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Abstract: In this research work, we have shown that it is
possible to use fuzzy transformmethod (FTM) for approxi-
mate solution of strongly fractional nonlinear problems. In
numerical methods, in order to approximate a function on
a particular interval, only a restricted number of points are
employed. However, what makes the F-transform prefer-
able to other methods is that it makes use of all points in
this interval. The comparison of the time used in minutes
is given for two derivatives Caputo derivative and Caputo-
Fabrizio derivative.

Keywords: Fuzzy transform; Riccati di�erential equations;
Bratu di�erential equations; Caputo derivative; Caputo-
Fabrizio derivative

1 Introduction
Fractional arithmetic and fractional di�erential equa-

tions appeared in many sciences, including medicine [1],
economics [2], dynamical problems [3, 4], chemistry [5],
chaotic systems [6], mathematical physics [7–11], tra�c
model [12], entropy [13] and�uid�ow [14] and soon. Schol-
ars and researchers are invited to check books that have
been written to take advantage of fractional arithmetic
[15, 16].

Many researchers have used numerical methods for
the purpose of solving the fractional Riccati di�erential
equations (FRDEs) and the fractional Bratu di�erential
equations (FBDEs).
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In this research work, we have for the �rst time shown
that it is possible to use F-transform method (FTM) to
tackle with FRDEs and FBDEs of the following forms.

(1) Fractional Riccati di�erential equations (FRDEs)

Dαu(t) −
2∑
i=0

pi(t) ui(t) = 0, 0 < α ≤ 1,

0 < t ≤ T, u(0) = u0, (1.1)

where t ∈ R, pi(t), i = 0, 1, 2 are constant functions.

(2) Fractional Bratu di�erential equations (FBDEs)

Dαu(t) − λ exp(u(t)) = 0, 1 < α ≤ 2,
0 < t ≤ T, u(0) = u0, ut(0) = u′0, (1.2)

where λ > 0 and t ∈ R, pi(t), i = 0, 1, 2 are constant
functions.

The operator Dα denotes the Caputo’s derivative [16] of or-
der α

Dαu(t) = 1
Γ(n − α)

t∫
0

(t − s)α−1u(n)(s)ds,

t > a, n − 1 < α ≤ n, n ∈ N, (1.3)

or Caputo-Fabrizio’s derivative [17] of order α

Dn+α
t u(t) = T(α)

1 − α

t∫
a

exp
( (s − t)α

1 − α

)
u(n+1)(s)ds,

t > a, n < α ≤ n + 1, n ∈ Z+, (1.4)

inwhich, T(α) is called, the normalization function featur-
ing T(0) = T(1) = 1.

Historically, a special case of this di�erential equation
by James Bernoulli (1654-1705) and then by Count Jacopo
Francesco Riccati (1676-1754) was introduced and evalu-
ated. On the importance and motivation for this di�eren-
tial equation, it should be noted that it has a key role in
many of the physical phenomena and other sciences. Such
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applications can include control systems, robust stabiliza-
tion, network synthesis, di�usion problems, optimal �l-
tering, controls, stochastic theory, �nancial mathematics,
optimal control, river �ows, robust stabilization, network
synthesis and �nancial mathematics dynamic games, lin-
ear systems with Markovian jumps, stochastic control,
econometric models and invariant embedding noted that
the use of the Riccati di�erential equation [18–25]. Of other
uses, the one dimensional static Schrödinger equation [26]
and the travellingwave solutions of a nonlinear partial dif-
ferential equation [27] are noteworthy with the Riccati dif-
ferential equation featuring fractional derivatives.

On the importance and motivation for Bratu di�eren-
tial equation, it should be noted that it has a key role in
many of the physical phenomena, chemical models and
other sciences. Such applications can include model of
thermal reaction process, the fuel ignition model of the
thermal combustion theory, the Chandrasekhar model of
the expansion of the universe, radiative heat transfer nan-
otechnology and chemical reaction theory [28, 29, 32, 33]

The FTM has recently been utilized by authors in [34–
36] to �nd approximate solution of the �rst order fuzzy dif-
ferential equations and two-point boundary value prob-
lems. Along the same line of research, Chen and his as-
sociates in [37] have established an algorithm to gain the
numerical solutions of secondorder primary amountprob-
lems.

It must be pointed out here that researchers have uti-
lized disparate schemes to solve FRDEs during the last
two decades. We can refer to familiar methods, includ-
ing di�erential transform method [38], Adomian’s decom-
position method [39], homotopic perturbation method
[39], variational iterationmethod [40], homotopic analysis
method [41] and etc [42–44]. For numerical solution of FB-
DEs we can point to homotopic perturbation method [46],
optimal homotopy asymptoticmethod [47] and variational
iteration technique [48] and etc. Scholars and researchers
are invited to study other numerical solutions in [49–54]

2 Discretization of the fractional
derivative
Assume that u(t) is the solution to equations (1.1) and

(1.2). To calculate the approximationof u(t),weuse thedis-
cretization of the Caputo derivative and Caputo-Fabrizio
derivative with the assumption τ = tj+1 − tj and tj = a + j τ,
j = 0, 1, 2, · · · .

2.1 Discretization of the Caputo derivative

Utilizing the approximation for the Caputo derivative
[56] of Eq. (1.3) we have:

Dαu(tk+1) ≈

1
ταΓ(2 − α)

k∑
j=0

(u(tj+1) − u(tj))
(
(k − j + 1)1−α − (k − j)1−α

)
,

(2.1)

in which 0 < α ≤ 1, u(t0) is known and

Dαu(tk+1) ≈
1

ταΓ(3 − α)

k∑
j=0

(u(tj+1) − 2u(tj) + u(tj−1))×(
(k − j + 1)2−α − (k − j)2−α

)
, (2.2)

in which 1 < α ≤ 2, u(t0) and u′(t0) are known and and
u(t−1) = u(t0) − τ u′(t0).

2.2 Discretization of the Caputo-Fabrizio
derivative

Utilizing the approximation for the Caputo-Fabrizio
derivative [57] of Eq. (1.4) we have:

Dαu(tk+1) ≈
1
ατ

k∑
j=0

(u(j + 1) − u(j))×

(
exp

(
− (ατ)(k − j)

1 − α

)
− exp

(
− (ατ)(k − j + 1)

1 − α

))
,

(2.3)

in which 0 < α ≤ 1, u(t0) is known and

Dαu(tk+1) ≈
1
ατ2

k∑
j=0

(u(j − 1) + u(j + 1) − 2u(j))×

(
exp

(
− ατ(k − j)1 − α

)
− exp

(
− ατ(k − j + 1)1 − α

))
, (2.4)

inwhich 1 < α ≤ 2, u(t0) and u′(t0) are known and u(t−1) =
u(t0) − τ u′(t0).

3 Fuzzy partition and fuzzy
transform
In this section, only the main de�nitions of

F-transform to be utilized in the subsequent sections
of numerical implementations will be outlined.
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De�nition 3.1. [55] Presuming that for n ≥ 2, a = t1 < t2 <
· · · < tn−1 < tn = b be speci�ed nodes, we express that
fuzzy sets B1, · · · , Bn de�ned on [a, b] with their mem-
bership functions B1(t), · · · , Bn(t), form a fuzzy partition
of [a, b] if they meet the following properties:

(1) Bk of [a, b] to [0, 1] is continuous,
n∑
k=1

Bk(t) = 1 for all

t ∈ [a, b] and Bk(tk) = 1, k = 1, 2, · · · , n.

(2) Bk(t) = 0 if t ∉ (tk−1, tk+1), with t0 = a and tn+1 = b,
(3) On subinterval [tk−1, tk+1], for k = 2, · · · , n − 1, Bk(t),

certainly is an increasing function on [tk−1, tk] and de-
creasing function on [tk , tk+1].
The membership functions B1, B2, · · · , Bn are named
basic functions (BFs).
The next formulas give the standard display of such
triangular membership functions:

B1(t) =
{

1 − t−t1
h1 , t1 ≤ t ≤ t2

0, otherwise,

Bk(t) =


t−tk−1
hk−1 , tk−1 ≤ t ≤ tk
1 − t−tk

hk , tk ≤ t ≤ tk+1, k = 2, 3, · · · , n − 1,
0, otherwise,

(3.1)

Bn(t) =
{

t−tn−1
hn−1 , tn−1 ≤ t ≤ tn ,
0, otherwise.

The formulas that follow for k = 2, · · · , n − 1 give the
standarddisplay of such sinusoidalmembership func-
tions:

B1(t) =
{

0.5
(
1 + cos πh (t − t1)

)
, t1 ≤ t ≤ t2

0, otherwise,

Bk(t) =


0.5

(
1 + cos πh (t − tk)

)
, tk−1 ≤ t ≤ tk+1,
k = 2, 3, · · · , n − 1,

0, otherwise,
(3.2)

Bn(t) =
{

0.5
(
1 + cos πh (t − tn)

)
, tn−1 ≤ t ≤ tn

0, otherwise,

in which hk = tk+1 − tk for k = 1, · · · , n − 1. It can be
stated that fuzzy partition of [a, b], is uniform if tk+1 −
tk = h = b−a

n−1 and two additional properties coincide:
(4) Bk(tk−t) = Bk(tk+t), for all t ∈ [0, h], for k = 2, · · · , n−

1,
(5) Bk(t) = Bk−1(t − h) and Bk+1(t) = Bk(t − h), for k =

2, · · · , n − 1, and t ∈ [tk , tk+1].

De�nition 3.2. [55] Let f be any function belonging
to C

(
[a, b]

)
and B1, B2, · · · , Bn, be the BFs which

buildup a fuzzy partition of [a, b]. We de�ne the n-tuple

[F1, F2, · · · , Fn] of real numbers given by

Fk =
∫ b
a f (t)Bk(t)dt∫ b
a Bk(t)dt

, k = 1, 2, · · · , n, (3.3)

as the F-transform of f in relation to B1, B2, · · · , Bn.

De�nition 3.3. [55] Let [F1, F2, · · · , Fn] be the
F-transform of function f relative to BFs, B1, B2, · · · , Bn.
Then,

fn(t) =
n∑
k=1

FkBk(t),

is named the inverse F-transform (IFT) of function f on
[a, b].

Theorem 3.4. [55] Let f be a continuous function on [a, b]
and B1, B2, · · · , Bn be the BFs which form a fuzzy par-
tition of [a, b]. Then, the kth component of the integral
F-transform signi�ed over [f (a), f (b)], gives the minimum
to the function

ϕ(y) =
b∫
a

(
f (t) − y

)2 Bk(t)dt.
Lemma 3.5. [55] (Convergence) Let f be a continuous
function on [a, b]. Thus, for any ϵ > 0, there exist nϵ
and a fuzzy partition B1, · · · , Bnϵ of [a, b] such that for all
t ∈ [a, b] ∣∣f (t) − fnϵ (t)∣∣ ≤ ϵ. (3.4)

4 Description of the new approach
Let u(t) be the continuous solution of (1.1) on [0, T].

Also, U1, · · · , Un of F-transform u(t), calculated by using
BFs B0, B1, · · · , Bn in [0, T] regarding (3.1) with tj+1 − tj =
τ which are uniform fuzzy partitions. Now with applying
IFT on the function u(t) give the approximation un(x) as
according to:

un(t) =
n∑
k=0

UkBk(t), t ∈ [0, T] . (4.1)

Hence for approximate solution, we can calculated Uk for
k = 0, 1, 2, · · · , n, where Uk, are not F-transform of u and
must be calculated.

In thenext proposition thediscretizationof theCaputo
derivative for un(t) for Eqs.(2.1),(2.2), (2.3) and (2.4) are pre-
sented.
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Proposition 4.1. With substituting un(t) in Eqs.(2.1),(2.2),
(2.3) and (2.4), we will have the next equations, respec-
tively:

Dαun(tk+1) ≈

1
ταΓ(2 − α)

k∑
j=0

(Uj+1 − Uj)
(
(k − j + 1)1−α − (k − j)1−α

)
,

0 < α ≤ 1, (4.2)

Dαun(tk+1) ≈
1

ταΓ(3 − α)

k∑
j=0

(Uj+1 − 2Uj + Uj−1)×(
(k − j + 1)2−α − (k − j)2−α

)
, 1 < α ≤ 2, (4.3)

Dαun(tk+1) ≈
1
ατ

k∑
j=0

(Uj+1 − Uj)×(
exp

(
− (ατ)(k − j)

1 − α

)
− exp

(
− (ατ)(k − j + 1)

1 − α

))
,

0 < α ≤ 1, (4.4)

Dαun(tk+1) ≈
1
ατ2

k∑
j=0

(Uj+1 − 2Uj + Uj−1×(
exp

(
− (ατ)(k − j)

1 − α

)
− exp

(
− (ατ)(k − j + 1)

1 − α

))
,

1 < α ≤ 2, (4.5)

where u(t0) and u′(t0) are known of initial conditions,
U0 = u(t0) and U−1 = u(t0) − τ u′(t0).

4.1 Approximate solution of FRDEs

In order to gain the approximate solution of the prob-
lem (1.1), we use of un(t), hence

Dαun(t) =
2∑
i=0

pi(t) uin(t), 0 < α ≤ 1, 0 < t ≤ T, (4.6)

and by putting t = tk+1, we have

Dαun(tk+1) =
2∑
i=0

pi(tk+1) uin(tk+1),

0 < α ≤ 1, k = 0, 1, · · · , n − 1. (4.7)

Case 1. Considering Caputo’s derivative:
using Eq.(4.2), Eq.(4.7) convert to the following form

1
ταΓ(2 − α)

k∑
j=0

(Uj+1 − Uj)
(
(k − j + 1)1−α − (k − j)1−α

)

=
2∑
i=0

pi(tk+1)U ik+1, k = 0, 1, 2, · · · , n − 1. (4.8)

Case 2. Considering Caputo-Fabrizio derivative:
using Eq.(4.4), Eq.(4.7) convert to the following form

1
ατ

k∑
j=0

(Uj+1 − Uj)
(
exp

(
− (ατ)(k − j)

1 − α

)

− exp
(
− (ατ)(k − j + 1)

1 − α

))
=

2∑
i=0

pi(tk+1)U ik+1, (4.9)

for k = 0, 1, 2, · · · , n − 1.
Now, using the boundary condition, we can calculate

U1, U2, · · · , Un by recursive equation and then by IFT
gain the approximate solution u(t) ≈ un(t) for Eq.(1.1).
An algorithm for approximation of FRDEs by this method
stated in the next Algorithm.
Algorithm 1. An approximation algorithm for FRDEs
Step 1. Input p0(t), p1(t), p2(t), U0 = u(0), n and T.
Step 2. Set τ ← T

n .
Step 3. Locate tk ← k τ, k = 0, 1, 2, · · · , n.
Step 4. Choose sinusoidalBFs Bk(t) for k = 0, 1, 2, · · · , n.
Step 5. a)With Caputo derivative, set recursive equation

1
ταΓ(2 − α)

k∑
j=0

(Uj+1 − Uj)
(
(k − j + 1)1−α − (k − j)1−α

)

=
2∑
i=0

pi(tk+1)U ik+1,

b) With Caputo-Fabrizio derivative, set recursive
equation

1
ατ

k∑
j=0

(Uj+1 − Uj)
(
exp

(
− (ατ)(k − j)

1 − α

)

− exp
(
− (ατ)(k − j + 1)

1 − α

))
=

2∑
i=0

pi(tk+1)U ik+1.

for k = 0, 1, 2, · · · , n − 1.
Step 6. Calculate every Uk, k = 1, 2, · · · , n of an equation

of degree two. ([U0, U1, U2, · · · , Un] are F-transform.)
Step 7. The approximate solution with IFT is

un(t) =
n∑
k=0

UkBk(t).

4.2 Approximate solution of FBDEs

In order to gain the approximate solution of the prob-
lem (1.2), we use of un(t), hence

Dαun(t) = λ exp(un(t)), 1 < α ≤ 2, 0 < t ≤ T, (4.10)
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and by putting t = tk+1, we have

Dαun(tk+1) = λ exp(un(tk+1)),
λ > 0, 1 < α ≤ 2, k = 0, 1, · · · , n − 1. (4.11)

Case 1. Considering Caputo’s derivative:
using Eq.(4.3), Eq.(4.11) convert to the following form

1
ταΓ(3 − α)

k∑
j=0

(Uj+1 − 2Uj + Uj−1)
(
(k − j + 1)2−α − (k − j)2−α

)
= λ exp(Uk+1), k = 0, 1, 2, · · · , n − 1. (4.12)

Case 2. Considering Caputo-Fabrizio derivative:
using Eq.(4.5), Eq.(4.11) convert to the following form

1
ατ2

k∑
j=0

(Uj+1 − 2Uj + Uj−1)
(
exp

(
− (ατ)(k − j)

1 − α

)
− exp

(
− (ατ)(k − j + 1)

1 − α

))
= λ exp(Uk+1), (4.13)

in which k = 0, 1, 2, · · · , n − 1.
Now, using the boundary condition, we can calculate

U1, U2, · · · , Un by recursive equation and then by IFT
gain the approximate solution u(t) ≈ un(t) for Eq.(1.2).
An algorithm for approximation of FBDEs by this method
stated in the next Algorithm.
Algorithm 2. An approximation algorithm for FBDEs
Step 1. Input U0 = u(0) and ut(0) = u′0, n and T.
Step 2. Set τ ← T

n and U−1 ← U0 − τ u′0.
Step 3. Locate tk ← k τ, k = 0, 1, 2, · · · , n.
Step 4. Choose sinusoidalBFs Bk(t) for k = 0, 1, 2, · · · , n.
Step 5. a) With Caputo derivative, set recursive equation

1
ταΓ(3 − α)

k∑
j=0

(Uj+1 − 2Uj + Uj−1)×(
(k − j + 1)2−α − (k − j)2−α

)
= λ exp(Uk+1).

b) With Caputo-Fabrizio derivative, set recursive
equation

1
ατ2

k∑
j=0

(Uj+1 − 2Uj + Uj−1)
(
exp

(
− (ατ)(k − j)

1 − α

)
− exp

(
− (ατ)(k − j + 1)

1 − α

))
= λ exp(Uk+1),

for k = 0, 1, 2, · · · , n − 1.
Step 6. Calculate every Uk, k = 1, 2, · · · , n of an equation

of degree one. ([U0, U1, U2, · · · , Un] are F-transform.)
Step 7. The approximate solution with IFT is

un(t) =
n∑
k=0

UkBk(t).

5 Examples
Now in this section, we present various examples for

illustrate FTM for FRDEs andFBDEs. In all these examples,
we used of mathematical software Mathematica.

Example 5.1. For the �rst example,we propose the FRDEs
[43]:

Dαt u(t) = 1 − u2(t), 0 < t < 1, 0 < α ≤ 1, (5.1)

with the precise solution u(t) = exp(2t)−1
exp(2t)+1 for α = 1 and the

primary condition:

u0 = u(0) = 0. (5.2)

Following the FTM, according to what was formulated
and presented in section 4 for Eqs.(5.1)-(5.2), we can cal-
culate U1, U2, . . . , Un and then gain the approximate so-
lution un(t) of (5.1).

Table 1 shows comparison betwixt the exact and the
approximation solution (5.1) with F-transform of test ex-
ample 5.1 for di�erent values of α and t, n = 500, τ =
0.002, featuring Caputo and Caputo-Fabrizio derivative.

Comparison of exact and approximate solution can be
seen for equations with di�erent values of α, n = 500,
τ = 0.002 and various values of t, in Figure 2 with Caputo
derivative and in Figure 1 with Caputo-Fabrizo derivative.

Fig. 1: Comparison betwixt the exact and the approximation solution
with F-transform of test example 5.1 for n = 500, τ = 0.002 and
various values of t and α with Caputo-Fabrizio derivative.

Table 2 represents the present method for α = 1 and
the achieved results of homotopy perturbation method (
HPM), Adomian decomposition method (ADM) [30] and
optimal homotopy asymptotic method (OHAM) [31].
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Table 1: The exact and approximate result of test example 5.1 featuring various values of α, with Caputo and Caputo-Fabrizio derivative.

Caputo Caputo-Fabrizio

t α = 0.5 α = 0.75 α = 1.0 Exact α = 0.5 α = 0.75 α = 1.0 Exact

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.334626 0.260941 0.197495 0.197375 0.334615 0.260932 0.197437 0.197375
0.4 0.498466 0.442638 0.379972 0.379949 0.498459 0.442629 0.379895 0.379949
0.6 0.604588 0.577781 0.536921 0.53705 0.604578 0.577780 0.536847 0.53705
0.8 0.677429 0.67693 0.66383 0.664037 0.677418 0.67687 0.66377 0.664037
1.0 0.729503 0.749104 0.761407 0.761594 0.729502 0.749103 0.76137 0.761594

Table 2: Comparison of the numerical solutions of the equation in example 5.1 with α = 1.

FTM
t HPM ADM OHAM Caputo Caputo-Fabrizio Exact

0.2 0.197375 0.197375 0.197402 0.197437 0.197437 0.197375
0.4 0.379943 0.379948 0.380065 0.379972 0.379895 0.379949
0.6 0.536857 0.537049 0.537148 0.536921 0.536847 0.53705
0.8 0.661706 0.664037 0.664049 0.66383 0.66377 0.664037
1.0 0.7460318 0.761622 0.761634 0.761407 0.76137 0.761594

Fig. 2: Comparison betwixt the exact and the approximation so-
lution with F-transform of test example 5.1 for value of n = 500,
τ = 0.002 and di�erent values of α and t with Caputo derivative.

Example 5.2. For the second example, we o�er the FBDEs
[32]:

Dαt u(t) − 2 exp(u(t)) = 0, 1 < α ≤ 2 (5.3)

including the primary condition

u0 = u(0) = 0, u′0 = ut(0) = 0. (5.4)

The unknown coe�cient U1, U2, · · · , Un with due atten-
tion to the FTM, according to section 4 for Eqs.(5.3)-(5.4)
are calculated.

Comparison of exact and approximate solution can be
seen in Table 3 for equations with n = 500, τ = 0.002
and various values of t and α, featuring Caputo fractional
derivative.
Figure 3 and Figure 4 shows comparison betwixt the ex-
act and the approximation solution (5.1) with F-transform
of test example 5.1 for various values of α, n = 500, τ =

Fig. 3: Comparison betwixt the exact and the approximation solu-
tion with F-transform of test example 5.2 for di�erent values of α,
n = 500, τ = 0.002 and various values of t, with Caputo fractional
derivative.

0.002, respectively, with Caputo and Caputo-Fabrizio frac-
tional derivative.

Toward α = 2, the solution that we have gained is in
accordance with the precise solution u(t) = −2 log(cos(t)).

Example 5.3. For the second example, we o�er the FBDEs
[32]:

Dαt u(t) + 2 exp(u(t)) = 0, 1 < α ≤ 2 (5.5)

including the primary condition

u0 = u(0) = 0, u′0 = ut(0) = 0. (5.6)

Toward α = 2, the solution that we have gained
is in accordance with the precise solution u(t) =
−2. log(0.848338 cosh(1.17878(t − 0.5))).

Table 4 represents the present method for α = 2 and
the achieved results of Laplace transform method (LTM),
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Table 3: The exact and approximate result of test example 5.2 featuring various values of α, with Caputo and Caputo-Fabrizio derivative.

Caputo Caputo-Fabrizio

t α = 0.5 α = 0.75 α = 1.0 Exact α = 0.5 α = 0.75 α = 1.0 Exact

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0859606 0.059272 0.0404369 0.0402695 0.0859605 0.059271 0.0404368 0.0402695
0.4 0.292598 0.219867 0.164802 0.164458 0.292597 0.219866 0.164802 0.164458
0.6 0.630075 0.490616 0.384455 0.38393 0.630076 0.490615 0.384454 0.38393
0.8 1.15995 0.907069 0.723658 0.722781 1.15995 0.907070 0.723656 0.722781
1.0 1.54487 1.19373 1.23315 1.23125 1.54487 1.19373 1.23315 1.23125

Fig. 4: Comparison betwixt the exact and the approximation so-
lution with F-transform of test example 5.2 for value of n = 500,
τ = 0.002 and various values of α and t, with Caputo-Fabrizio
derivative.

decomposition method (DM) and B-spline method (BSM)
[58].

In this method, by increasing the amount n and decreas-
ing the amount τ, amore accurate answer canbe achieved.
The time that the CPU is used in minutes for FRDEs with
α = 1 and FBDEs with α = 2 featuring Caputo derivative
and Caputo-Fabrizio derivative in di�erence, τ = 0.002,
n = 50 and n = 500 is shown in Table 5. Baleanu et.al in
[59] in a non-di�erence state compared the Caputo deriva-
tive and Caputo-Fabrizio derivative in terms of run-time in
seconds.

6 Conclusion
We have successfully applied FTM to obtain approxi-

mate solution of the FRDEs and FBDEs. The result indicate
that a few iteration of FTM will result in some useful solu-
tions. Finally, it should be added that the suggested tech-
nique has the potentials to be practical in solving other
similar nonlinear and linear problems in partial di�eren-
tial equations featuring fractional derivative.
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this paper.

References
[1] Magin R.L., Abdullah O., Baleanu D., Zhou X.J., Anomalous

di�usion expressed through fractional order di�erential op-
erators in the Bloch-Torrey equation, J. Magn. Reson., 2008,
190(2), 255-270.

[2] Scalas E., The application of continuous-time random walks
in �nance and economics, Phys. A: Stat. Mech. Appl., 2006,
362(2), 225-239.

[3] Deshpande A.S., Daftardar-Gejji V., Sukale Y.V., On Hopf bifur-
cation in fractional dynamical systems. Chaos, Solit. Fract.,
2017, 98, 189-198.

[4] Neamaty A., Nategh M., Agheli B., Local non-integer order
dynamic problems on time scales revisited, Int. J. Dyn. Contr.,
2018, 6(2) , 486-498.

[5] Raja M.A.Z., Samar R., Alaidarous E.S., Shivanian E., Bio-
inspired computing platform for reliable solution of Bratu-type
equations arising in the modeling of electrically conducting
solids, Appl. Math. Model., 2016, 40(11), 5964-5977.

[6] Coronel-Escamilla A., Gómez-Aguilar J. F., Torres L., Escobar-
Jiménez R.F., Valtierra-Rodríguez M., Synchronization of
chaotic systems involving fractional operators of Liou-
ville–Caputo type with variable-order, Phys. A: Stat. Mech.
Appl., 2017, 487, 1-21.

[7] Guner O., Bekir A., The Exp-function method for solving non-
linear space-time fractional di�erential equations in mathe-
matical physics, J. Assoc. Arab Univ. Basic Appl. Sci., 2017, 24,
277-282.

[8] Gómez-Aguilar J.F., Atangana A., New insight in fractional
di�erentiation: power, exponential decay and Mittag- Le�ler
laws and applications, Europ. Phys. J. Plus, 2017, 132(1), 13.

[9] Coronel-Escamilla A., Gómez-Aguilar J.F., Torres L., Escobar-
Jiménez R.F., A numerical solution for a variable-order
reaction-di�usion model by using fractional derivatives with
non-local and non-singular kernel, Phys. A: Stat. Mech. Appl.,
2018, 491, 406-424.

[10] Atangana A., Gómez-Aguilar J.F., A new derivative with normal
distribution kernel: Theory, methods and applications. Phys.
A: Stat. Mech., Appl., 2017, 476, 1-14.



M. Adabitabar Firozja et al., Approximate method for solving strongly fractional nonlinear problems | 79

Table 4: Comparison of the numerical solutions of the equation in example 5.3 with α = 2.

FTM
t LTM DM BSM Caputo Caputo-Fabrizio Exact

0.5 0.319353 0.335937 0.328896 0.32758 0.327591 0.328952
0.6 0.304160 0.318336 0.315036 0.313499 0.313483 0.315089
0.7 0.261946 0.267991 0.273834 0.272173 0.272087 0.273879
0.8 0.194041 0.191744 0.206386 0.204666 0.204517 0.206419
0.9 0.103537 0.099193 0.114393 0.11262 0.112484 0.114411

Table 5: Duration used in minutes.

FRDEs FBDEs
Caputo Caputo-Fabrizio Caputo Caputo-Fabrizio

n = 50 0.0369792 0.0403646 0.0914063 0.09375
n = 500 5.61693 5.62161 7.07031 7.65938

[11] Morales-Delgado V.F., Taneco-Hernández M.A., Gómez- Aguilar
J.F., On the solutions of fractional order of evolution equa-
tions, Europ. Phys. J. Plus, 2017, 132(1), 47.

[12] Neamaty A., Nategh M., Agheli B., Time-Space Fractional
Burger’s Equation on Time Scales, J. Comput. Nonlin Dyn.,
2017, 12(3), 031022.

[13] Coronel-Escamilla A., Gómez-Aguilar J. F., Baleanu D.,
Córdova-Fraga T., Escobar-Jiménez R.F., Olivares-Peregrino
V.H., Qurashi M.M.A., Bateman–Feshbach Tikochinsky and
Caldirola–Kanai Oscillators with New Fractional Di�erentia-
tion, Entropy, 2017, 19(2), 55.

[14] Ming C., Liu F., Zheng L., Turner I., Anh V., Analytical solutions
of multi-term time fractional di�erential equations and ap-
plication to unsteady flows of generalized viscoelastic fluid,
Comp. Math. Appl., 2016, 72(9), 2084-2097.

[15] Baleanu D., Luo A.C., Discontinuity and Complexity in Nonlin-
ear Physical Systems, J.T. Machado (Ed.), 2014, Springer.

[16] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applica-
tion of fractional di�erential equations, 2006, Elsevier B.V,
Netherlands.

[17] Caputo M., Fabrizio, M., A new de�nition of fractional deriva-
tive without singular kernel, Progr. Fract. Di�er. Appl, 2015,
1(2), 1-13.

[18] Reid W.T., Riccati Di�erential Equations (Mathematics in Sci-
ence and Engineering), 1972, 86, Academic Press, New York.

[19] Ntogramatzidis L., Ferrante, A., On the solution of the Riccati
di�erential equation arising from the LQ optimal control prob-
lem, Syst. Contr. Lett., 2010, 59(2), 114-121.

[20] Anderson B.D., Moore J.B., Optimal �ltering, Englewood Cli�s,
1979, 21, 22-95.

[21] Gerber M., Hasselblatt B., Keesing D., The Riccati equation:
pinching of forcing and solutions, Exp. Math., 2003, 12(2),
129-134.

[22] Einicke G.A., White L.B., Bitmead R.R., The use of fake alge-
braic Riccati equations for co-channel demodulation, IEEE
transactions on signal processing, 2003, 51(9), 2288-2293.

[23] Boyle P.P., Tian W., Guan F., The Riccati equation in mathemati-
cal �nance, J. Symbol. Comput., 2002, 33(3), 343-355.

[24] Lasiecka I., Triggiani R., Di�erential and algebraic Riccati
equations with application to boundary/point control prob-
lems: continuous theory and approximation theory, Lecture

notes in control and Information Sciences, 1991, 164, 1-160.
[25] Anderson B.D., Moore J.B., Optimal control: linear quadratic

methods, 2007, Prentice-Hall, New Jersey.
[26] Odibat Z., A Riccati Equation Approach and Travelling Wave

Solutions for Nonlinear Evolution Equations, Int. J. Appl. Com-
put. Math., 2017, 3(1), 1-13.

[27] Kravchenko V.V., Applied pseudoanalytic function Theory,
2009, Springer Science & Business Media.

[28] Jacobsen J., Schmitt K., The Liouville-Bratu-Gelfand problem
for radial operators, J. Di�. Equat., 2002, 184(1), 283-298.

[29] Frank-Kamenetskii D.A., Di�usion and heat exchange in chemi-
cal kinetics, 2015, Princeton University Press.

[30] Abbasbandy S., Homotopy perturbation method for quadratic
Riccati di�erential equation and comparison with Adomian’s
decomposition method, Appl. Math. Comput., 2006, 172(1),
485-490.

[31] Riccati H.P., Mabood F., Izani A., Ismai M., Hashim I., Applica-
tion of optimal homotopy asymptotic method for the approx-
imate solution of Riccati equation, Sains Malaysiana, 2013,
42(6), 863-867.

[32] Ragb O., Seddek L.F., Matbuly M.S., Iterative di�erential
quadrature solutions for Bratu problem, Comp. Math. Appl.,
2017, 74(2), 249-257.

[33] Jator S.N., Manathunga V., Block Nyström type integrator for
Bratu’s equation, J. Comput. Appl. Math., 2018, 327, 341-349.

[34] Khastan A., Per�lieva I., Alijani Z., A new fuzzy approximation
method to Cauchy problems by fuzzy transform, Fuzzy Sets
Syst., 2016, 288, 75-95.

[35] Khastan A., Alijani Z., Per�lieva I., Fuzzy transform to approx-
imate solution of two-point boundary value problems, Math.
Meth. Appl. Sci., 2016, 40(17), 6147-6154.

[36] Tomasiello S., An alternative use of fuzzy transform with appli-
cation to a class of delay di�erential equations, Int. J. Comp.
Math., 2016, 94(9), 1719-1726.

[37] Chen W., Shen Y., Approximate solution for a class of second-
order ordinary di�erential equations by the fuzzy transform, J.
Intel. Fuzzy Syst., 2014, 27(1), 73-82.

[38] Biazar J., Eslami M., Di�erential transform method for
quadratic Riccati di�erential equation, Int. J. Nonlin. Sci.,
2010, 9(4), 444-447.



80 | M. Adabitabar Firozja et al., Approximate method for solving strongly fractional nonlinear problems

[39] Abbasbandy S., Homotopy perturbation method for quadratic
Riccati di�erential equation and comparison with Adomian’s
decomposition method, Appl. Math. Comput., 2006, 172(1),
485-490.

[40] Geng F., A modi�ed variational iteration method for solving
Riccati di�erential equations, Comp. Math. Appl., 2010, 60(7),
1868-1872.

[41] Tan Y., Abbasbandy S., Homotopy analysis method for
quadratic Riccati di�erential equation, Comm. Nonlin. Sci.
Numer. Simul., 2008, 13(3), 539-546.

[42] Bota C., Căruntu B., Analytical approximate solutions for
quadratic Riccati di�erential equation of fractional order using
the Polynomial Least Squares Method, Chaos, Solit. Fractals,
2017, 102, 339-345.

[43] Neamaty A., Agheli B., Darzi R., The shifted Jacobi polyno-
mial integral operational matrix for solving Riccati di�erential
equation of fractional order, Appl. Appl. Math., 2015, 10(2),
878-892.

[44] Maleknejad K., Torkzadeh L., Hybrid Functions Approach for
the Fractional Riccati Di�erential Equation, Filomat, 2016,
30(9), 2453-2463.

[45] Aminikhah H., Sheikhani A.H.R., Rezazadeh H., Approximate
analytical solutions of distributed order fractional Riccati dif-
ferential equation, Ain Shams Eng. J., 2016, 9(4), 581-588.

[46] Feng X., He Y., Meng J., Application of homotopy perturbation
method to the Bratu-type equations, Topol. Meth. Nonlin. An.,
2008, 31(2), 243-252.

[47] Darwish M.A., Kashkari B.S., Numerical solutions of second or-
der initial value problems of Bratu-type via optimal homotopy
asymptotic method, Amer. J. Comput. Math., 2014, 4(02), 47.

[48] Das N., Singh R., Wazwaz A.M., Kumar J., An algorithm based
on the variational iteration technique for the Bratu-type and
the Lane-Emden problems, J. Math. Chem., 2016, 54(2), 527-
551.

[49] Morales-Delgado V.F., Gómez-Aguilar J.F., Yépez-Martínez H.,
Baleanu D., Escobar-Jimenez R.F., Olivares-Peregrino V.H.,
Laplace homotopy analysis method for solving linear partial
di�erential equations using a fractional derivative with and
without kernel singular, Adv. Di�. Equat., 2016, 2016(1), 164.

[50] Gómez-Aguilar J.F., Yépez-Martínez H., Torres-Jiménez, J.,
Córdova-Fraga T., Escobar-Jiménez R.F., Olivares- Peregrino
V.H., Homotopy perturbation transform method for nonlinear
di�erential equations involving to fractional operator with
exponential kernel, Adv. Di�. Equat., 2017, 2017(1), 68.

[51] Atangana A., Gómez-Aguilar J.F., Numerical approximation
of Riemann-Liouville de�nition of fractional derivative: From
Riemann-Liouville to Atangana-Baleanu, Num. Meth. Part. Di�.
Equat., 2018, 34(5), 1502-1523.

[52] Yépez-Martínez H., Gómez-Aguilar J.F., Sosa I.O., Reyes J.M.,
Torres-Jiménez J., The Feng’s �rst integral method applied to
the nonlinear mKdV space-time fractional partial di�erential
equation, Rev. Mex. Física, 2016, 62(4), 310-316 .

[53] Yépez-Martínez H., Gómez-Aguilar J.F., Atangana A., First in-
tegral method for non-linear di�erential equations with con-
formable derivative, Math. Model. Nat. Phenom., 2018, 13(1),
14.

[54] Yépez-Martínez H., Gómez-Aguilar J.F., Numerical and ana-
lytical solutions of nonlinear di�erential equations involving
fractional operators with power and Mittag-Le�ler kernel,
Math. Model. Nat. Phenom., 2018, 13(1), 13.

[55] Per�lieva I., Fuzzy transforms: Theory and applications. Fuzzy
sets and systems, 2006, 157(8), 993-1023.

[56] Li C., Zhao Z., Chen Y., Numerical approximation of nonlin-
ear fractional di�erential equations with subdi�usion and
superdi�usion, Comp. Math. Appl., 2011, 62(3), 855-875.

[57] Atangana A., Alqahtani R.T., Numerical approximation of the
space-time Caputo-Fabrizio fractional derivative and appli-
cation to groundwater pollution equation, Adv. Di�. Equat.,
2016, 2016(1), 156.

[58] Caglar H., Caglar N., Özer M., Valarıstos A., Anagnostopou-
los A.N., B-spline method for solving Bratu’s problem, Int. J.
Comp. Math., 2010, 87(8), 1885-1891.

[59] Baleanu D., Agheli B., Al Qurashi M.M., Fractional advection
di�erential equation within Caputo and Caputo- Fabrizio
derivatives, Adv. Mech. Eng., 2016, 8(12), 1687814016683305.


	Approximate method for solving strongly fractional nonlinear problems using fuzzy transform
	1  Introduction 
	2 Discretization of the fractional derivative
	2.1 Discretization of the Caputo derivative
	2.2 Discretization of the Caputo-Fabrizio derivative

	3 Fuzzy partition and fuzzy transform
	4 Description of the new approach
	4.1 Approximate solution of FRDEs
	4.2 Approximate solution of FBDEs

	5 Examples
	6 Conclusion


