L{ an(Wn)xxt

n=0 n=0

e { Y rmwibl) e
n=0 n=0

where Hn(w) are He’s polynomial represents nonlinear
terms. The first few components of He’s polynomial are

given by
HO(W) = WoWoxxx — WoWox + 3WoxWoxx;
Hi(W) = WoWixx + W1Woxxx = WoW1x — W1Wox

+3WoxWixx + 3W1xWoxxs

H2 (W) = WoWaxxx T W1Wixxx + W2Woxxx — WoWax —W1Wix

— W2Woyx + 3WaxWoxx + 3W1xWixx + 3WoxWaxx.

Fig. 4: Surface graph of w(x, t) of eq. (8.1), when a = 1(exact solu- Comparing the like powers of p on both sides of (8.5), we

tion) have
0.9 ; po Wo =e§;
— o=1 x
— a=1(exact sol.) 1 —-e2 ta
08f — o=08 1 W E——
L p ! 2 T'(a+1)
07} o S 1 5 _es 221 o3 2
P Twy = +— ;
N | P = Toa T A T2a+ 1)
= 3a-2 3a-1 3
g Prwsoed (L LT 10T 1 £
05r 1 32IrBa-1) 8r(Ba) 8r(Ba+1)

nia // J
03 _r’_,_r————""":'a‘s—d 1

i ET] R ¥R ET} 0.15 x X M
¢ ( t) % ez ttx ez tZa—l ez t2a

w(x, t)=e? - — - + —

2 I'(a+1) 8 a4 I'a+1)

_1 t3a—2 1 t3a—1 1 t3a
— + = -= +.o...
(32F(3a—1) 8I'(3a) 8F(3a+1))

Hence, the solution is given as

Fig. 5: Plot of of w(x, t) of eq. (8.1) whenx = O.4anda =
0.6,0.8and 1 +e

[SIEY

Example 8.2. Consider the time-fractional Fornberg-

Whitham equation [26] (8.6)
0“ N Pw  ow  _ dPw _ow 30w o’w
WW(X’ )= 2ot ox " VWoxrd Vox TPox ox2’ Example8.3. Consider the nonlinear nonhomogeneous
t>0,xeR,0<a<1, (8.4) time fractional Inviscid Burgers’ equation[36]

W+rwwy=1+x+t,w(x,0)=x,0<a<1 (8.7)

By applying HPTM on eq.(8.7), we have

S

Soneno( el Sormen) )
n=0

n=0
(8.8)
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26 T T T T T T T
— =06

25| — =08 i
-
24l — o=1(exact sol.) |]

23

22

wix 1)

21

2

i)

1.8

17 I I I I
01 015 0.2 0.25 03 0.35 04 045 05

t

Fig. 10: Plot of of w(x, t) of eq. (8.4) whenx = 2anda =
0.6,0.8and 1

The first few components of He’s polynomial i.e. Hn(w) are
given as

Ho = wowox;
Hi = woWiy + WiWoy;

Hj; = wowoy + WiWiy + WaWoy,

On comparing the like powers of p on both sides of (8.8),

we have
p° i wo =x;
1 ttl th+1 1 1
: =(1 - —L+H
p:w (+X)F(1+a)+F(a+2) ~ SD‘L{ 0}
ta ta+1

! “Ta+a) Ta+2)’

- ) (1 tZa t2a+1
i : =-L{=LIH =- ;
p:wa {s“ { 1}} (F(2a+1)+F(2a+2))

3 1 1 t3lX t3a+1
: =L —=L1H = .
P ws {s“ { 2}} (F(3a+1)+1"(3a+2))

Hence the solution of (8.7) is
ta ttx+1 tza
I'(l1+a) * Ta+2) (F(2a+1)

t2a+1 t3a t3a+1
* F(2a+2)> ’ (F(3a+ D F(3a+2)> e

Fig. 9: Surface graph of w(x, t) of eq. (8.4), when a = 1(exact solu- w(x, t) = x+
tion)

where
or

Wwy = Zp"Hn(w)
n=0 w(x, t) =x+ (

ttx t2a t30(
1"(1+a)_1“(2()(+1)+1"(3o(+1)+ >

oo oo oo ta+1 t2a+1 t3a+1
n n _ n _
(o) (Sootwn) =3 sttt (v~ roass " oarn ")
n= n= n=

i.e.
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or
w(x, t) = x - i (-1)"™

or

Fig. 11: Surface graph of w(x, t) of eq. (8.7), when

Fig. 12: Surface graph of w(x, t) of eq. (8.7), when a = 0.8

Fig. 13: Surface graph of w(x, t) of eq. (8.7), whena = 1

When a = 1, the exact solution of (8.7) is w(x, t) = x+t.

~ e (_1)ntna
I'na+1) o I'lna+2)’
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Fig. 14: Surface graph of w(x, t) of eq. (8.7), when a = 1(exact

solution)
2 T T T T T T T T
— a=1
— a=1,(exact sol.)
— a=0.8
— a=0.6
15} o

wix 1)

05 I | .
0 " ;

04 05 06 07 08 09 1

Fig. 15: Plot of of w(x, t) of eq. (8.7) whenx = 0.5anda =

0.6,0.8and 1

9 Analysis and conclusion

We Know that
£4f0} - [ e -Fo ©1)
0
Also from (2.1) and (9.1), we have
BrO) - F-vi(}) 02
or
i(3) - o)
= f(s) = %F(v), where v = %
Hence
sy - M0 ©3)

= E{t"}

V™2[(n + 1), using(9.2).
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Table 1: Approximate solution of Fisher’s equation (6.1) and (8.1) up to fourth order(when a = 1)

WHPTM w abs.error

(approx.) (exact sol.)

0.304691131
0.319292625
0.334319781
0.34977709
0.365669045

0.276611064
0.29026645
0.304302372
0.318718535
0.333514645

WHPETM
(approx.)

0.304691131
0.319292625
0.334319781
0.34977709
0.365669045

0.276611064
0.29026645
0.304302372
0.318718535
0.333514645

[lwall [lw2]| [lwsl|

0.1
0.11
0.12
0.13
0.14

0.302317425
0.316042418
0.329984205
0.344120184
0.358426914

0.002373706
0.003250207
0.004335576
0.005656906
0.007242131

0.104031064
0.11443417
0.124837277
0.135240383
0.145643489

9.64E-02
0.106061562
0.115703523
0.125345483
0.134987443

1.88E-02
2.28E-02
2.71E-02
3.18E-02
3.69E-02

7.49E-04
9.97E-04
1.29E-03
1.65E-03
2.05E-03

0.3

0.1
0.11
0.12
0.13
0.14

0.275603147
0.288830839
0.302317425
0.316042418
0.329984205

0.001007917
0.001435611
0.001984947
0.002676117
0.00353044

1.92E-02
2.32E-02
2.76E-02
3.24E-02
3.76E-02

4.91507E-05
6.54196E-05
8.49324E-05
0.000107984
0.00013487

0.4

0.1
0.11
0.12
0.13
0.14

0.249765515
0.262435106
0.275441031
0.288778885
0.302444264

0.249765515
0.262435106
0.275441031
0.288778885
0.302444264

0.25
0.262653581
0.275603147
0.288830839
0.302317425

0.000234485
0.000218475
0.000162116
5.19537E-05
0.000126839

8.87E-02
9.76E-02
0.10646815
0.115340496
0.124212842

1.92E-02
2.33E-02
2.77E-02
3.25E-02
3.77E-02

0.000734094
0.00097708
0.001268515
0.001612806
0.002014355

0.5

Table 2: Approximate solution of Fornberg-Whitham equation (6.4) and (8.4) up to fourth order (when a = 1)

WHPTM w abs.error

(approx.) (exact sol.)

1.543580941
2.544934731
4.195888024
6.917849834
11.40560617

WHPETM
(approx.)

1.543580941
2.544934731
4.195888024
6.917849834
11.40560617

[fwall [lwa|| [lws]|

1.542390265
2.542971638
4.19265143

6.912513593
11.3968082

1.19E-03
1.96E-03
3.24E-03
5.34E-03
8.80E-03

0.082436064
0.135914091
0.224084454
0.369452805
0.609124698

0.247308191
0.407742274
0.672253361
1.108358415
1.827374094

0.018548114
0.030580671
0.050419002
0.083126881
0.137053057

0.004156152
0.006852335
0.011297591
0.018626579

1
2
0.1 3
4
5 0.030710037

1.351024036
2.227462066
3.672464088
6.054869657
9.982792395

1.180724868
1.946686205
3.209542954
5.291641738
8.72444229

1.351024036
2.227462066
3.672464088
6.054869657
9.982792395

1.180724868
1.946686205
3.209542954 3.211270543
5.291641738 5.29449005
8.72444229 8.729138364

1.349858808
2.225540928
3.669296668
6.049647464
9.974182455

1.17E-03
1.92E-03
3.17E-03
5.22E-03
8.61E-03

0.043278933
0.071354898
0.117644338
0.193962723
0.319790467

0.05152254
0.084946307
1.120422268 0.140052783
1.847264025 0.230908003
3.04562349 0.380702936

0.00711011
0.01172259
0.019327284
0.031865304
0.052537005

0.3

i B WN e

1.181360413
1.947734041

6.36E-04
1.05E-03
1.73E-03
2.85E-03
4.70E-03

0.412180318
0.679570457

0.004293545
0.007078859
0.011671065
0.019242334
0.031725245

0.5

v~ WN -

Also using (9.2) in (2.4), we have and homotopy perturbation transformation method.So,
from above analysis, we conclude that the Elzaki trans-
formation and its properties could be derive from Laplace
transformation. This is the reason that either we use HPTM
or HPETM, we come out with same series solution of non-
linear PDE or fractional PDE. Fig. 1-4, represent the surface
graph of approximate solution of (8.1) for various estima-
tions of a and the exact solution for a = 1 and we find that
approximate solution up to order 4 converges to exact so-

lution for @ = 1, in Table 1, the condition of convergence

a n-1
L{%f(t)} = SaL{f(t)} - ;Sa_k_lf(k)(o), n-1l<ac n,

-1
1 Fv) «
vy ‘g
-1

viea2e®0) n-1 < a<n.
k=0

ey - L aikilf(’O(O) “l<acs
=3 { }= (;) ,n asn,

=

v)

= E{fo(0) = 5

In this work, we intend to study two semi-analytical
techniques to solve nonlinear fractional partial differential
equations: homotopy perturbation with Elzaki transform

is verified i.e. we analyse that | jw1]| < ||w3]| < ||ws]|. More-
over, from Fig.5, we conclude that with the decrease in
the value of a, the value of w(x, t) increases. On the other
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Table 3: Approximate solution of Inviscid Burger’s Equation (6.7) and (8.7) up to fourth order(a = 1)

hand, Fig. 6-9 and Fig. 11-14 represents the surface graph
of (8.4) and (8.7) for various estimations of a and the ex-
act solution for @ = 1, the approximate solution of w(x, t)
converges to exact solution when a = 1, but by slightly de-
creasing the value of a, the value of w(x, t) also decreases
which is shown in the Fig. 10 and Fig.15 . We have applied
both the techniques (i.e HPTM and HPETM) on nonlinear
homogeneous and non homogenous fractional PDE and
the outcome exhibit the efficiency, simplicity and high rate
of accuracy of the suggested methodologies to solve this

X t WHPETM WHPTM w abs.error [[wa]| [lw2]| [[ws]|
(approx.) (approx.) (exact sol.)
0.25 0.50016276 0.50016276 0.5 0.00016276 0.28125 0.033854167 0.002766927
0.25 0.5 0.752604167 0.752604167 0.75 0.002604167 0.625 0.145833333 0.0234375
0.75 1.013183594 1.013183594 1 0.013183594 1.03125 0.3515625 0.083496094
1 1.291666667 1.291666667 1.25 0.041666667 1.5 0.666666667 0.208333333
0.25 0.75016276 0.75016276 0.75 0.00016276 0.28125 0.033854167 0.002766927
0.5 0.5 1.002604167 1.002604167 1 0.002604167 0.625 0.145833333 0.0234375
0.75 1.263183594 1.263183594 1.25 0.013183594 1.03125 0.3515625 0.083496094
1 1.541666667 1.541666667 1.5 0.041666667 1.5 0.666666667 0.208333333
0.25 1.00016276 1.00016276 1 0.00016276 0.28125 0.033854167 0.002766927
0.75 0.5 1.252604167 1.252604167 1.25 0.002604167 0.625 0.145833333 0.0234375
0.75 1.513183594 1.513183594 1.5 0.013183594 1.03125 0.3515625 0.083496094
1 1.791666667 1.791666667 1.75 0.041666667 1.5 0.666666667 0.208333333

type of complex equation.
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