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Abstract: The electro-osmotic �ow of a third grade �uid
past a channel having stretchingwalls has been studied in
this paper. The channel height is taken much greater than
the thickness of the electric double layer comprising of
the Stern and di�use layers. The equations governing the
�ow are obtained from continuity equation, the Cauchy’s
momentum equation and the Poisson-Boltzmann equa-
tion. The Debye-Hückel approximation is adopted to lin-
earize the Poisson-Boltzmann equation. Suitable similar-
ity transformations are used to reduce the resulting non-
linear partial di�erential equation to ordinary di�erential
equation. The reduced equation is solved numerically us-
ing damped Newton’s method. The results computed are
presented in form of graphs.
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1 Introduction
The electroosmotic �ow (EOF) is the �ow induced by the
application of an electric �eld across a channel and due
to the presence of electric double layer (EDL) at channel
walls. Electric double layers exist in all heterogeneous
�uid based systems including bio�uids. The electroos-
motic �ow is most signi�cant in small channels where the
EDL is much smaller than the characteristic length scale
of the channel. The electroosmotic �ow is considered to
be an inseparable part of many scienti�c and engineering
applications used in micro�uidic devices. The various ap-
plications of micro�uidic devices include micro-reactors,
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heat transfer in electronic circuits, biosensors, drug
delivery, DNA analysis and sequencing, etc. It has been
projected that micro�uidic devices utilizing EOF will
have great application in medical research [1, 2]. As the
bio�uids are electrically conducting in nature, EOF will
be vital for drug delivery and separation/mixing of �uids
at the atomic level. Studies on EOF of Newtonian �uids
abound in contrast to non-Newtonian �uids as evident
from the literature. In the recent years, to handle complex
�uids in micro�uidics, EOF of non-Newtonian �uids has
gained attention.

The study of EOF was �rst reported by F.F. Reuss [3] in
1809 where he has showed that water can �ow through a
plug of clay by the application of suitable electric voltage.
Most of the early studies [4–6] have focused on the the-
oretical analysis of electroosmotic �ow of Newtonian �u-
ids. Santiago [7] analyzed the e�ects of �uid inertia and
pressure on the velocity and vorticity �eld of electroos-
motic �ow of Newtonian �uids. The analytical solution
for electrostatic potential of double layer has been ob-
tained by solving the complete Poisson-Boltzmann equa-
tion for arbitrary zeta potentials using Green’s function
method for Newtonian �uids in [8]. A theoretical model
was developed by Chakraborty [9] for studying the capil-
lary �lling dynamics of a power-law �uid in a microchan-
nel. Park and Lee [10] numerically obtained �ow �eld so-
lution of full Phan-Thien and Tanner (PTT) constitutive
equation in a rectangular duct under the action of an
external electric �eld and applied pressure gradient by
employing �nite volume method. Berli and Olivares [11]
introduced a theoretical description of the electrokinetic
�ow of power law �uid through slit and cylindrical mi-
crochannels. Exact solution of the velocity distribution are
obtained for the EOF of power-law �uids in a slit chan-
nel analytically by Zhao et al. [12]. Siddiqui and Lakha-
tia [13] fomulated and solved the boundary value prob-
lem of steady, symmetric one-dimensional electroosmotic
�ow of a micropolar �uid in a uniform rectangular mi-
crochannel under the action of uniformly applied elec-
tric �eld. A numerical study of electroosmotic �ow in mi-
crochannels for non-Newtonian �uid obeying power-law
model was attempted for the �rst time in [14]. Analytical
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solutions for channel and pipe �ows of visco-elastic �u-
ids obeying PTT model and the FENE-P model, under the
mixed in�uence of electrokinetic and pressure forces were
obtained in [15]. Vasu and De [16] have numerically ana-
lyzed the �uid �ow behavior for EOF of power-law �uids
in a rectangular microchannel at high zeta potential by
considering the EDL potential distribution without Debye
Huckel linear approximation. A numerical investigation of
�ow of power-law �uid in a two dimensional microchan-
nel with non-uniform zeta potential distributions along
the channel walls by �nite volume schemewas carried out
by Hadigol et al. [17]. Analytical solutions were obtained
for transverse distribution of velocity, and thermal trans-
port characteristics of the steady fully developedelectroos-
motic �ow of PTT and FENE-P model �uid in a slit mi-
crochannel in [18]. Semi-analytical solutions for transient
EOF of Maxwell �uids between micro-parallel plates are
presented in [19] using Laplace transform method. A nu-
merical analysis is performed in [20] on alternating current
EOF of non-Newtonian incompressible �uids based on the
Ostwald-deWaele power-lawmodel in circularmicrochan-
nels. The electroosmotic �ow ofMaxwell �uids in a rectan-
gular microchannel with asymmetric high zeta potentials
at the walls is studied analytically using Green’s functions
and separation of variables method be Jimenez et al. [21].
Xie and Jian [22] analyzed the rotating electroosmotic �ow
of power-law �uids at high zeta potentials in a slit mi-
crochannel using �nite di�erence method. Electroosmotic
�ow through a channel between two undulated surfaces
inducedby an external electric �eld is studied in [23] using
lubrication approximation theory and lattice Boltzmann
method. The EOF of power-law �uids in microchannels
with di�erent geometries is discussed in [24, 25].

A theoretical study on the electroosmotic �ow of a
�uid past a channel having stretching walls has been in-
vestigated byMisra et al. [26] by considering the bio�uid to
be a second grade �uid. Although the second grade �uid
model can predict the characteristics of bio�uids, it does
not take into account the shear thinning phenomenon
which is a vital property of bio�uids. This motivated us to
extend their work and analyze the electroosmotic �ow of a
third grade �uid past a channel having stretching walls in
the present work. The partial di�erential equation govern-
ing the �ow is transformed to a nonlinear ordinary di�er-
ential equation using appropriate similarity transforma-
tion which is then solved using a suitable �nite di�erence
scheme. The results computed are presented in the form of
graphs for various �ow parameters governing the �ow.

2 Basic Equations
The basic laws of the conservation of mass, conservation
of momentum, and conservation of energy for an incom-
pressible �uid are

∇.V = 0, (1)

ρ DVDt = ∇.τ + F, (2)

ρCp
DT
Dt = κ∇

2T + τ.(∇V), (3)

where V is the velocity �eld, ρ is the �uid density, Cp is
the speci�c heat at constant pressure, κ is the coe�cient of
thermal conductivity, F is the body force per unit volume,
T is the temperature, and τ is the stress tensor. The con-
stitutive equation of Cauchy stress tensor for a third grade
�uid is

τ = −pI + µA1 + α1A2 + α2A2
1 + β1A3

+β2(A1A2 + A2A1) + β3(trA2
1)A1,

where p is the pressure, µ is the coe�cient of viscosity,
α1, α2, β1, β2, β3 are material constants and the Rivlin-
Ericksen tensors A1, A2, and A3 are given by

A1 = ∇V + (∇V)′,

An =
DAn−1
Dt + An−1(∇V) + (∇V)′An−1 for n ≥ 2.

Fosdick and Rajagopal [27] have shown that the motion
satis�es Clausius-Duhem inequality to be compatible with
thermodynamics and if it is assumed that the speci�c
Helmholtz free energy is minimumwhen the �uid is at rest
then the following constraints must be satis�ed

µ ≥ 0, α1 ≥ 0, | α1 + α2 |≤
√
24µβ3, β1 = β2 = 0, β3 ≥ 0.

The F term in equation (2) is given as

F = ρeE, (4)

where E is the applied electric �eld and ρe is the net elec-
tric charge density. For a symmetric electrolyte the anions
and cations have same charge valence z+ = z− = z and the
net electric charge density ρe = ez(n+ − n−) where n+ and
n− are the concentrations of positive and negative ions, re-
spectively and e is the elementary electric charge.
The electric �eld intensity E = −∇Φ, where Φ is the elec-
tric potential governed by

∇2Φ = −ρeε ,

where ε is the electric permittivity of the solution.
In electroosmotic �ows, two types of electric �elds act on
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the �ow. One is the applied electric �eld ϕ which is gener-
ated by the electrodes at the inlet and outlet of the channel
and the other one ψ is due to the net charge distribution in
the electric double layer which is acquired at the wall. The
total electric �eld Φ is a linear superposition of ϕ and ψ.

∇2ϕ = 0,
∇2ψ = −ρeε .

At the centerline of the channel the EDL does not over-
lap and variation of the electrical potential distribution ψ
occurs only in the normal direction to the channel walls
which can be expressed in the y-direction as

d2ψ
dy2 = −ρeε . (5)

According to Bruss [28], the net electric charge density in
the EDL can be expressed as

ρe = −2zen0 sinh
(
zeψ
kBTA

)
, (6)

where n0 is the bulk number concentration of ions in the
electrolyte solution, kB is the Boltzmann constant and TA
is the absolute temperature. The Debye-Hückel linear ap-
proximation yields

sinh(.) ≡ (.). (7)

3 Problem Formulation
We consider the fully developed electroosmotic �ow of a
viscous incompressible �uid, that obeys the third grade
�uid model, in a channel bounded by stretching walls
with equations y = ±R0 (Fig.1). The �ow is assumed to be
symmetric about the centerline and hence we con�ne our
study to the region 0 ≤ y ≤ R0. The height of the channel
is much smaller than the length of the channel, L. The ef-
fect of Joule heating, gravity, and pressure gradient have
been neglected in the present study. The �ow is driven by
stretching of the channel walls and the electro-osmotic ef-
fect. The channel walls in contact with the electrolyte de-
velop surface charge due to ion adsorptionwhich results in
the formation of the electric double layer. The physical ex-
tent of theEDL is representedby theDebye length. TheEDL
is very thin, therefore the e�ective �uid velocity is quanti-
�ed by the Helmholtz-Smoluchowski equation

UHS = −
εζEx
µ , (8)

where ζ is the zeta potential. In the boundary layer, the

equations that govern the �ow for the present problem
are [29]

∂u
∂x + ∂v∂y = 0 (9)

and ρ
(
u ∂u∂x + v ∂u∂y

)
= µ ∂

2u
∂y2

+α1
[
u ∂3u
∂x∂y2 + ∂u∂x

∂2u
∂y2 + 3∂u∂y

∂2v
∂y2 + v ∂

3u
∂y3

]
+2α2

∂u
∂y

∂2v
∂y2 + 6β3

(
∂u
∂y

)2 ∂2u
∂y2 + ρeEx . (10)
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Fig. 1: Sketch of the problem

The electric potential distribution for a symmetric
electrolyte described by the Poisson-Boltzmann equation
in Eq.(5) and Eq.(6) is linearized using Eq.(7), and is given
by

d2ψ
dy2 = ψ

λ2D
, (11)

where λD =
√

εkBTA
2n0z2e2

is the Debye length.

The boundary conditions for the velocities and electric po-
tential for the �ow problem are

At y = 0 : ∂u
∂y = 0, v = 0, dψ

dy = 0. (12)

At y = R0 : u = bx(b > 0), v = 0, ψ = ζ .

Using the following similarity transformation

u = UHSxf
′(η)

R0
, v = −UHS f (η)

and introducing the non-dimensional variables

x* = x
R0

, η = y
R0

, u* = u
UHS

, v* = v
UHS

,



Mamata Parida and Sudarsan Padhy, Electro-osmotic flow of a third-grade fluid | 59

ψ* = ψζ ,

the partial di�erential equation (10) transforms to the fol-
lowing ordinary di�erential equation

1
Re

[
f ′2(η) − f (η)f ′′(η)

]
= f ′′′(η)

+α
[
2f ′(η)f ′′′(η) − f (η)f (iv)(η) − 3f ′′2(η)

]
−2γf ′′2(η) + 6βΛ2f ′′2(η)f ′′′(η) + Λ d

2ψ*
dη2 , (13)

where

α = α1UHSR0µ
, γ = α2UHSR0µ

, β = β3U
2
HS

µR20
,

Re = ρUHSR0µ , and Λ = R0L is the aspect ratio.

The boundary conditions become

f (0) = 0, f ′′(0) = 0, dψ*
dη |η=0= 0,

f (1) = 0, f ′(1) = 1, ψ*(1) = 1. (14)

On solving the linearized Poisson-Boltzmann equation
with the boundary conditions, we get

d2ψ*
dη2 = K2 cosh Kηcosh K , K = R0λD

. (15)

Eq. (13) now becomes

1
Re

[
f ′2(η) − f (η)f ′′(η)

]
= f ′′′(η)

+α
[
2f ′(η)f ′′′(η) − f (η)f (iv)(η) − 3f ′′2(η)

]
−2γf ′′2(η) + +6βΛ2f ′′2(η)f ′′′(η)

+ΛK2 cosh Kηcosh K . (16)

4 Numerical Methods
The resulting equation arising from the problem of EOF of
a third grade �uid past a channel having stretching walls
is highly non-linear in nature and does not admit an ex-
act analytical solution. We, therefore, look for a numeri-
cal solution of the problem under consideration. For sim-
plicity, better stability, accuracy and e�ciency, the �nite
di�erence technique is used for discretization. In order to
discretize the di�erential quotients the following suitable
�nite di�erence strategy is opted.
We have divided the domain [0, 1] into a set of non-
overlapping grids such that the spacing of the grid points,

∆η is uniform. The grid points are identi�ed by an index i
running in the η-direction.

ηi = i∆η, i = 1, 2, ..., N
fi = f (ηi).

At the initial point (i = 0), Euler’s forward �nite di�erence
scheme and at the end point (i = N), the backward �nite
di�erence is used.
For i = 1, the following di�erence scheme is used

fi
′

= fi+1 − fi−1
2∆η ,

fi
′′

= fi+1 − 2fi + fi−1
(∆η)2 ,

fi
′′′

= fi+2 − 3fi+1 + 3fi − fi−1
(∆η)3 ,

fi(iv) = fi+3 − 4fi+2 + 6fi+1 − 4fi + fi−1
(∆η)4 .

The central di�erence scheme is used for discretization of
the terms at the nodes i = 2, 3, ..., N − 2.
For i = N − 1, the following di�erence scheme is used

fi
′

= fi+1 − fi−1
2∆η ,

fi
′′

= fi+1 − 2fi + fi−1
(∆η)2 ,

fi
′′′

= fi+1 − 3fi + 3fi−1 − fi−2
(∆η)3 ,

fi(iv) = fi+1 − 4fi + 6fi−1 − 4fi−2 + fi−3
(∆η)4 .

The resulting algebraic system of equations is then ex-
pressed in the residual form as

Ri = 0 i = 1, 2, ..., N . (17)

where the residuals are given as follows

R1 = −1
4Re

(
f2
∆η

)2
+ 2f3 − 3f2

2(∆η)3 − αf2
2(∆η)4 (f4 − 6f3 + 7f2)

+ ΛK2 cosh Kη1cosh K .

For m = 2, 3, ..., N-2

Rm = −1
4Re(∆η)2

[
(fi+1 − fi−1)2

−4fi(fi+1 − 2fi + fi−1)
]

+ fi+2 − 2fi+1 + 2fi−1 − fi−2
2(∆η)3

+ α
2(∆η)4

[
(fi+1 − fi−1)

(fi+2 − 2fi+1 + 2fi−1 − fi−2)
− 2fi(fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2)
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−3(fi+1 − 2fi + fi−1)2
]

+ 2γ
(∆η)4 (fi+1 − 2fi + fi−1)

2

+ 3βΛ2
(∆η)7 (fi+1 − 2fi + fi−1)

2(fi+2 − 2fi+1

+2fi−1 − fi−2)

+ ΛK2 cosh Kηmcosh K ,

RN−1 = −1
4Re(∆η)2

[
f 2N−2 + 8∆ηfN−2 + 32(∆η)2

]
+ 3fN−2 − fN−3 + 6∆η

(∆η)3

− α
(∆η)4

[
fN−2(3fN−2 − fN−3 + 6∆η)

−2∆η(6fN−2 − 4fN−3 + fN−4 + 8∆η)

+3(fN−2 + 4∆η)2
]

+ 2γ
(∆η)4(fN−2 + 4∆η)2

+ 6βΛ2
(∆η)7 (fN−2 + 4∆η)

2(3fN−2 − fN−3 + 6∆η)

+ ΛK2 cosh KηN−1cosh K ,

RN = −f 2N−1
Re(∆η)2 + 3fN−2 − fN−3 + 6∆η

(∆η)3

− α
(∆η)4

[
4∆η(−3fN−2 + fN−3)

+(fN−2 + 4∆η)2
]

+ 2γ
(∆η)4 (fN−2 + 4∆η)

2

+ 6βΛ2
(∆η)7 (fN−2 + 4∆η)

2(3fN−2 − fN−3 + 6∆η)

+ ΛK2.

For computation of the solution of non-linear system
of algebraic equations (17), Newton’s iterativemethod that
converges quadratically, is used. In order to stabilize the
convergence at an early stage of the iteration and to save
computing time the damped Newton’s method [30] is used
which is given by

fk+1 = fk − λkJ−1(fk)R(fk), k = 0, 1, ...

where f = [f1, f2, ..., fN ]T represents the column vector
of unknowns, 0 < λk < 1 is the kth damping parameter,
and J(fk) is the Jacobian matrix evaluated at the kth iter-

ate. Here the Jacobian matrix J(f) is

[∂Rj
∂fi

]
i,j=1,2,...,N

=


∂R1
∂f1

∂R1
∂f2

∂R1
∂f3 ... ∂R1

∂fN
∂R2
∂f1

∂R2
∂f2

∂R2
∂f3 ... ∂R2

∂fN
...

...
...

. . .
...

∂RN
∂f1

∂RN
∂f2

∂RN
∂f3 ... ∂RN

∂fN

 .

A good initial guess is necessary for the convergence of the
damped Newton’s method and very important for the fast
solution of the iterative process. The initial solution guess
for the axial velocity is approximated according to the
boundary conditions. For this problem the convergence of
the damped Newton method is achieved when

‖J−1(fk+1)‖2 − ‖J−1(fk)‖2 < 10−4, k = 0, 1, ... (18)

5 Results and Discussion
The result of our investigation is discussed in this section
with graphical presentation of f ′(η) and f (η) which corre-
spond to the axial velocity and vertical velocity, for various
governing �ow parameters. The e�ect of the visco-elastic
parameter α, the cross viscousparameter γ, the third grade
material parameter β, the Reynold’s number Re and the
Debye Hückel parameter K on the velocity pro�les is stud-
ied through numerical comparisons among the relevant
curves. Although computation for several combinations of
�ow parameters were performed, only some key graphs
are provided in this paper.
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Fig. 2: Variation of f ′ with α at β = 0.005, γ = 0.01, Re =
10.0, K = 10.0 and Λ = 0.001.

Figures 2-6 illustrate the shape of the dimensionless
axial velocity pro�le for di�erent �ow parameters. It is
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Fig. 3: Variation of f ′ with β at α = 0.01, γ = 0.01, Re = 10.0,
K = 10.0 and Λ = 0.001.
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Fig. 4: Variation of f ′ with γ at α = 0.01, β = 0.005, Re =
10.0, K = 10.0 and Λ = 0.001.

0 0.2 0.4 0.6 0.8 1
1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

η

f
′ (
η
)

 

 
Re = 1.0
Re = 5.0
Re = 10.0

Fig. 5: Variation of f ′ with Re at α = 0.01, β = 0.005, γ = 0.01,
K = 10.0 and Λ = 0.001.

depicted from Fig.2 that the axial velocity increases for
increasing viscoelastic parameter, α. The velocity pro�le
maintains a constant value upto a certain distance from
the centreline and thereafter decreases monotonically as
approaches the wall. Similar behavior is observed for the
case of varying β, the third grade material parameter and
γ, the cross viscous parameter as shown in Fig. 3 and Fig.
4, respectively. Variation of the axial velocity for various
Re is provided in Fig. 5. The velocity increases for increas-
ing value of Re upto η = 0.6 and for η > 0.6 the behav-
ior of the velocity gets reversed for increasing Re. Further
Re does not have much e�ect on f ′ near the boundary for
Re > 5.0. Fig. 6 shows the variation of horizontal com-
ponent of velocity for di�erent values of the Debye-Hückel
parameter, K. As K increases f ′ increases but a deviation is
observed very close to the channel wall which is displayed
in the inset �gure.

0 0.2 0.4 0.6 0.8 1
1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

η

f
′ (
η
)

 

 

K = 10.0
K = 50.0
K = 100.0

0.96 0.98 1
0.998

1

1.002

1.004

1.006

1.008

η

f
′ (
η
)

Fig. 6: Variation of f ′ with K at α = 0.01, β = 0.005, γ = 0.01,
Re = 10.0 and Λ = 0.001.

Figures 7-11 represent vertical velocity pro�les for dif-
ferent �ow parameters. It appears to increase from zero on
the axis while moving away from it and �nally approaches
zero again at the boundary. The velocity increases with
increasing values of α, β, γ, K and Re. The �gures show
that these �ow parameters do not a�ect the velocity near
the channel wall. The shape of the vertical velocity curve
changes for Re > 5.0. It can be estimated quantitavely that
the magnitude of the vertical velocity component is lesser
than the axial velocity component by comparing the re-
sults presented in both �ow cases.

The �gures presenting the velocity pro�le reveal the
fact that velocity increases with the rise in non-Newtonian
parameters α, γ and β which is physically relevant. As
the visco-elastic parameter α and cross viscous param-
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Fig. 7: Variation of f with α at β = 0.005, γ = 0.01, Re = 10.0,
K = 10.0 and Λ = 0.001.
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Fig. 8: Variation of f with β at α = 0.01, γ = 0.01, Re = 10.0,
K = 10.0 and Λ = 0.001.
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Fig. 9: Variation of f with γ at α = 0.01, β = 0.005, Re = 10.0,
K = 10.0 and Λ = 0.001.
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Fig. 10: Variation of f with K at α = 0.01, β = 0.005, γ = 0.01,
Re = 10.0 and Λ = 0.001.
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Fig. 11: Variation of f with Re at α = 0.01, β = 0.005, γ = 0.01,
K = 10.0 and Λ = 0.001.
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Fig. 12: Variation of electric potential distribution ψ with K.
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eter γ increases, the shear rate increases leading to in-
crease in the deformation, rearrangement and aggregation
of �uid particles, thereby increasing the �uid velocity in
the channel. Similarly, with increasing shear thinning pa-
rameter β the viscosity of the �uid decreases, resulting in
the increase of velocity. The �gures associated with the
Reynold’s number Re show that the inertial forces dom-
inate the �ow in the middle of the channel whereas near
thewall viscous forcesdominate and this is due to thepres-
ence of the electric double layer. The DebyeHückel param-
eter is directly proportional to the width of the channel
and inversely proportional to the Debye length, which de-
scribes the physical extent of the EDL. It is observed that
the velocity increases with increasing width of the chan-
nel but simultaneously, the e�ect of EDL is noticed at the
walls of the channel.

The potential distribution functionψ has been plotted
against η for di�erent values of K in Fig. 12. The value of ψ
is zero at the middle of the channel and for K > 20.0 it in-
creases sharply to attainmaximumon the boundary. It can
also be inferred that as K increases, the potential distribu-
tion function decreases. For K > 100.0 variation among
the curves becomes negligible. This result depicts the in-
�uence of Debye length on the potential distribution. As
the EDL thickness reduces, the potential distribution func-
tion decreases and beyond a certain λD the potential distri-
bution functionψ starts behaving similarlywith negligible
variation.
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Fig. 13: Variation of Cf with α for β = 0.005.

In addition, we have computed the local skin-friction
coe�cient as

Cf =
τxy
ρu2 |y=R0 , (19)
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Fig. 14: Variation of Cf with β for α = 0.001.

which in terms of dimensionless quantities become

ReLCf = f ′′(1) + α
[
1 − 2f ′′(1)

]
+ 2β

[
2f ′′(1) + f ′′3(1)

]
, (20)

where ReL = bR20ρ
µ is the local Reynold’s number. It is ob-

served that the skin-friction coe�cient increases with in-
creasing viscoelastic parameter, α, and increases linearly
with increasing shear-thinning parameter, β from Fig. 13
and Fig. 14, respectively. Further, b, the stretching param-
eter is directly proportional to the local Reynold’s num-
ber and it is evident from the �gures that increase in the
stretching parameter results in increasing value of coe�-
cient of skin friction.

6 Conclusion
In the present paper, the electro-osmotic �ow of a third
grade �uid in a channel having stretching walls is investi-
gated with a view to apply it in the study of blood �ow dy-
namics. The non-linear di�erential equation is discretized
by �nite di�erence method and the resulting system of
non-linear algebraic equations is solved by the damped
Newton’s method. The results computed are presented
graphically for various parameters of interest. The results
obtained from this study are summarized below

1. Axial velocity pro�les are found to be diminishing
from their maxima at the middle of the channel to
achieve the minimum value on the wall surface.

2. Axial velocity and vertical velocity increases with in-
creasing visco-elastic parameter, α, cross viscouspa-
rameter, γ and increasing third grade �uid parame-
ter, β.
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3. Axial velocity increases with the increasing Debye-
Hückel parameter, K, but near the wall reverse of it
is observed.

4. Potential distribution function, ψ is minimum at the
middle of the channel and gradually increases as
it approaches the wall. It decreases with increasing
Debye-Hückel parameter, K.

5. Value of local skin-friction coe�cient, Cf increases
with increasing values of visco-elastic parameter,
α, third grade �uid material parameter, β, and the
stretching parameter b.
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