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Abstract: In this research work, we have shown that it is
possible to use fuzzy transform method (FTM) for approxi-
mate solution of strongly fractional nonlinear problems. In
numerical methods, in order to approximate a function on
a particular interval, only a restricted number of points are
employed. However, what makes the F-transform prefer-
able to other methods is that it makes use of all points in
this interval. The comparison of the time used in minutes
is given for two derivatives Caputo derivative and Caputo-
Fabrizio derivative.

Keywords: Fuzzy transform; Riccati differential equations;
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1 Introduction

Fractional arithmetic and fractional differential equa-
tions appeared in many sciences, including medicine [1],
economics [2], dynamical problems [3, 4], chemistry [5],
chaotic systems [6], mathematical physics [7-11], traffic
model [12], entropy [13] and fluid flow [14] and so on. Schol-
ars and researchers are invited to check books that have
been written to take advantage of fractional arithmetic
[15, 16].

Many researchers have used numerical methods for
the purpose of solving the fractional Riccati differential
equations (FRDEs) and the fractional Bratu differential
equations (FBDEs).
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In this research work, we have for the first time shown
that it is possible to use F-transform method (FTM) to
tackle with FRDEs and FBDEs of the following forms.

(1) Fractional Riccati differential equations (FRDESs)

2
D%u(t) - Zp,-(t) (@) =0, 0<as1,
i=0

0<t<T, u(0)=uop, (1.1)

where t € R, p;(t), i =0, 1, 2 are constant functions.

(2) Fractional Bratu differential equations (FBDEs)

Du(t) - Aexp(u(t)) =0, 1<ax<2,

0<tsT, u(0)=ug, ui(0)=ug, (1.2)

where A > Oand t € R, p;(t), i = 0, 1, 2 are constant
functions.

The operator D* denotes the Caputo’s derivative [16] of or-
der a

t
Dou(f) = %_a) / (t - ) 1™ (s)ds,
0

(n
t>a, n-1<asn, neN, (1.3)
or Caputo-Fabrizio’s derivative [17] of order a
@ [ (-0
n+a _ T(a (s—ta) (n+1)
D %u(t) = T—a exp (5= 2 u (s)ds,
a
t>a,n<as<n+1, neZ", (1.4)

in which, T(a) is called, the normalization function featur-
ing T(0) = T(1) = 1.

Historically, a special case of this differential equation
by James Bernoulli (1654-1705) and then by Count Jacopo
Francesco Riccati (1676-1754) was introduced and evalu-
ated. On the importance and motivation for this differen-
tial equation, it should be noted that it has a key role in
many of the physical phenomena and other sciences. Such
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applications can include control systems, robust stabiliza-
tion, network synthesis, diffusion problems, optimal fil-
tering, controls, stochastic theory, financial mathematics,
optimal control, river flows, robust stabilization, network
synthesis and financial mathematics dynamic games, lin-
ear systems with Markovian jumps, stochastic control,
econometric models and invariant embedding noted that
the use of the Riccati differential equation [18-25]. Of other
uses, the one dimensional static Schrédinger equation [26]
and the travelling wave solutions of a nonlinear partial dif-
ferential equation [27] are noteworthy with the Riccati dif-
ferential equation featuring fractional derivatives.

On the importance and motivation for Bratu differen-
tial equation, it should be noted that it has a key role in
many of the physical phenomena, chemical models and
other sciences. Such applications can include model of
thermal reaction process, the fuel ignition model of the
thermal combustion theory, the Chandrasekhar model of
the expansion of the universe, radiative heat transfer nan-
otechnology and chemical reaction theory [28, 29, 32, 33]

The FTM has recently been utilized by authors in [34-
36] to find approximate solution of the first order fuzzy dif-
ferential equations and two-point boundary value prob-
lems. Along the same line of research, Chen and his as-
sociates in [37] have established an algorithm to gain the
numerical solutions of second order primary amount prob-
lems.

It must be pointed out here that researchers have uti-
lized disparate schemes to solve FRDEs during the last
two decades. We can refer to familiar methods, includ-
ing differential transform method [38], Adomian’s decom-
position method [39], homotopic perturbation method
[39], variational iteration method [40], homotopic analysis
method [41] and etc [42-44]. For numerical solution of FB-
DEs we can point to homotopic perturbation method [46],
optimal homotopy asymptotic method [47] and variational
iteration technique [48] and etc. Scholars and researchers
are invited to study other numerical solutions in [49-54]

2 Discretization of the fractional
derivative

Assume that u(t) is the solution to equations (1.1) and
(1.2). To calculate the approximation of u(t), we use the dis-
cretization of the Caputo derivative and Caputo-Fabrizio
derivative with the assumption 7 = t;,; - tjand {j = a+j 7,
j=0,1,2,--
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2.1 Discretization of the Caputo derivative

Utilizing the approximation for the Caputo derivative
[56] of Eq. (1.3) we have:

D*u(ty,1) =

m Z(”(tm) u(t) (- j+ DI - (k=)
2.1)

in which O < a < 1, u(tp) is known and

k
m g(u(tﬁl) - 2u(t]) + u(tj_l))x
j=

((k=j+ 1= k=),

D*ul(ty,y) =

2.2)
in which 1 < a < 2, u(ty) and u’(¢t) are known and and

u(t_q1) = u(to) - Tu'(to).

2.2 Discretization of the Caputo-Fabrizio
derivative

Utilizing the approximation for the Caputo-Fabrizio
derivative [57] of Eq. (1.4) we have:

k
D*u(ty,q) = % Z(u(i +1) - u(j))x

(o 00)

(at)(k -j+ 1)))
1-a ’

(2.3)
in which 0 < a < 1, u(tg) is known and

k
Z(u(j - 1) +u@+1) - 2u@))x

M)) . (24)

1-a

1
D%u(ty,q) = a2
at(k

(oo (- ) -

inwhich 1 < a < 2, u(to) and u’(¢y) are known and u(t_1) =
u(to) — T u'(to).

3 Fuzzy partition and fuzzy
transform
In this section, only the main definitions of

F-transform to be utilized in the subsequent sections
of numerical implementations will be outlined.



74 =—— M. Adabitabar Firozja et al., Approximate method for solving strongly fractional nonlinear problems

Definition 3.1. [55] Presuming thatforn=2,a=1¢t; <t; <
- < th.1 < tn = b be specified nodes, we express that

fuzzy sets By, -+, By defined on [a, b] with their mem-

bership functions B1(t), - - - , Bn(t), form a fuzzy partition

of [a, b] if they meet the following properties:

(1) By of [a, b] to [0, 1] is continuous, Zn: By (t) = 1 for all

k=1
tela,bland Bi(ty) =1,k=1,2,--- ,n.

(2) Bk(t) =0ift & (tk—h tk+1)’ with to=a and the1 = b,
(3) On subinterval [ty_q, tysq], fork=2,--- ,n -1, Bi(t),
certainly is an increasing function on [t;_;, t;] and de-
creasing function on [ty, ty,1]-
The membership functions By, B,, - - - , By are named
basic functions (BFs).
The next formulas give the standard display of such
triangular membership functions:

1-8h, t<t<ty
Bi(t) = hy
10 { o, otherwise,
G, teg st<ty
Bk(t)= 1_%’ tkStStk+1,k=2,3,"',n—1,
o, otherwise,
(ER))]
Elny thogstst
B t — Ruq n-1=0=1tn,
(0 { 0, otherwise.
The formulas that follow for k = 2,--- , n — 1 give the

standard display of such sinusoidal membership func-
tions:

tists<t
otherwise,

BL(O) - { 8.5 (1+cosZ(t-t1)),

0.5 (1+cosf(t-ty)), tieq<t<tiy,
k=2,3,---,n-1,
0, otherwise,

(3.2)

Ba(f) = { 8.5 (1+cosf(t-tn)),

in which hy =t} -t fork =1,--- ,n-1.It can be

stated that fuzzy partition of [a, b], is uniform if ¢, —

ty=h-= % and two additional properties coincide:

By (t,—t) = Bi(ty+t),forallt € [0, h],fork=2,--- , n-

1,

(5) By(t) = By_1(t = h) and By,4(t) = By(t - h), for k =
2,---,n-1, andt € [tk’ tk+1]'

th-1 st<tn
otherwise,

Definition 3.2. [55] Let f be any function belonging
to C(la,b]) and By,B,,:--,Bn, be the BFs which
buildup a fuzzy partition of [a, b]. We define the n-tuple
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[F1, Fa, -+ , Fy] of real numbers given by
b
t)B, (t)dt
F=M k=1,2,--+,n, (3.3)
J; Bi(t)dt
as the F-transform of f in relation to By, B>, -+ , Bn.
Definition 3.3. [55] Let [Fi,F,,:--,Fy] be the
F-transform of function f relative to BFs, By, By, -+ , Bn.
Then,

n
fa®) = 3" FiBi(o),
k=1
is named the inverse F-transform (IFT) of function f on
[a, b].

Theorem 3.4. [55] Let f be a continuous function on [a, b]
and By, By, -, By be the BFs which form a fuzzy par-
tition of [a, b]. Then, the kth component of the integral
F-transform signified over [f(a), f(b)], gives the minimum
to the function

b

o0 - [ (10~ )’ Bl

a

Lemma 3.5. [55] (Convergence) Let f be a continuous
function on [a, b]. Thus, for any € > 0, there exist ne
and a fuzzy partition By, - - -+ , Bn, of [a, b] such that for all
tela,b]

f(O) = fa (O] < €. (3.4)

4 Description of the new approach

Let u(t) be the continuous solution of (1.1) on [0, T].
Also, Uy, - - - , Un of F-transform u(t), calculated by using
BFs By, By, -+, Bnin [0, T] regarding (3.1) with t;,; — t; =
T which are uniform fuzzy partitions. Now with applying
IFT on the function u(t) give the approximation un(x) as
according to:

un(t) =Y UiBi(), teo,T].
k=0

(4.2)

Hence for approximate solution, we can calculated U for
k=0,1,2,---,n,where Uy, are not F-transform of u and
must be calculated.

In the next proposition the discretization of the Caputo
derivative for un(t) for Egs.(2.1),(2.2), (2.3) and (2.4) are pre-
sented.
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Proposition 4.1. With substituting u,(t) in Egs.(2.1),(2.2),
(2.3) and (2.4), we will have the next equations, respec-
tively:

D*un(ty,1) =
m jz_k;(Uju -Up) ((k —j+ D) (k -}')17“) ,
O<as<1, (4.2)
k
D*un(tis1) = m j:ZO(Uju - 2U;j+ Uj )%
((k —j+ 1) (k —j)z"”‘) , l<acs<2, (4.3)

k
D%un(ty.1) = % Z(Um - Uj)x
=0
(at)(k - j) (at)(k-j+1)
(exp( 1-a ) exp(— 1-a ))’
O<acs<l, (4.4)
1k
D%un(tys1) = e} Z(Uj+1 = 2Uj + Uj_q %

a )) exp(— 1-a

(exp ( (arl)(k

l1<as<2,

(at)(k-j+ 1)))

(4.5)

where u(ty) and u'(to) are known of initial conditions,
Uo = u(to) and U_q = u(ty) — 7 u'(to).

4.1 Approximate solution of FRDEs

In order to gain the approximate solution of the prob-
lem (1.1), we use of un(t), hence

2

Dun(t) = Y " pi(up(t), 0<as1, 0<t<T, (46)
i=0
and by putting t = t;,1, we have
2 .
D%un(tin1) = > Piltess) un(tesr),
i=0
O<as<1l, k=0,1,---,n-1. 4.7)

Case 1. Considering Caputo’s derivative:
using Eq.(4.2), Eq.(4.7) convert to the following form

mZ(U,ﬂ U (Ue=j+ )7 - (=)
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2

= Zpi(tk+1) U;.(+13 k = O; 17 2’ ttt
i=0

n-1. (4.8)

Case 2. Considering Caputo-Fabrizio derivative:
using Eq.(4.4), Eq.(4.7) convert to the following form

k
ir Z(Ujﬂ -Uj) <exp ( -
=0

X 2
M)) = piltin) Upr,  (49)
i=0

(at)(k —f))
1-«a

~EXp ( - 1-a
fork=0,1,2,---,n-1.

Now, using the boundary condition, we can calculate
Uy, Uy, -+, Un by recursive equation and then by IFT
gain the approximate solution u(t) ~ un(t) for Eq.(1.1).
An algorithm for approximation of FRDEs by this method
stated in the next Algorithm.
Algorithm 1. An approximation algorithm for FRDEs

Step 1. Input po(t), p1(t), p2(t), Up = u(0), nand T.
Step2. Sett « I.
Step 3. Locate ty <+ k1, k=0,1,2,--+,n
Step 4. Choose sinusoidal BFs By (t)fork =0,1,2,--- ,n
Step 5. a) With Caputo derivative, set recursive equation
1 k
_ 7. ) 1-a _ _nl-a
=5 ,-:ZO(U’” U) (Ue=j+ )" = Ge=)"™)
2 .
= Zpi(tkﬂ) U;(+1’
i=0

b) With Caputo-Fabrizio derivative, set recursive
equation

k
% Z(Uj+1 -0y (exp (—
j=0

fork=0,1,2,---,n-1.
Step 6. Calculateevery Uy, k=1, 2,---,nofanequation
of degree two. ([Ug, U1, Us, - - - , Un] are F-transform.)
Step 7. The approximate solution with IFT is

(at)(k - )'))
1-a

. 2
M)) = Zpi(tkﬂ) Upsr.-

1-a Z
i=0

un(t) = Z UkBk(t).

k=0

4.2 Approximate solution of FBDEs

In order to gain the approximate solution of the prob-
lem (1.2), we use of un(t), hence

D%un(t) = Aexp(un(®)), 1<a<2, 0<t<T, (4.10)



76 —— M. Adabitabar Firozja et al., Approximate method for solving strongly fractional nonlinear problems

and by putting t = t;,,, we have

D%n(tys1) = Aexp(un(tysr)),

A>0, 1<ac<2, k=0,1,---,n-1. (4.11)

Case 1. Considering Caputo’s derivative:
using Eq.(4.3), Eq.(4.11) convert to the following form

k
m > (Uj1 - 2U; + Upy) ((k —j+ 1) - (k _j)Z-a)
j=0

=Aexp(Ujs1), k=0,1,2,-+-,n—1. (4.12)

Case 2. Considering Caputo-Fabrizio derivative:
using Eq.(4.5), Eq.(4.11) convert to the following form

(exn (

JREC

_ (ar)(k —f))

k
1
P Z(Uj+1 - 2U1 + Uj—l) 1-a

j=0
_(am)(k-j+1)

" (4.13)

—exp

inwhichk=0,1,2,---,n-1.

Now, using the boundary condition, we can calculate
Uy, Uy, -+, Un by recursive equation and then by IFT
gain the approximate solution u(t) ~ un(t) for Eq.(1.2).
An algorithm for approximation of FBDEs by this method
stated in the next Algorithm.
Algorithm 2. An approximation algorithm for FBDEs
Step 1. Input Uy = u(0) and u;(0) = ug, nand T.
Step2. Set7 + Land Uy + Up - T u.
Step 3. Locate ty + k1, k=0,1,2,--- ,n.
Step 4. Choose sinusoidal BFs B;(t)fork =0,1,2,---, n.
Step 5. a) With Caputo derivative, set recursive equation

k
1
m Z(U]+1 - ZU] + U];l))(
j=0
(=) + 177~ (k= )) = Aexp(Upn).

b) With Caputo-Fabrizio derivative, set recursive

equation
k .
% Z(Ui+1 - 2U] + Uj—l) (exp (— W)
j=0
-exp (— W)) = Aexp(Uj,1),

fork=0,1,2,---,n-1.
Step 6. Calculate every Uy, k=1,2,---,nofanequation
of degree one. ([Uy, Uy, Us, - - - , Un] are F-transform.)
Step 7. The approximate solution with IFT is

un(t) = Z UkBk(t)-

k=0
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5 Examples

Now in this section, we present various examples for
illustrate FTM for FRDEs and FBDEs. In all these examples,
we used of mathematical software Mathematica.

Example 5.1. For the first example, we propose the FRDEs
[43]:

“u(t)=1-u?(t), 0<t<1, O<as<l, (5.1)
with the precise solution u(t) = g;‘gggj for a = 1 and the

primary condition:

uy = u(0) = 0. (5.2)

Following the FTM, according to what was formulated
and presented in section 4 for Egs.(5.1)-(5.2), we can cal-
culate Uy, Uy, ..., Un and then gain the approximate so-
lution un(t) of (5.1).

Table 1 shows comparison betwixt the exact and the
approximation solution (5.1) with F-transform of test ex-
ample 5.1 for different values of @ and ¢, n = 500, 7 =
0.002, featuring Caputo and Caputo-Fabrizio derivative.

Comparison of exact and approximate solution can be
seen for equations with different values of @, n = 500,
T = 0.002 and various values of t, in Figure 2 with Caputo
derivative and in Figure 1 with Caputo-Fabrizo derivative.

i — — — — =
0.7k !_a.*! =
. P
- #5827 05
L *.;‘E' x= a=0.
L 0.75
af . & J=lU
*. LE
E *og F
* o e o a=1
2
E * 8 1
I Exact
2
-
olm

0.2 0.4 0.6 o8 1.0

Fig. 1: Comparison betwixt the exact and the approximation solution
with F-transform of test example 5.1 forn = 500, 7 = 0.002 and
various values of t and a with Caputo-Fabrizio derivative.

Table 2 represents the present method for & = 1 and
the achieved results of homotopy perturbation method (
HPM), Adomian decomposition method (ADM) [30] and
optimal homotopy asymptotic method (OHAM) [31].
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Table 1: The exact and approximate result of test example 5.1 featuring various values of a, with Caputo and Caputo-Fabrizio derivative.

Caputo Caputo-Fabrizio
t a=0.5 a=0.75 a=1.0 Exact a=0.5 a=0.75 a=1.0 Exact
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.334626 0.260941 0.197495 0.197375 0.334615 0.260932 0.197437 0.197375
0.4 0.498466 0.442638 0.379972 0.379949 0.498459 0.442629 0.379895 0.379949
0.6 0.604588 0.577781 0.536921 0.53705 0.604578 0.577780 0.536847 0.53705
0.8 0.677429 0.67693 0.66383 0.664037 0.677418 0.67687 0.66377 0.664037
1.0 0.729503 0.749104 0.761407 0.761594 0.729502 0.749103 0.76137 0.761594
Table 2: Comparison of the numerical solutions of the equation in example 5.1 with a = 1.
FTM
t HPM ADM OHAM Caputo Caputo-Fabrizio Exact
0.2 0.197375 0.197375 0.197402 0.197437 0.197437 0.197375
0.4 0.379943 0.379948 0.380065 0.379972 0.379895 0.379949
0.6 0.536857 0.537049 0.537148 0.536921 0.536847 0.53705
0.8 0.661706 0.664037 0.664049 0.66383 0.66377 0.664037
1.0 0.7460318 0.761622 0.761634 0.761407 0.76137 0.761594
3__u T T T g**-'!-_! _3_| T T T T T *|:
R & *,E’ *
e # E'E
o5k % *® ‘f J__,vE' x a=05 r * ¢ x a=058
0 . .
* s .Z * =
o sre_n o q=0.75 ® 7l e =075
o2 *e 22 T e = 1
g=r * o g o a=1 * ..E' o a=1
02k X85 E R * * o ;JE‘
el || ] meees Exact bEr s 2] =---- Exact
o * T, [ ] E‘E
0 %z 'f-t'!'i ad
00fm’ | ; ! | . 0 3.._-._-!3-3‘!' | | | .

Fig. 2: Comparison betwixt the exact and the approximation so-
lution with F-transform of test example 5.1 for value of n = 500,
T = 0.002 and different values of « and t with Caputo derivative.

Example 5.2. For the second example, we offer the FBDEs

[32]:
fu(t) - 2exp(u(®) =0, 1<a<? (5.3)
including the primary condition
up = u(0) = 0, ugy = u(0) = 0. (5.4)
The unknown coefficient Uy, U,, - - - , Uy with due atten-

tion to the FTM, according to section 4 for Egs.(5.3)-(5.4)
are calculated.

Comparison of exact and approximate solution can be
seen in Table 3 for equations with n = 500, T = 0.002
and various values of t and a, featuring Caputo fractional
derivative.

Figure 3 and Figure 4 shows comparison betwixt the ex-
act and the approximation solution (5.1) with F-transform
of test example 5.1 for various values of a, n = 500, T =

Fig. 3: Comparison betwixt the exact and the approximation solu-
tion with F-transform of test example 5.2 for different values of a,
n = 500, T = 0.002 and various values of ¢, with Caputo fractional
derivative.

0.002, respectively, with Caputo and Caputo-Fabrizio frac-
tional derivative.

Toward a = 2, the solution that we have gained is in
accordance with the precise solution u(t) = -2 log(cos(t)).

Example 5.3. For the second example, we offer the FBDEs

[32]:
Dfu(t) + 2exp(u(t)) =0, 1<a<?2 (5.5)
including the primary condition
up = u(0) = 0, ug = u(0) = 0. (5.6)

Toward a = 2, the solution that we have gained
is in accordance with the precise solution u(tf) =
-2.10g(0.848338 cosh(1.17878(t - 0.5))).

Table 4 represents the present method for a = 2 and
the achieved results of Laplace transform method (LTM),
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Table 3: The exact and approximate result of test example 5.2 featuring various values of a, with Caputo and Caputo-Fabrizio derivative.

Caputo Caputo-Fabrizio
t a=0.5 a=0.75 a=1.0 Exact a=0.5 a=0.75 a=1.0 Exact
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0859606  0.059272 0.0404369  0.0402695 0.0859605  0.059271 0.0404368  0.0402695
0.4 0.292598 0.219867 0.164802 0.164458 0.292597 0.219866 0.164802 0.164458
0.6 0.630075 0.490616 0.384455 0.38393 0.630076 0.490615 0.384454 0.38393
0.8 1.15995 0.907069 0.723658 0.722781 1.15995 0.907070 0.723656 0.722781
1.0 1.54487 1.19373 1.23315 1.23125 1.54487 1.19373 1.23315 1.23125
ol ' ' ' ' ] Acknowledgement: We are very much indebted to Prof.
* Irina Perfilieva for constructive comments and helpful sug-
3 * 8 . ga05 gestions which led to improved presentation and quality of
* 0 .
* ® 7 e a7 this paper.
ol * .
P e
. .E‘E o a=1
R * * 9 ;_r_'
T *8 =" ] =---- Exact
(a7 References

PPPPEE il . . .

0.0 0.2 0.4 ] 0.8 ]

Fig. 4: Comparison betwixt the exact and the approximation so-
lution with F-transform of test example 5.2 for value of n = 500,
T = 0.002 and various values of a and t, with Caputo-Fabrizio
derivative.

decomposition method (DM) and B-spline method (BSM)
[58].

In this method, by increasing the amount n and decreas-
ing the amount 7, a more accurate answer can be achieved.
The time that the CPU is used in minutes for FRDEs with
a = 1 and FBDEs with a = 2 featuring Caputo derivative
and Caputo-Fabrizio derivative in difference, T = 0.002,
n = 50 and n = 500 is shown in Table 5. Baleanu et.al in
[59] in a non-difference state compared the Caputo deriva-
tive and Caputo-Fabrizio derivative in terms of run-time in
seconds.

6 Conclusion

We have successfully applied FTM to obtain approxi-
mate solution of the FRDEs and FBDEs. The result indicate
that a few iteration of FTM will result in some useful solu-
tions. Finally, it should be added that the suggested tech-
nique has the potentials to be practical in solving other
similar nonlinear and linear problems in partial differen-
tial equations featuring fractional derivative.
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