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Abstract: In this paper, first order linear homogeneous dif-
ference equation is evaluated in fuzzy environment. Differ-
ence equations becomemore notable when it is studied in
conjunction with fuzzy theory. Hence, here amelioration
of these equations is demonstrated by three different tac-
tics of incorporating fuzzy numbers. Subsequently, the ex-
istence and stability analysis of the attained solutions of
fuzzy difference equations (FDEs) are then discussed un-
der different cases of impreciseness. In addition, consider-
ing triangular and generalized triangular fuzzy numbers,
numerical experiments are illustrated and efficient solu-
tions are depicted, graphically and in tabular form.
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1 Introduction
The theory of difference equations has been developed
greatly during last three decays. As it is well-known that
it appears naturally as discrete analogous having many
applications in population dynamics, sociology, physics,
economics, engineering and many others. Recently, the
study of the qualitative behavior of difference equation
and system of difference equation is undergoing to a great
extent [1–10]. In general, difference equations specify the
change in a variable between two periods, therefore on us-
ing these equations one can study the concerning factors
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that cause a change in the value of functions in different
time periods.

Virtuously, introduction of fuzzy theory by Chang et
al. [11] have initiated a novel perception for different fields
of science in modeling different real-world phenomena
with a better adequacy. Since then, this theory has be-
come the center of attention of many researchers and has
been practiced, to cope the impreciseness of the mod-
els. Many experts have widely practiced difference equa-
tions with fuzzy concepts in order to make some prob-
lems under study more comprehensible. In this regard,
there exists several researchpaperswheredifference equa-
tion is solved with fuzzy numbers. Khastan [12] illustrated
the solvability of different first order linear fuzzy differ-
ence equations and studied the stability and boundedness
of the multiple solutions of these equations. Allahviran-
loo et al. [13] presented an application of fuzzy difference
equations in predicting a specific cardiovascular distur-
bance. Papaschinopoulos et al. [14] gave detailed descrip-
tion on the asymptotic behavior of the solution andbound-
ness of some different type of fuzzy difference equations.
Umekkan et al. [15] showed the application of fuzzy dif-
ference equation in finance. Stefanidou et al. [16] consid-
ered exponential type fuzzy difference equation and inves-
tigated the existence of positive solutions andnonnegative
equilibrium points and many others [17–19].

In spite of the above-mentioned developments, few
analyses are still there that are to be accomplished. In this
manuscript, we have explored difference equation in fuzzy
environment by considering initial condition and coeffi-
cient as fuzzy numbers, consecutively. The stability con-
ditions and existence of solutions under each assumption
for FDE is achieved here. The assessments are made for
triangular and generalized triangular fuzzy numbers. Fur-
ther, the remaining structure of sequel is as follows: Sec-
tion 2 covers the preliminary concepts of fuzzy set theory.
Difference equation and its stability conditions are eluci-
dated in Section 3. In Section 4, FDE is modelled and its
existence of solution is elaborated. Furthermore, some il-
lustrative examples are carried out in Section 5 and an ef-
fective conclusion of graphical and tabular discussion is
drawn as a final segment in Section 6.
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2 Preliminaries
In this section, we define some basic definitions of fuzzy
numbers that are essential for the whole paper. These de-
scriptions are found, in detail, in many research papers
such as [20–22].
Definition 2.1

A function defined as A : R → [0, 1] is said to be
a fuzzy number if it is upper semi-continuous, normal,
fuzzy convex and compactly supported on R. The α-level
set (interval of confidence at level α) of the fuzzy number A
are closed intervals represented as [A]α = [Aα , Āα], where
Aα , and Āα represent the lower and upper bound of inter-
val, respectively, such that, lower bound is left-continuous
non-decreasing and upper bound is left-continuous non-
increasing over the interval [0, 1].
Definition 2.2

A triangular fuzzy number defined as Ã =
(a1, a2, a3;ω), for ω ∈ (0, 1], is called generalized tri-
angular fuzzy number with membership function

µÃ(x) =

⎧⎪⎨⎪⎩
ω x−a1
a2−a1 if a1 ≤ x ≤ a2

ω a3−x
a3−a2 if a2 ≤ x ≤ a3
0 otherwise

That can also be illustratively defined as:

1. µÃ(x) : R → [0, 1]
2. µÃ(x) = 0 for x ≤ a1
3. µÃ(x) is strictly increasing function for a1 ≤ x ≤ a2
4. µÃ(x) for x = a2
5. µÃ(x) is strictly decreasing function for a2 ≤ x ≤ a3
6. µÃ(x) = 0 for a3 ≤ x

If ω = 1 then Ã becomes simple triangular
fuzzy number. The α-level set of generalized triangu-
lar fuzzy number Ã are closed intervals represented as,
[A]α

[︁(︁
a1 + (a2−a1)α

ω

)︁
,
(︁
a3 − (a3−a2)α

ω

)︁]︁
.

Fig. 1: Triangular and generalized triangular fuzzy membership
function

3 Difference Equation
Theorem 3.1: Let I be an interval of real numbers, and let
f : I × I → I be a continuous function then the difference
equation can be expressed as:

xn+a = f (xn , xn−1), n = 0, 1, . . . (1)

where x−1, x0 ∈ I are the initial values and f satisfies the
following conditions:

1. There exist positive number a and b with a < b such
that a ≤ f (xn , xn−1) for all xn , xn−1 ∈ [a, b].

2. f (xn , xn−1) is an increasing function in xn ∈ [a, b]
for each xn−1 ∈ [a, b], and a decreasing function in
xn−1 ∈ [a, b] for each xn in[a, b].

3. Eq. (1) has no solutions of prime period two in [a, b].

Then there exists exactly one equilibrium solution x̂
of Eq. (1) which lies in [a, b]. Moreover, every solution of
Eq. (1) with initial conditions x−1, x0 ∈ [a, b] converges to
x̂.

Any qth order linear difference equation is a set of
equations of the form

xn−(an−1xn−1+an−2xn−2+· · ·+an−qxn−q) = rn n = q, q+1, . . .
(2)

where rn is the forcing factor. If rn = 0, for all n, then Eq. (2)
is said to be a homogeneous difference equation otherwise
it is non homogeneous difference equation and if ai , i =
1, 2, . . . , n, do not depend on n then the equation said to
have constant coefficients [1–10].

3.1 Stability Analysis

Next,we look over the stability analysis of difference equa-
tion and system of difference equations. The detailed sta-
bility analysis and existence of solutions for different types
of difference equation is also found in [4–10].

3.1.1 Linear Difference Equation

Let us consider an autonomous linear discrete equation of
the form

un = aun+1 + b (a ≠ 0) (3)
If u* be the equilibrium solution of the model, then

un = un+1 = u* (there is no change from n − 1 generation
to n generation) i.e.

u* = b
1 − a (4)
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The equilibrium point u* is said to be stable if all the
solutions of the above difference equation approaches to
b

1−a as n becomes large. The equilibrium point u* is unsta-
ble if all solutions diverges from u* to ±∞. The stability of
the equilibrium solution depends on a. It is stable if |a| < 1
and unstable if |a| > 1 and an ambiguous case if a ± 1.

3.1.2 System of Linear Homogeneous Difference
Equation

Let us consider the system of linear homogeneous differ-
ence equation

un+1 = aun + bvn , vn+1 = cun + dvn (5)

That can also be expressed in matrix form as,⎛⎜⎝un+1vn+1
ν

⎞⎟⎠ =
(︃
a b
c d

)︃
(unvn) (6)

Clearly, (0, 0) is the equilibrium point of the homoge-
neous system (5).
Theorem 3.1.

Let λ1 and λ2 be two real distinct eigenvalues of the co-
efficients matrix of system (5), then the equilibrium point
(0, 0) is

1. Stable if both |λ1| and ‖lambda2| < 1.
2. Unstable if both |λ1| > 1 and |λ2| > 1.
3. Saddle if |λ1| < 1 and |λ2| > 1 or |λ1| > 1 and |λ2| < 1.

Theorem 3.2.
Let λ1 = λ2 = λ* be real and equal eigenvalues of the

coefficients matrix then the equilibrium point (0, 0) is

1. Stable if |λ*| < 1.
2. Unstable if |λ*| > 1.

Theorem 3.3.
If u+ iv and u− iv are the complex conjugate eigenval-

ues of the coefficients matrix then the equilibrium point
(0, 0) is

1. Stable if |u ± iv| < 1.
2. Unstable if |u ± iv| > 1.

4 Fuzzy difference equation
Consider the first order homogeneous FDE as

un+1 + kun = 0, n = 0, 1, 2 . . . (7)

with un as sequence of fuzzy numbers and having un=0 =
u0 as initial condition. Now, let Eq. (7) be classified into
three types under following paradigms,
Type I:When initial condition u0 is taken as fuzzy number.
Type II: When coefficient k is taken as fuzzy number.
Type III: When initial condition u0 and coefficient k are
taken as fuzzy numbers.

4.1 Existence of Solution to Type I: When
initial condition is fuzzy number

Consider the Eq. (7) with fuzzy initial condition [un=0]α =
⌊u0(α), ū0(α)⌋, for all α ∈ [0, 1]. In this situation, two cases
will take place as:

4.1.1 When coeflcient is positive i.e., k > 0

Taking the α-levels of Eq. (7),

⌊un+1(α), ūn+1(α)⌋ + k⌊un(α), ūn(α)⌋ = 0 (8)

we obtain the solutions in α-levels as follows, for all α ∈
[0, 1],

un(α) = (−k)nu0(α), ūn(α) = (−k)n ū0(α) (9)

where the coefficient matrix can be constructed as:(︃
−k 0
0 −k

)︃
(10)

with the eigenvalues λ = −k, −k. Hence, the equilibrium
point (0, 0) is

1. Stable if | − k| < 1 i.e. |k| < 1.
2. Unstable if | − k| > 1 i.e. |k| > 1.

Thus, the solution is attained by means of the coeffi-
cient k.

4.1.2 When coeflcient is negative i.e. k < 0

Let k = −m in Eq. (7), then on taking its α-levels we have

⌊un+1(α), ūn+1(α)⌋ − m⌊un(α), ūn(α)⌋ = 0 (11)
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which changes to system of equations as,

un+1(α) − mūn(α) = 0, ūn+1(α) − mun(α) = 0. (12)

Hence, the solutions in the form of α-levels are formed
as, for all α ∈ [0, 1],

un(α) =
u0(α) + ū0(α)

2 (m)n + u0(α) − ū0(α)2 (−m)n , (13)

ūn(α) =
u0(α) + ū0(α)

2 (m)n − u0(α) − ū0(α)2 (−m)n . (14)

with the coefficient matrix,(︃
0 m
m 0

)︃
(15)

and eigenvalues λ = m, −m. Therefore, the equilibrium
point (0, 0) is

1. Stable if both |m| < 1 and | − m| < 1.
2. Unstable if both |m| > 1 and | − m| > 1.

4.2 Existence of Solution to Type II: When
coeflcient is fuzzy number

Consider Eq. (7) with fuzzy coefficient [k]α = ⌊k(α), k̄(α)⌋,
for all α ∈ [0, 1] and crisp initial condition un=0 = u0, then
we have the following cases.

4.2.1 When coeflcient is positive i.e. k > 0 for all
α ∈ [0, 1]

Taking Eq. (7) in its α-levels,

⌊un+1(α), ūn+1(α)⌋ + ⌊k(α), k̄(α)⌋⌊un(α), ūn(α)⌋ = 0 (16)

as k(α) < k̄(α) and un(α) < ūn(α), Eq. (16) takes the follow-
ing form

un+1(α) + k(α)un(α) = 0, ūn+1(α) + k̄(α)ūn = 0. (17)

we obtain the solutions as, for all α ∈ [0, 1],

ūn(α) = u0(−k̄(α))n , ūn(α) = u0(−k̄(α))n . (18)

with the coefficient matrix,(︃
−k(α) 0
0 −kk̄(α)

)︃
(19)

and eigenvalues λ = −k(α), −k̄(α). Therefore, the equilib-
rium point (0, 0) is

1. Stable if | − k(α)| < 1 and | − k̄(α)| < 1.
2. Unstable if both | − k(α)| > 1 and | − k̄(α)| > 1.
3. Saddle if |− k(α)| < 1 and |− k̄(α)| > 1 or, |− k(α)| > 1

and | − k̄(α)| < 1.

4.2.2 When coeflcient is negative i.e. k < 0for all
α ∈ [0, 1]

Let k = −m in Eq. (7), i.e. [m]α = ⌊m(α), m̄(α)⌋, and ex-
pressing it in form of α-levels we have,

un+1(α) − m̄(α)ūn(α) = 0, ūn+1(α) − m(α)un(α) = 0 (20)

that changes to system of equations as,

un+1(α) − m̄(α)ūn(α) = 0, ūn+1(α) − m(α)un(α) = 0, (21)

with initial conditions un=0 = u0, then its solution is ob-
tained as

un(α) = u0
(︁√︀

m(α)m̄(α)
)︁n

+ u0
(︁
−
√︀
m(α)m̄(α)

)︁n

ūn(α) = u0
(︁√︀

m(α)m̄(α)
)︁n
− u0

(︁
−
√︀
m(α)m̄(α)

)︁n
(22)

and consequently, we obtain the coefficient matrix,(︃
0 m(α)

m̄(α) 0

)︃
(23)

with the eigenvalues λ = ±
√︀
m(α)m̄(α). So, the equilib-

rium point (0, 0) is

1. Stable if both |
√︀
m(α)m̄(α)| < 1 and |−

√︀
m(α)m̄(α)| <

1.
2. Unstable if both |

√︀
m(α)m̄(α)| > 1 and | −√︀

m(α)m̄(α)| > 1.
3. Saddle if |

√︀
m(α)m̄(α)| < 1 and | −

√︀
m(α)m̄(α)| > 1

or, |m(α)m̄(α)| > 1 and | −
√︀
m(α)m̄(α)| < 1.

Thus, the solution depends upon the fuzzy number
[k]α = ⌊k(α), k̄(α)⌋ at the different values of α ∈ [0, 1].

4.3 Existence of Solution to Type III: Initial
condition and coeflcient are fuzzy
numbers

Now takingEq. (7)with fuzzy coefficient [k]α = ⌊k(α), k̄(α)⌋
and fuzzy initial condition [un=0]α = ⌊u0(α), ū0(α)⌋, for all
α ∈ [0, 1], Then the following cases are constructed.
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4.3.1 When coeflcient is positive i.e. k > 0 for all
α ∈ [0, 1]

Writing Eq. (7) in its α-levels,

⌊un+1(α), ūn+1(α)⌋ + ⌊k(α), k̄(α)⌋⌊un(α), ūn(α)⌋ = 0, (24)

then its solutions are given by

un(α) = u0(α)(−k(α))
n , ūn(α) = ū0(α)(−k̄(α))n ,

for all α ∈ [0, 1]. (25)

Stability of the solutions are same as defined in Section
4.2.1

4.3.2 When coeflcient is negative i.e. k < 0 for all
α ∈ [0, 1]

Let k = −m in Eq. (7) with α-levels,

⌊un+1(α), ūn+1(α)⌋ − ⌊m(α), m̄(α)⌋⌊ūn(α), un(α)⌋ = 0,
(26)

then its solutions are established as,

un(α) =
u0(α) + ū0(α)

2 (
√︀
m(α)m̄(α))2

+ u0(α) − ū0(α)2 (−
√︀
m(α)m̄(α))n , (27)

ūn(α) =
u0(α) + ū0(α)

2 (
√︀
m(α)m̄(α))2

− u0(α) − ū0(α)2 (−
√︀
m(α)m̄(α))n (28)

Stability cases are same as defined in Section 4.2.2.

5 Numerical example
In this section, some illustrative examples are carried out
to exemplify the analysis demonstrated in previous sec-
tion.
Example 5.1:

Let the fuzzy difference equation

un+1 + aun = 0, n = 0, 1, . . . (29)

with initial condition un=0 = u0 be taken under the follow-
ing cases, i.e.
Type I: a = 4 and u0 = (10, 12, 15)
Type II: a = (3, 4, 6) and u0 = 12
Type III: a = (3, 4, 6) and u0 = (10, 12, 15)

Solution in case of Type I:
Since initial condition is a fuzzy number that can be

written in α-levels as:

⌊u0(α), ū0(α)⌋ = [(2α + 10), (15 − 3α)] (30)

and a > 0 so the solution is obtained according to the case
I of type I as elaborated in Section 4.1.1, i.e.,

un(α) = (10 + 2α)(−4)n , ūn(α) = (15 − 3α)(−4)n . (31)

Table 1 shows some of the numerical values of Eq. (31)
for n = 2 and n = 6, whereas Fig. 2 represents graphical
view of above compact solution for n = 4. Clearly, from the
Table 1 and Fig. 2 we see that un(α) is increasing and ūn(α)
is decreasing as αmoves from 0 to 1, which concludes that
the solution is also a fuzzy solution.

Table 1: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.1 for Type I

α n = 2 n = 6

0 [160.0,240.0] [40960.0,61440.0]
0.2 [166.4,230.4] [42598.4,58982.4]
0.4 [172.8,220.8] [44236.8,56524.8]
0.6 [179.2,211.2] [45875.2,54067.2]
0.8 [185.6,201.6] [47513.6,51609.6]
1 [192.0,192.0] [49152.0,49152.0]

Fig. 2: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 4 of Example 5.1 for
Type I

Solution in case of Type II:
Here coefficient is a fuzzy number that can be written

in α-levels as:

⌊a(α), ā(α)⌋ = [(α + 3), (6 − 2α)] (32)

and a > 0 for all α ∈ [0, 1], therefore, the solution is ob-
tained according to the case I of type II as elaborated in
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Section 4.2.1, i.e.,

un(α) = 12(−(3 + α))n , ūn(α) = 12(−(6 − 2α))n . (33)

Table 2 presents some of the numerical values of
Eq. (33) for n = 2 and n = 6, whereas Fig. 3 displays picto-
rial view of above compact solution for n = 4. From the Ta-
ble 2 and Fig. 3 it can be seen that un(α) is increasing and
ūn(α) is decreasing as α moves from 0 to 1, which shows
that the solution obtained in case when the coefficient is a
fuzzy number is also a fuzzy solution.

Table 2: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.1 for Type II

α n = 2 n = 6

0 [108.00,432.00] [8748.00,559872.00]
0.2 [122.88,376.32] [12884.90,370092.00]
0.4 [138.72,324.48] [18537.70,237247.00]
0.6 [155.52,276.48] [26121.40,146767.00]
0.8 [173.28,232.32] [36131.2,87075.80]
1 [192.00,192.00] [49152.00, 49152.00]

Fig. 3: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 4 of Example 5.1 for
Type II

Solution in case of Type III:
Here, coefficient and initial condition are given as

fuzzy numbers, therefore on considering Eq. (30) and (32),
the solution is constructed according to analysis men-
tioned in the case I of type III in Section 4.3.1, as:

un(α) = (−(3 + α))n(10 + 2α), ūn(α)
= (−(6 − 2α))n(−3 + 15α) (34)

Table 3 demonstrates some of the numerical values of
Eq. (34) for n = 2 and n = 4, while Fig. 4 exhibits pictorial
view of above close solution for n = 4. From the Table 3
and Fig. 4 it can be seen that un(α) is increasing and ūn(α)

is decreasing as αmoves from 0 to 1, which shows that the
solution obtained in case when the coefficient and initial
condition are fuzzy numbers is also a fuzzy solution.

Table 3: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.1 for Type
III

α n = 2 n = 6

0 [90.00,-108.00] [7290.00,-139968.00]
0.2 [106.49,0.00] [11166.90,0.00]
0.4 [124.85,81.12] [16683.90,59311.80]
0.6 [145.15,138.24] [24380.00,73383.50]
0.8 [167.50,174.24] [34926.90,65306.80]
1 [192.00, 192.00] [49152.00, 49152.00]

Fig. 4: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 4 of Example 5.1 for
Type III

Example 5.2:
Let the difference equation

un+1 + aun = 0, n = 0, 1, . . . (35)

with initial condition un=0 = u0 be taken under the follow-
ing cases, i.e.
Type I: a = 2 and u0 =

(︀1
8 ,

1
4 ,

1
2 ; 0.8

)︀
Type II: a = (1, 2, 4; 0.7) and u0 = 1

4
Type III: a = (1, 2, 4; 0.7) and u0 =

(︀1
8 ,

1
4 ,

1
2 ; 0.8

)︀
Solution in case of Type I:

Since initial condition is a fuzzy number that can be
written in α-levels as:

[u0(α), ū0(α)] =
[︂(︂

4 + 5α
32

)︂
,
(︂
8 − 5α
16

)︂]︂
(36)

and a > 0 so the solution is obtained according to the case
I of type I as elaborated in Section 4.1.1, i.e.,

un(α) =
(︂
4 + 5α
32

)︂
(−2)n , ūn(α) =

(︂
8 − 5α
16

)︂
(−2)n . (37)
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Table 4 presents some of the numerical values of
Eq. (37) for n = 2 and n = 10, whereas Fig. 5 displays picto-
rial view of above compact solution for n = 6. Clearly from
the Table 4 and Fig. 5 it is depicted that un(α) is increas-
ing and ūn(α) is decreasing as α moves from 0 to 1, which
concludes that the solution is also a fuzzy solution.

Table 4: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.2 for Type I

α n = 2 n = 10

0 [0.50,2.00] [128.00,512.00]
0.2 [0.62,1.75] [160.00,448.00]
0.4 [0.75,1.50] [192.00,384.00]
0.6 [0.87,1.25] [224.00,320.00]
0.8 [1.00,1.00] [256.00,256.00]

Fig. 5: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 6 of Example 5.2
for Type I

Solution in case of Type II:
Here coefficient is a fuzzy number that can be written

in α-levels as:

[a(α), ā(α)] =
[︂(︂

7 + 10α
7

)︂
,
(︂
28 − 20α

7

)︂]︂
(38)

and a > 0 for all α ∈ [0, 1], therefore, the solution is ob-
tained according to the case I of type II as elaborated in
Section 4.2.1, i.e.,

un(α) =
1
4

(︂
−
(︂
7 + 10α

7

)︂)︂n
,

ūn(α) =
1
4

(︂
−
(︂
28 − 20α

7

)︂)︂n
. (39)

Table 5 demonstrates some of the numerical values of
Eq. (39) for n = 2 and n = 10, while Fig. 6 exhibits pictorial
view of above close solution for n = 6. From the Table 5

and Fig. 6 it can be seen that un(α) is increasing and ūn(α)
is decreasing as αmoves from 0 to 1, which shows that the
solution obtained in case when the coefficient is a fuzzy
number is also a fuzzy solution.

Table 5: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.2 for Type II

α n = 2 n = 10

0 [0.25,4.00] [0.25,262144.00]
0.1 [0.33,3.45] [0.95,124938.00]
0.3 [0.510,2.47] [8.85,23506.40]
0.5 [0.73,1.65] [54.79,3159.98]
0.7 [1.00,1.00] [256.00,256.00]

Fig. 6: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 6 of Example 5.2
for Type II

Solution in case of Type III:
Here, coefficient and initial condition are given as

fuzzy numbers, therefore on considering Eq. (36) and (38),
the solution is constructed according to analysis men-
tioned in the case I of type III in Section 4.3.1, as:

un(α) =
(︂
4 + 5α
32

)︂(︂
−
(︂
7 + 10α

7

)︂)︂n
,

ūn(α) =
(︂
8 − 5α
16

)︂(︂
−
(︂
28 − 20α

7

)︂)︂n
. (40)

Table 6 shows some of the numerical values of Eq. (40)
for n = 2 and n = 10, whereas Fig. 7 represents graphical
view of above compact solution for n = 6. From the Table 6
and Fig. 7 it can be seen that un(α) is increasing and ūn(α)
is decreasing as αmoves from 0 to 1, which shows that the
solution obtained in case when the coefficient and initial
condition are fuzzy numbers is also a fuzzy solution.
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Table 6: Solution of un(α) = ⌊un(α), ūn(α)⌋ of Example 5.2 for Type
III

α n = 2 n = 20

0 [0.12,8.00] [0.12,524288.00]
0.1 [0.19,6.47] [0.53,234258.00]
0.3 [0.35,4.01] [6.08,38197.90]
0.5 [0.59,2.27] [44.52,4344.98]
0.7 [0.94,1.12] [240.00,288.00]

Fig. 7: Solution of un(α) = ⌊un(α), ūn(α)⌋ for n = 6 of Example 5.2
for Type III

6 Conclusion
In this paper, we exercised existence and stability anal-
ysis of linear difference equation in fuzzy environment.
The stability of solutions of governing problems were dis-
cussed by encompassing initial condition and coefficient
as fuzzy numbers. The explanation was examined on dif-
ferent numerical examples with triangular and general-
ized triangular fuzzy numbers, respectively. Thus, we turn
up with the following findings:

– Modelling difference equation by incorporating
fuzzy numbers, in the form of its initial condition
or coefficient, represented the possibility to tackle
the imprecision that occur either in initial condition
or as coefficient, while modelling a real-world phe-
nomenon.

– The stability analysis yields the existence of solution
of fuzzy difference equations under all the cases,
where the solutions are achieved bymeans of the co-
efficients of fuzzy difference equations.

– Stability deliberation further illustrated that the na-
ture of fuzzy difference equation varies for different
sign of coefficient, i.e., for negative sign the fuzzy
difference equation converts into the related system
of two difference equations and so solutions are at-

tained by solving the system of difference equations.

The constructive theory and effective results are surely
very important and beneficial for the concerned re-
searchers working in this field.

References
[1] J. Migda, Asymptotically polynomial solutions to difference

equations of neutral type, Appl. Math. Comput. 279 (2016)
16-27

[2] A. Dobrogowska, G. Jakimowicz, Factorization method applied
to the second order difference equations, Appl. Math. Lett. 74
(2017) 161-166

[3] G.C. Wu, D. Baleanu, W.H. Luo, Lyapunov functions for Riemann
Liouville-like fractional difference equations, Appl. Math. Com-
put. 314 (1) (2017) 228-236

[4] I. Dassios, Stability and robustness of singular systems of
fractional nabla difference equations. Cir. Sys. Sig. Process. 36
(1) (2017) 49-64

[5] D.M. Aguilar, A note on stability of functional difference equa-
tions, Auto. 67 (2016) 211-215

[6] S. Stević, Boundedness and persistence of some cyclic-type
systems of difference equations, Appl. Math. Lett. 56 (2016)
78-85

[7] Q. Din, Asymptotic behavior of an anti-competitive system of
second-order difference equations, J. Egy. Math. Soc. 24 (2016)
37-43

[8] Y. Zhang, Global exponential stability of delay difference equa-
tions with delayed impulses, Math. Comp. Simul. 132 (2017)
183-194

[9] E. Braverman, C. Kelly, A. Rodkina, Stabilisation of difference
equations with noisy prediction-based control, Phys. D: Nonl.
Phen. 326 (1) (2016) 21-31

[10] A.Q. Khan, M.N. Qureshi, Global dynamics of some systems
of rational difference equations, J. Egy. Math. Soc. 24 (2016)
30-36

[11] S.S.L. Chang, L.A. Zadeh, On fuzzy mappings and control, IEEE
Trans. Syst. Man Cybernet. 2 (1972) 30-34

[12] A. Khastan, New solutions for first order linear fuzzy difference
equations, J. Comput. Appl. Math. 312 (1) (2017) 156-166

[13] T. Allahviranloo, M. Keshavarz, Sh. Islam, The prediction of
cardiovascular disorders by fuzzy difference equations, IEEE
Int. Conf. Fuzzy Sys. (2016)

[14] G. Papaschinopoulos, G. Stefanidou, Boundedness and
asymptotic behavior of the solutions of a fuzzy difference
equation, Fuzzy Sets Sys. 140 (2003) 523-539

[15] S.A. Umekkan, E. Can, M.A. Bayrak, Fuzzy difference equation
in finance, Int. J. Sci. Innov. Math. Resear. 2(8) (2014) 729-735

[16] G. Stefanidou, G. Papaschinopoulos, C.J. Schinas, On an
exponential–type fuzzy difference equation, Adv. Diff. Eq.
(2010) Article ID 196920 1-19

[17] Q. Din, Asymptotic behavior of a second-order fuzzy rational
difference equations, J. Disc. Math. (2015) Article ID 524931 1-7



Sankar Prasad Mondal et al., Existence and Stability of Difference Equation in Imprecise Environment | 271

[18] Q.H. Zhang, L.H. Yang, D.X. Liao, Behavior of solutions of a
fuzzy nonlinear difference equation, Iran. J. Fuzzy Sys. 9(2)
(2012) 1-12

[19] R. Memarbashi, A. Ghasemabadi, Fuzzy difference equations
of Volterra type, Int. J. Nonl. Anal. Appl. 4 (2013) 74-78

[20] S.P. Mondal, S. Banerjee, T.K. Roy, First order linear homoge-
neous ordinary differential equation in fuzzy environment, Int.
J. Pure Appl. Sci. Tech. 14(1) (2013) 16-26

[21] N.A. Khan, O.A Razzaq, A systematic spectral-tau method for
the solution of fuzzy fractional diffusion and fuzzy fractional
wave equations, Tbilisi Math. J. 8 (2) (2015) 287-314

[22] Khastan, Alireza, R.R. López, On the solutions to first order
linear fuzzy differential equations, Fuzzy Set. Sys. 295 (2016)
114-135


	Existence and Stability of Difference Equation in Imprecise Environment
	1 Introduction
	2 Preliminaries
	3 Difference Equation
	3.1 Stability Analysis 
	3.1.1 Linear Difference Equation
	3.1.2 System of Linear Homogeneous Difference Equation 


	4 Fuzzy difference equation
	4.1 Existence of Solution to Type I: When initial condition is fuzzy number
	4.1.1 When coefficient is positive i.e., k>0
	4.1.2 When coefficient is negative i.e. k<0

	4.2 Existence of Solution to Type II: When coefficient is fuzzy number
	4.2.1 When coefficient is positive i.e. k>0 for all [0,1]
	4.2.2 When coefficient is negative i.e. k<0for all [0,1]

	4.3 Existence of Solution to Type III: Initial condition and coefficient are fuzzy numbers
	4.3.1 When coefficient is positive i.e. k>0 for all [0,1]
	4.3.2 When coefficient is negative i.e. k<0 for all [0,1]


	5 Numerical example
	6 Conclusion


