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Abstract: Neuroimmunity drives the pathophysiology of
Parkinson’s disease (PD). This disease affects both the cen-
tral and peripheral nervous systems. The immune system
is engaged through the progressive accumulation of alpha-
synuclein (a-syn), a driver of immunity and a pathological
hallmark of PD. Consequent a-syn-induced immune activa-
tion leads to neuronal damage. This leads not only to the
activation of microglia within the central nervous system,
but also to the recruitment and activation of peripheral
immune cells that infiltrate the brain and contribute to
a widespread immune response. Moreover, PD-associated
genes and risk factors have been increasingly recognized as
essential regulators of immune functions. This review sum-
marizes the current understanding of adaptive immunity
in PD and explores emerging immunomodulatory strategies
that may inform future therapeutic development.

Keywords: Parkinson’s disease; adaptive immunity; alpha-
synuclein

Introduction

Parkinson’s disease (PD) is a chronic, progressive neu-
rodegenerative disorder primarily defined by the loss of
dopaminergic neurons in the substantia nigra pars com-
pacta (SNpc) and the accumulation of a-synuclein aggre-
gates, forming Lewy bodies. While many studies have
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focused on mitochondrial dysfunction, oxidative stress, and
protein clearance deficits, growing evidence suggests that
immune dysregulation significantly contributes to disease
onset and progression (Figure 1) [1, 2]. Recent findings have
indicated both innate and adaptive immune responses in PD
[3]. T lymphocytes, both CD4+ and CD8+ T cells, have been
observed in the substantia nigra (SN) of patients with PD
and may play a direct role in neuronal injury. CD8+ T cell
infiltration has been observed early in the disease course,
even before detectable a-synuclein (a-syn) aggregation and
dopaminergic neuron loss and express cytotoxic molecules
such as granzyme A/B and IFN-y, suggesting that adaptive
immune responses may contribute to the initiation or pro-
gression of neurodegeneration [4]. Supporting this idea, T
cells from PD patients have been shown to recognize spe-
cific a-syn-derived epitopes presented by major histocom-
patibility complex (MHC) molecules, implicating antigen-
specific adaptive immune responses in PD pathogenesis [5].
Although the precise triggers remain unclear, these findings
suggest a potential link between a-syn pathology and T-cell
activation. Immune alterations have also been reported at
the systemic level. Peripheral T and B cells in patients with
PD show clonal expansion and are skewed toward effector
and memory phenotypes, indicating that adaptive immune
responses are not confined to the central nervous sys-
tem [6]. Moreover, elevated neutrophil-to-lymphocyte ratios
have been observed years before PD diagnosis, suggesting
that immune dysregulation may occur early in the disease
course [6]. The role of B cells in PD is poorly understood
and remains unclear. Some studies have reported reduced
peripheral B-cell counts in patients with PD, although the
findings are inconsistent [1]. Evidence of IgG deposition on
dopaminergic neurons and the expression of Fcy recep-
tors on activated microglia suggests that humoral immu-
nity may contribute to neuroinflammation. Additionally,
autoantibodies against a-syn have been detected in the
serum and cerebrospinal fluid of patients with PD, and
their levels appear to correlate with disease activity, raising
the possibility that these antibodies could serve as poten-
tial biomarkers. Together, this research suggests that the
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Figure 1: Neuroinflammation and adaptive immune response in PD. Exposure of modified and aggregated a-synuclein (a-syn) in the brain activates
microglia that secrete neurotoxic proinflammatory cytokines such as TNF-a, IL-6 and IL-1p. Modified a-syn and inflammatory mediators drain to
peripheral immune tissues to activate antigen presenting cells that lead to induction of a-syn-specific CD44 and CD8+ T cells that differentiate to
specific effector T cells (Teffs), such as Th1, Th17, and Tc, extravasate to foci of brain inflammation, and release proinflammatory cytokines such as
IFN-y, IL-17, and TNF-a that exacerbate microglial activation, inflammation, and neurodegeneration. These responses also induce astrocyte activation,
resulting in the production of additional inflammatory mediators including TNF-a, IL-6, and IL-1B, thereby contributing to neuronal degeneration.
Regulatory T cells (Tregs) infiltrating the brain counteract neuroinflammation by suppressing activated astrocytes through the secretion of IL-10 and
TGF-P. According to the “gut-first” hypothesis, dysbiosis of the intestinal microbiota disrupts gut metabolic activity and barrier integrity, leading to
increased levels of microbial products such as lipopolysaccharide (LPS). Elevated levels of LPS can translocate into systemic circulation, promoting
peripheral immune activation. Microbial dysbiosis and breech of the gut barrier along the gut-brain axis may contribute to a-syn misfolding and

aggregation, central inflammation via immune cell trafficking, and spreading and transmission via vagus nerve.

adaptive immune system is not merely a bystander in PD
but may actively contribute to disease development. This
review will provide a summary of classical PD mechanisms
and explore how T- and B-cell activity intersect with neu-
rodegeneration, with a focus on emerging immunomodula-
tory strategies targeting adaptive immunity.

Pathogenesis and pathophysiology

PD is a progressive neurodegenerative disorder character-
ized by the loss of dopaminergic neurons in the SNpc and
accumulation of misfolded a-syn aggregates, forming Lewy
bodies. Its pathogenesis involves interconnected mecha-
nisms, including a-syn aggregation, mitochondrial dysfunc-
tion, oxidative stress, impaired protein clearance, genetic
mutations, and neuroinflammation. a-Syn, for which its

aggregation is one of the hallmarks of PD and related synu-
cleinopathies, is a 140-amino acid protein highly expressed
in neurons, especially at synaptic terminals, where it
regulates neurotransmitter release and vesicle trafficking
[7]. Under physiological conditions, a-syn interacts with
negatively charged lipids and adopts a membrane-bound
o-helical structure [7, 8]. However, both unfolded and
membrane-bound forms can be converted into -sheet-rich
amyloid structures, leading to oligomers, protofibrils, and
Lewy bodies [9-11]. These oligomers are particularly neu-
rotoxic and possess seeding potential that spreads misfold-
ing across brain regions, impairing membranes, including
dopaminergic vesicles and mitochondria, leading to cell
death [12, 13]. Misfolding and aggregation are mediated by
pathogenic mutations in the SNCA gene, as well as post-
translational modifications such as serine 129 phosphory-
lation, ubiquitination, nitration, and truncation [8, 14-16].
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Misfolded a-syn can spread from cell to cell, serving as
a template that induces misfolding of native a-syn and
causes synaptic dysfunction and neuronal injury, thereby
propagating the disease with progressive loss of dopamin-
ergic neurons in the SNpc and impaired motor coordina-
tion [17, 18]. Misfolded or aggregated a-syn can stimulate
microglia and peripheral monocytes with an intensity of
immune activation that varies according to their structural
conformation. This innate immune activation may subse-
quently facilitate the recruitment and engagement of adap-
tive immune responses, possibly through antigen presen-
tation and cytokine-mediated signaling [10]. Mitochondrial
dysfunction, particularly complex inhibition, leads to the
accumulation of reactive oxygen species (ROS), oxidative
damage, and neuronal apoptosis [19]. When a-syn accu-
mulates in the mitochondria, it contributes to complex I
dysfunction, impairing electron transport and ATP synthe-
sis, increasing reactive oxygen species (ROS), and oxida-
tive damage. This mitochondrial stress may amplify a-syn
pathology, forming a vicious cycle that drives neuronal
death and PD progression, further impairs mitochondrial
function, and creates a cycle of cellular stress [19, 20]. Dam-
aged mitochondria release damage-associated molecular
patterns (DAMPs), such as mitochondrial DNA (mtDNA), car-
diolipin, and cytochrome c, which activate innate immune
receptors such as toll-like receptors (TLRs) and the stim-
ulator of interferon genes (STING) pathway, particularly
in microglia [21]. These mitochondrial signals can also
prime antigen-presenting cells, such as dendritic cells and
microglia, possibly leading to the downstream activation of
adaptive immune responses.

In addition, the clearance of unwanted and damaged
proteins plays a critical role in PD pathogenesis [22]. Two
major proteostasis systems, ubiquitin-proteasome system
(UPS) and autophagy-lysosome pathway (ALP), are responsi-
ble for degrading damaged proteins [8, 22]. The UPS mainly
clears soluble misfolded proteins via ubiquitin tagging and
proteasomal guidance [23], while ALP handles insoluble
aggregates through macroautophagy, microautophagy, and
chaperone-mediated autophagy [24]. Dysfunction of either
pathway promotes toxic o-syn accumulation. Mutations
in PD-related genes, such as SNCA, LRRK2, PINK1, PRKN,
GBA, and DJ-1, and most likely environmental exposures,
contribute to disease onset by impairing mitochondrial
homeostasis, protein degradation, and immune regulation.
Notably, mutations in SNCA, LRRK2, and PRKN have been
implicated in familial PD and linked to abnormal immune
activation and enhanced neuroinflammatory responses [25,
26]. This pathological process leads to loss of dopaminergic
neurons.
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Gene-driven adaptive immunity

Variants in the glucosylceramidase beta 1 (GBA1) gene,
which encodes the lysosomal enzyme glucocerebrosidase
(GCase) and is associated with Gaucher disease (GD), a lyso-
somal storage disorder involving immune system dysfunc-
tion [27], have also been identified in PD patients, suggesting
a potential link between lysosomal dysfunction, immune
dysregulation, and PD pathogenesis [28]. GD is a recessively
inherited disease caused by GBA1 variants. Notably, GD-
naive GBA1 variant carriers are susceptible to developing
PD [29]. Several variants of GBAI are associated with the
development of PD, including p.E326K, p.T369M, p.N370S,
and p.L444P, with a concomitant decrease in glucocere-
brosidase activity, the enzyme encoded by GBA1. Reduced
glucocerebrosidase activity diminishes lysosomal degrada-
tion of a-syn [30]. The prevalence of GBA1 variants varies
across populations; for example, p.E326K has a 1-5% fre-
quency in the European population, but is rare in Asians.
Approximately 25 % of the PD risk is attributed to genetic
variations [31, 32], and several of these genes modulate
immune responses and neuroinflammation, including auto-
somal dominant variants such as LRRK2 (PARKS8), SNCA
(PARKI1/PARK4), and VPS35 (PARK17), and autosomal reces-
sive mutations in genes such as DJ-1 (PARK7), PRKN (PARK2),
GBA, and PINK1 (PARK®6) [33—-35].

Among these, LRRK2 is one of the most significant
genetic risk factors for both familial and sporadic PD, and is
strongly associated with immune dysfunction. In addition
to its known function in microglia, LRRK2 is also found in
adaptive immune cells, such as B and T lymphocytes. These
cells regulate cytokine production, antigen processing, and
signaling pathways involved in immune responses [35, 36].
Microglial activation in PD is further driven by o-syn aggre-
gation, which engages receptors, such as TLR2, FcyRIIB, and
CD36, triggering NF-xB signaling and nucleotide-binding
oligomerization domain, leucine rich repeat and pyrin
domain containing proteins-3 (NLRP3) inflammasome acti-
vation [37]. These pathways promote the release of IL-6,
IL-1B, and tumor necrosis factor-o (TNF-ar), thereby sustain-
ing chronic neuroinflammation. Additionally, a-syn bind-
ing to FcyRIIB suppresses microglial phagocytosis via Src
homology region 2 domain-containing phosphatase-1 (SHP-
1) [38, 39], and uptake of a-syn fibrils involves Fyn kinase
and CD36, amplifying IL-1f production [40]. Vacuolar pro-
tein sorting-associated protein 35 (VPS35), a critical compo-
nent of the retromer complex, plays a role in endosomal
sorting, autophagy, and mitochondrial function by sharing
pathways with LRRK2 [41]. Dysfunctional VPS35 disrupts
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autophagy-lysosomal pathways in dopaminergic neurons,
cortical neurons, and microglia, leading to a-syn accumula-
tion and impaired mitochondrial dynamics via interactions
with dynamin-1-like protein-1 (DLP1) and mitochondrial E3
ubiquitin protein ligase 1 (MUL1) [42]. DJ-1 (PARK?7) protects
neurons, microglia, and astrocytes from oxidative stress by
scavenging reactive oxygen species (ROS) and stabilizing
nuclear factor erythroid 2-related factor 2 (NRF2), a key
regulator of antioxidant responses. DJ-1 deficiency results
in pro-inflammatory microglial activation and increased
TNFE, IL-1f, and IL-6 release, exacerbating neurodegenera-
tion [43]. Parkin (PARK?2), an E3 ubiquitin ligase encoded by
PRKN, works alongside PINK1 to facilitate the degradation
of damaged mitochondria [44, 45]. Mitochondrial depolar-
ization leads to PINKI accumulation on the outer mem-
brane, which recruits parkin to ubiquitinate dysfunctional
proteins for degradation [46]. Overall, PD-associated genetic
mutations not only lead to mitochondrial impairment and
neuronal cell death but also contribute to chronic neuroin-
flammation and PD progression.

Gut-brain axis

The gut-brain axis, a bidirectional communication network
between the gastrointestinal (GI) system and CNS, plays a
vital role in the pathogenesis of PD [47]. Extensive research
has shown that alterations in the gut microbiota and intesti-
nal permeability (“leaky gut”) contribute to neuroinflamma-
tion and PD progression (Figure 1) [48]. Gut microbiota, one
of the most abundant and diverse microbial communities
in the human body, has been associated with numerous
diseases, including systemic inflammatory conditions. The
gut represents a complex microecosystem inhabited by var-
ious microorganisms such as bacteria, parasites, archaea,
fungi, and viruses [49]. Clinical studies have consistently
reported gut microbiota alterations, known as dysbiosis, in
patients with PD, with altered microbial profiles identified
using high-throughput sequencing techniques [50]. A key
finding in PD research is the increased abundance of bacte-
ria traditionally regarded as beneficial, such as Akkerman-
sia, Lactobacillus, and Bifidobacterium, which contribute to
maintaining gut barrier integrity by enhancing the produc-
tion of tight junction proteins [48, 51, 52]. However, dis-
ruption of the microbiome composition results in altered
metabolic activities, gut barrier dysfunction, and compro-
mised gut homeostasis [53], contributing to aberrant inflam-
matory responses that may accelerate neurodegeneration
[54, 55]. In humans, the gut microbiota is a major source of
lipopolysaccharide (LPS) [56]. LPS, an immunostimulatory
component of Gram-negative bacterial cell walls, exhibits
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variable inflammatory and neurotoxic properties and can
enter systemic circulation [53]. LPS activates TLR4-mediated
inflammatory signaling in the gut, compromising intestinal
barrier function. The resulting systemic inflammation has
been shown to increase blood-brain barrier (BBB) perme-
ability, allowing pro-inflammatory mediators to enter the
CNS, disrupting Treg function, and intensifying neuroin-
flammation [57-59]. The “gut-first” hypothesis, proposed by
Braak and colleagues, suggests that a-syn aggregates may
originate in the enteric nervous system (ENS) and propagate
to the CNS via the vagus nerve [60-62]. Additionally, studies
have shown that gut luminal signals, particularly via gluta-
mate metabolism, can be transmitted rapidly to glutamater-
gic neurons in the hippocampus through vagal pathways
[63], suggesting a highly sensitive gut—brain communica-
tion mechanism. Braak’s theory suggests that gut dysbio-
sis, chronic inflammation, and microbial imbalance in the
ENS may trigger a-syn misfolding, initiating PD pathology
[64]. Microbial dyshiosis and chronic intestinal inflamma-
tion may contribute to o-syn misfolding in the gut. The
innate immune system, including gut-resident macrophages
and enteric endothelial cells, responds by releasing pro-
inflammatory cytokines (e.g., IL-1f, IL-6, and TNF-a), which
may enhance o-syn aggregation and propagation to the CNS
[65]. Disruption of the BBB, potentially triggered by periph-
eral immune activation and microbial inflammation in the
gut, facilitates the infiltration of adaptive immune cells such
as T and B lymphocytes into the central nervous system
[66], contributing to sustained neuroinflammation and the
progression of Parkinson’s disease.

Immune cell subsets in PD
pathogenesis

T effector cells (Teffs)

While T cells are sporadic in the CNS of healthy subjects,
mostly in the choroid plexus or CSE, most T cells found in
the parenchyma result from the infiltration of activated T
cells from the periphery [66]. Both CD44 and CD8+ T cells
have been reported to be involved in neurodegeneration in
patients with PD [67]. Additionally, increased frequencies of
T cells with Teff phenotypes in patients with PD have been
correlated with motor function severity [68]. The migration
of peripheral T cells into the CNS occurs after T cell lig-
ands on endothelial cells bridge integrins and selectins on T
cells that capture lymphocytes and allow extravasation into
the brain and injurious foci (Figure 1) [66]. Both CD4+ and
CD8+ T cells extravasate into the CNS through the interac-
tion of o4P1-integrin with activated T cells and vascular cell
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adhesion protein 1 (VCAM-1) on capillary endothelial cells
[69]. CD4+ and CD8+ T cells that are permitted to
extravasate typically have Teff phenotypes, defined by the
function and cytokines expressed upon reactivation in the
CNS. Reactivation occurs when the T-cell receptor (TCR)
recognizes its cognate antigen presented by MHC I or II on
APCs such as microglia or macrophages. This induces Teff to
initiate its defensive effector function, that is, the expression
of cytokines or killer programs. In turn, Teffs have direct and
indirect associations with neurons, astrocytes, and other
microglia within the CNS, with varied responses depending
on Teff type.

CD4+ T cells

In PD, CD4+ Teffs play a critical role in the adaptive
immune response in the CNS by promoting neurodegenera-
tion through proinflammatory cytokines and chemokines as
well as the Fas/FasL pathway [70]. Inflammatory conditions
are permissive to CD4+ T cell migration through the BBB [71,
72]. Once inside, activated CD4+ Teffs become re-activated
by microbial or modified self-antigens released from degen-
erating neurons that have been processed and presented
by microglia or other APCs [73]. Modified-self antigens are
implicated in the induction of autoreactive CD4+ Teffs
responses in PD and PD models, including nitrated and phos-
phorylated a-syn [74]. In one report, most CD4+ Teffs from
patients with PD were reactive to phosphorylated a-syn and
exhibited a rare phenotype that primarily expressed IFN-y
and IL-5 [5]. In mice treated with MPTP, peripheral T cells
respond to nitrated a-syn but not native a-syn, and polar-
ization of CD4+ Teffs from the immune system to nitrated o-
syn yields type-1T helper (Th1) Teffs that express IFN-y and
type-17 T helper (Th17) Teffs that express IL-17 [75]. Adoptive
transfer of either Thl or Th17 Teffs to MPTP mice exac-
erbates MPTP-induced microglial activation and dopamin-
ergic lesions; however, Th17 Teffs significantly enhanced
these effects. Interestingly, a meta-analysis of clinical stud-
ies confirmed the association between elevated Th17 Teffs
levels and PD and found that the percentage of Th17 cells
correlated with motor impairments in patients [76]. Teffs
interactions with microglia and astrocytes, particularly via
pro-inflammatory cytokines, exacerbate the inflammatory
cascade [77, 78]. Thus, targeting the inflammatory pathways
mediated by CD4+ T cells is a potential therapeutic strategy
for slowing PD progression [79, 80].

CD8+ T cells

CD8+ T cells play a significant role in CNS through
their involvement in adaptive immunity and impact on
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neurological conditions. The primary responsibility of
CD8+ T cells in the periphery and CNS is to kill infected
cells by recognizing antigens presented by MHC I molecules.
Upon encountering antigens presented by MHC I, CD8+ T
cells differentiate into cytotoxic effector T cells (Tc), which
are capable of releasing cytokines, such as TNF-o and IFN-
v, and cytotoxic molecules, such as granzymes and per-
forins, to induce apoptosis of target cells [81]. In the brain
and elsewhere, CD8+ Tc cells are responsible for provid-
ing defense against virus-infected cells by attacking and
destroying viral-infected cells such as neurons [82]. This
cytotoxic function can also contribute to neuroinflamma-
tion and neuronal damage in conditions such as traumatic
brain injury (TBI) and ischemic stroke, where CD8+ T cells
infiltrate damaged brain tissue, exacerbating neuronal cell
death [83-85].

In PD, CD8+ Teffs are found in both peripheral blood
and cerebrospinal fluid, indicating their activation and pos-
sible involvement in the progression of these disorders [84,
86]. Interestingly, in patients with PD and animal models,
both CD4+ and CD8+ T cells infiltrate the brain, with studies
reporting a reduced CD4+/CD8+ ratio, suggesting a relative
predominance of cytotoxic CD8+ T cells in neurodegenera-
tive regions. In the brains of patients with early PD, robust
infiltration of CD8+ T cells was found with little change in
CD4+ T cells; however, later stages of PD presented milder
infiltrates of CD8+ T cells, suggesting the potential con-
tribution of CD8+ Teffs to pathological changes in PD [4].
Although, whether CD8+ Teffs recognize cognate antigen in
PD is uncertain, the increased clonality of the TCR reper-
toire in PD patients suggests that antigen-specific CD8+
Teff responses triggered by CNS antigens lead to increased
release of proinflammatory mediators, such as IFN-y and
TNF-a, as well as perforins and granzymes that contribute
to chronic neuroinflammation and neurodegeneration [87].
However, whether CD8+ T-cell clonality is due to PD pro-
cesses or from a constricting repertoire due to aging is
unknown [88]. Additionally, in the context of neuroinflam-
mation, CD8+ T cells have been shown to shift immune
responses, potentially leading to demyelination and neuro-
logical impairments [89]. Thus, the presence of clonal CD8+
T cells, given their cytotoxic capabilities, underscore the
possible role of CD8+ T cells in dopaminergic neurodegen-
eration and highlight their potential as therapeutic targets,
however, their role in PD etiology and disease progression
has yet to be determined.

Regulatory T cells (Tregs)

Tregs play a crucial role in maintaining immune homeosta-
sis and preventing chronic inflammation [79, 90]. Patients
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with PD exhibit reduced Treg activity compared to controls
and show increased numbers of CD4+ Teffs that correlate
with clinical motor scores. Exposure to immunizing levels
of nitrated a-syn also reduces Treg activity in preclinical
models [74]. Therefore, strategies to enhance Treg function
are being explored to mitigate microglial reactivity, atten-
uate neuroinflammation, and enhance neuroprotection.
Tregs have been shown to suppress pro-inflammatory a-
syn activated microglia by expression of anti-inflammatory
cytokines and by inducing microglia apoptosis via Fas/Fas
ligand interactions [91, 92]. Tregs also reduce ROS produc-
tion by activated microglia, and of considerable importance,
Tregs also suppress activated Teffs and Teffs induction [93].
Moreover, Tregs have been shown to increase expression
of glial cell derived neurotrofic factor (GDNF) and brain
derived neurotrophic factor (BDNF) by astrocytes in ani-
mal models of PD [70, 92]. Immune modulatory agents such
as granulocyte-macrophage colony-stimulating factor (GM-
CSF) show potential to increase Treg numbers and func-
tionality, thereby reducing neuroinflammatory processes
and protecting neuronal integrity [79, 90, 94]. Phase 1 clin-
ical trials of human GM-CSF (sargramostim, Leukine®) in
PD patients demonstrated GM-CSF was safe and tolerated
for up to 36 months, increased Treg frequencies and func-
tion, increased neuronal activity in cortical motor areas,
and improved Unified PD Rating Scale part III (UPDRS III)
scores [39, 80, 95]. Importantly, after 36 months of treat-
ment and 1 month washout period, UPDRS III scores did
not significantly increase from pre-treatment scores, in con-
trast to historical controls [80, 96]. Phase II clinical trials to
assess the efficacy of GM-CSF are ongoing. Anti-CD3 mon-
oclonal antibodies also promote Treg induction and func-
tion, which in turn induce apoptosis of activated Teffs and
microglia via Fas/FasL interactions [79, 92], thus promot-
ing non-mitogenic anti-CD3 antibodies as therapeutic strate-
gies for inflammatory-mediated neurodegenerative disor-
ders [97, 98]. Vasoactive intestinal peptide (VIP) and VIP
receptor-2 (VIPR2) agonists also increase Treg frequency
and function, and these agents and their induced Tregs are
anti-inflammatory and neuroprotective in animal models of
PD [99, 100]. Finally, treatment with low-dose IL-2 increases
Treg number and function, and adoptive transfer of IL-2-
induced Tregs is neuroprotective along the nigrostriatal axis
in MPTP-treated mice, thus providing another promising
Treg-inducing strategy for PD [101].

The primary role of Tregs is to maintain immuno-
logical tolerance, particularly in the context of controlling
ongoing immune responses to prevent pathological out-
comes. The main Treg attribute is the ability to attenuate
inflammatory responses with anti-inflammatory cytokines
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such as IL-10 and TGF-f. Similarly, Tregs in the CNS play a
critical role in maintaining immune homeostasis and con-
trolling inflammation [102]. Brain-resident Tregs, character-
ized by markers such as CD69, are present in the CNS and
help modulate neuroinflammatory responses by releasing
anti-inflammatory molecules, such as IL-10 and amphireg-
ulin, which inhibit astrogliosis and promote neuroprotec-
tion [70]. Under neuroinflammatory conditions, such as
those found in multiple sclerosis and stroke, Tregs suppress
autoreactive T cell responses and reduce damage by pro-
moting remyelination and aiding in white matter repair
[70]. In adaptive immunity, Treg interaction with CNS anti-
gens leads to the release of anti-inflammatory factors that
transform microglia towards a more neurotrophic M2 state,
ultimately reducing the overall inflammatory response.
Research suggests that peripheral Tregs might also con-
tribute to CNS protection by not only mitigating systemic
inflammation that ultimately influences CNS homeostasis
but also by migrating to sites of neuronal injury and inflam-
mation [103—105]. Notably, peripheral Tregs in patients with
PD have diminished inhibitory activity compared to age-
and environment-matched caregivers [68]. While the thera-
peutic potential of Tregs is promising in neurodegenerative
disorders, such as PD and [70, 74, 79, 80], distinguishing the
specific roles of circulating and resident Tregs remains a
major challenge [102].

B cells

In neurodegenerative diseases, B cells can contribute to CNS
pathology through antibody production and antigen pre-
sentation, thus intensifying adaptive and innate functional
capabilities [106]. B cells exacerbate neurodegeneration by
releasing neurotoxic molecules, such as GM-CSE, IL-6, and
TNF-o, which are injurious to neuronal structures and pro-
mote local inflammation in afflicted brain regions. Addi-
tionally, B cells support T cell activation through antigen
presentation, although diminished from that of professional
APCs such as DCs, microglia, and monocytes, sufficient pre-
sentation is provided to reinforce T cell-mediated inflam-
matory processes within the CNS and accelerate disease
progression. While there is a general paucity of reports con-
cerning B cells in PD [107], diminished levels of peripheral
B cells have been documented in patients with PD and in
some a-syn over-expression models [108]. Recently, single-
cell RNA analyses of peripheral B cells from patients with PD
showed evidence of decreased naive B cells with increased
levels and clonal expansion of memory B cells compared
to age-matched controls [109]. As in most immune cells of
PD patients, LRRK2 expression is upregulated in B cells,
suggesting a role of activated immune cells in PD patients
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[2]. Moreover, increased activity in stimulated B cells from
LRRK2 knockout mice suggested a regulatory function for
LRRK2 [110]. Although direct evidence of B-cell infiltration
of neurodegenerative foci in PD has yet to be reported,
sufficient evidence of antibodies to a-synuclein in blood and
CSF abound [107,111, 112], and IgG deposition has been found
on dopaminergic neurons and associated with Lewy bodies
in PD patients [1]. Moreover, antibodies against nitrated
o-synuclein, but not native a-synuclein, are produced in
mice intoxicated with MPTP [113]. Interestingly, stereotactic
injection of IgG from patients with PD into the rat substan-
tia nigra yielded significant increases in dopaminergic loss
compared with rats treated with control IgG [114]. Though
preliminary in scope, evidence is suggestive for putative
roles for B cells or anti-CNS antibodies in PD.

Immunotherapies

Like many other neurodegenerative disorders, interven-
tional treatment of PD presents a significant challenge, due
to the lack of therapies that can modify or arrest disease
progression. Standard treatments, such as levodopa, replen-
ish dopamine levels that address symptom management
but do not address underlying pathological processes [90,
115]. Recent insights into the role of the immune system in
PD have propelled the development of novel therapies that
target immune pathways, thereby offering new hope for
disease modification.

o-syn

Both active and passive immunotherapeutic strategies have
been developed to reduce the burden of a-syn aggre-
gates [116]. Different approaches include (1) silencing the
SNCA gene using small hairpin RNA and antisense oligonu-
cleotides; (2) enhancing proteasomal activity and autophagy
pathways using molecules such as the deubiquitinase
inhibitor 101 and autophagy/lysosomal regulating tran-
scription factors such as transcription factor EB (TFEB);
and (3) inhibiting a-syn misfolding and aggregation [116].
Active immunization approaches involve vaccines designed
to stimulate the immune system to produce antibodies
against a-syn [116, 117]. Vaccines, such as AFFITOPE PD01A
and PD03A, are mimotopes engineered to target specific
epitopes of a-synuclein that promote o-syn clearance from
the CNS [115-118]. Vaccines can recognize and neutralize
a-synuclein aggregates, potentially halting disease progres-
sion. Clinical trials are ongoing to evaluate the efficacy and
safety [119].

In contrast, passive immunotherapy uses monoclonal
antibodies (mAbs) that are parenterally administered and
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target native or modified a-syn [116, 117]. Prasinezumab
(PRX002) is a prominent mAb that recognizes aal118-126 and
was designed to bind and neutralize extracellular o-syn
aggregates and prevent dissemination and toxicity [90, 115,
117, 118]. These and other mAbs have shown promise in
preclinical models and are currently undergoing clinical
trials to assess their therapeutic potential in humans [119].
Recently, antigen-recognizing antibody fragments such as
intrabodies have shown potential for reducing the levels
of misfolded proteins and providing neuroprotection [118].
An intrabody is a single-chain, antibody variable region
fragment (scFv) that is designed to be expressed intracel-
lularly and targets intracellular proteins. Thus, anti-a-syn
intrabodies target a-syn intracellular aggregation and guide
o-syn complexes toward proteasomal degradation.

Growth factors

Gene therapy offers a promising avenue for delivering neu-
rotrophic factors and genes directly to the affected brain
regions using viral vectors to support the survival and func-
tion of dopaminergic neurons [115, 117]. An early clinical
trial of direct intraputamen delivery of glial cell line-derived
neurotrophic factor (GDNF) showed improved UPDRS III
scores and 8F-dopamine storage [120]. This study provides
the basis for several successive GDNF trials; however, these
have yielded inconsistent results, and alternative delivery
methods have been explored [121]. A clinical trial of the
AAV2-GDNF construct delivered to the putamen showed no
improvement in the post-administration UPDRS III scores
after 18 months; however, ¥F-DOPA uptake improved [122].
Thus, although repeated trials have exhibited inconsistent
results, the use of GDNF in animal models and clinical
trials remains an active area of investigation. Other neu-
rotrophic factors under clinical evaluation with varying
degrees of success using native or modified protein formu-
lations or vector-formulated constructs include neurturin
(NRTN), brain-derived neurotrophic factor (BDNF), armetin
(ARTN), persephin (PSNP), cerebral dopamine neurotrophic
factor (CDNF), mesencephalic astrocyte-derived neural fac-
tor (MANF), and nuclear receptor-related 1 protein or NR4A2
(Nurrl), a transcription factor for nuclear receptors that reg-
ulates dopaminergic neuron development and maintenance
[123-125].

CAR-Tregs

Based on strategies for cancer treatment, chimeric antigen
receptor (CAR) T-cell platforms are being explored for neu-
rodegenerative diseases [126]. CAR T cells utilize antigen
recognition regions from variable domains of antibodies
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directed at the target of choice. The cDNA encoding the vari-
able regions is constructed to encode a single-chain peptide
of variable fragments (scFv) that retain antigen reactivity.
The expression of this construct results in transmembrane
orientation of an external antigen recognition site. Ligation
of the cognate antigen and antigen recognition site initi-
ates the appropriate signal cascade and interventional T-cell
program. Similar to cancer therapeutics, several CAR T cell
strategies utilize cytotoxic T cell platforms to initiate the
killing of targets such as glial tumors or autoreactive B and
T cells. However, this approach has several limitations for
neurodegeneration, including the introduction of unregu-
lated autoreactive cytotoxic and pro-inflammatory T-cells,
which may potentially exacerbate neuroinflammation and
disease progression. For neurodegenerative disorders with
inflammatory components, a contrasting approach utilizes
CAR-Tregs with CARs that target misfolded proteins asso-
ciated with respective disorders, such as amyloid B (AP)
for Alzheimer’s disease, superoxide dismutase 1 (SOD1) or
Tar DNA binding protein-43 (TDP-43) for amyotrophic lat-
eral sclerosis (ALS). For PD and synucleinopathies, mod-
ified proteins such as nitrated or phosphorylated a-syn
could provide an appropriate recognition target for CAR.
Strategies for this CAR-Treg platform would isolate patient
Tregs, delete endogenous TCRs, transduce the CAR construct
encoding the anti-modified a-syn scFv protein, and expand
CAR-Tregs to be adoptively transferred to the patient. The
underlying rationale for this strategy is based on the trans-
formative nature of Tregs, which attenuate microglial- and
Teff-mediated neuroinflammation, diminishes a-syn mis-
folding and aggregation, and provides neuroprotection to
dopaminergic neurons along the nigrostriatal axis.

Concluding Remarks

Abundant evidence from both human and animal studies
supports the important role of the innate and adaptive
immune systems in the pathogenesis and progression of
PD. These immune responses change over time during dis-
ease progression. o-Syn, a central feature of PD pathology,
not only forms toxic aggregates but also plays an active
role in triggering and sustaining immune activation. It
stimulates both innate and adaptive immune responses,
promotes neuroinflammation, and contributes to neuronal
damage. Because a-synuclein is recognized as an anti-
gen by both microglia and peripheral monocytes, innate
immune responses can be initiated in both the brain and the
periphery. In addition to chronic inflammation mediated by
microglia in the brain, changes in immune cell populations
have also been observed in the peripheral blood of patients
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with PD, involving both innate and adaptive immune cells.
Peripheral immune cells, such as T and B lymphocytes, have
been shown to infiltrate the brain, further contributing to
inflammation in the CNS. It is possible that an initial innate
immune response to modified o-syn triggers a more sus-
tained adaptive immune reaction that spreads damage to
other parts of the brain. T cells require antigen presenta-
tion via MHC molecules, whereas B cells recognize anti-
gens through their surface receptors. Once activated, adap-
tive immune cells may further promote inflammation and
neurodegeneration. In the future, tracking inflammatory
changes over time, along with peripheral immune profil-
ing, microbiome analysis, a-syn measurements, and imag-
ing, may help identify useful immune-based biomarkers for
predicting disease risk and progression. PD is a complex
disease that includes the multiple genetic variants, gut-brain
interactions, immune cell changes, and clinical symptoms.
A better understanding of how specific antigens activate
the immune system, how immune cells change over time,
and how the interaction between the brain and periph-
eral immune systems is essential for developing effective
immunotherapies and identifying reliable biomarkers for
PD treatment.

Research ethics: IRB approval is not applicable.

Informed consent: Not applicable.

Author contributions: X.D., S.A., D.B.O., and C.Z. initiated
and wrote the review; and S.S., H.E.G., and R.L.M. edited and
proofed the review.

Use of Large Language Models, AI and Machine Learning
Tools: None declared.

Conflict of interest: H.E.G. is a member of the scientific advi-
sory board at Longevity Biotech and a co-founder of Exavir
Therapeutics, Inc. All other authors declare no conflict of
interest.

Research funding: This work was supported by grants from
the National Institutes of Health P01 DA028555, R01 NS36126,
P01 NS31492, P01 MH64570, P01 NS43985, P30 MH062261, R01
AG043540, and 2R01 NS034239; the Michael J. Fox Founda-
tion; the Frances and Louie Blumkin and Harriet Singer
Research Foundations; the Carol Swarts, MD Emerging Neu-
roscience Research Laboratory; and the Margaret R. Larson
Professorship.

Data availability: Not applicable.

References

1. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE,
Joers V. Inflammation and immune dysfunction in Parkinson
disease. Nat Rev Immunol 2022;22:657—73.



DE GRUYTER

10.

13.

14.

15.

16.

17.

18.

19.

20.

. Herrick MK, Tansey MG. Is LRRK2 the missing link between

inflammatory bowel disease and Parkinson’s disease? NP)
Parkinson’s Dis 2021;7:26.

. Schonhoff AM, Williams GP, Wallen ZD, Standaert DG, Harms AS.

Innate and adaptive immune responses in Parkinson’s disease.
Prog Brain Res 2020;252:169—216.

. Galiano-Landeira J, Torra A, Vila M, Bove J. CD8 T cell nigral

infiltration precedes synucleinopathy in early stages of
Parkinson’s disease. Brain 2020;143:3717—33.

. Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J,

et al. T cells from patients with Parkinson’s disease recognize
alpha-synuclein peptides. Nature 2017;546:656 —61.

. Lauritsen J, Romero-Ramos M. The systemic immune response in

Parkinson’s disease: focus on the peripheral immune component.
Trends Neurosci 2023;46:863—78.

. Bisi N, Feni L, Peqini K, Perez-Pena H, Ongeri S, Pieraccini S, et al.

Alpha-synuclein: an all-inclusive trip around its structure,
influencing factors and applied techniques. Front Chem
2021;9:666585.

. Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology,

neuropathology, and pathogenesis. In: Stoker TB, Greenland JC,
editors. Parkinson’s disease: pathogenesis and clinical aspects.
Brisbane, AU; 2018.

. Wong YC, Krainc D. Alpha-synuclein toxicity in

neurodegeneration: mechanism and therapeutic strategies. Nat
Med 2017;23:1—13.

Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G,
Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other
synucleinopathies: from overt neurodegeneration back to early
synaptic dysfunction. Cell Death Dis 2023;14:176.

. Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring

alpha-synuclein aggregation. Neurobiol Dis 2023;176:105966.

. Bengoa-Vergniory N, Roberts RF, Wade-Martins R,

Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope.
Acta Neuropathol 2017;134:819—38.

Mehra MR, Uriel N, Naka Y, Cleveland JCJr., Yuzefpolskaya M,
Salerno CT, et al. A fully magnetically levitated left ventricular
assist device — final report. N Engl ] Med 2019;380:1618 —27.
Schmid AB, Nee R, Coppieters MW. Reappraising entrapment
neuropathies — mechanisms, diagnosis and management. Man
Ther 2013;18:449—57.

Samuel BS, Rowedder H, Braendle C, Felix MA, Ruvkun G.
Caenorhabditis elegans responses to bacteria from its natural
habitats. Proc Natl Acad Sci U S A 2016;113:E3941—09.
Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K,
Vickram AS, Karunakaran R, et al. Alpha-synuclein aggregation in
Parkinson’s disease. Front Med 2021;8:736978.

Steiner JA, Angot E, Brundin P. A deadly spread: cellular
mechanisms of alpha-synuclein transfer. Cell Death Differ
2011;18:1425—33.

Negi S, Khurana N, Duggal N. The misfolding mystery:
alpha-synuclein and the pathogenesis of Parkinson’s disease.
Neurochem Int 2024;177:105760.

Choi EH, Kim MH, Park SJ. Targeting mitochondrial dysfunction
and reactive oxygen species for neurodegenerative disease
treatment. Int ] Mol Sci 2024;25:7952.

Jishi A, Hu D, Shang Y, Wang R, Gunzler SA, Qi X. BCKDK loss
impairs mitochondrial Complex I activity and drives

X. Du et al.: Adaptive immunity and Parkinson’s disease == 281

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

alpha-synuclein aggregation in models of Parkinson’s disease.
Acta Neuropathol Commun 2024;12:198.

Lin MM, Liu N, Qin ZH, Wang Y. Mitochondrial-derived
damage-associated molecular patterns amplify
neuroinflammation in neurodegenerative diseases. Acta
Pharmacol Sin 2022;43:2439—47.

Chen C, Hertz E, Chen Y, Sidransky E. Targeting protein clearance
pathways in GBA1-associated Parkinson disease. Expert Opin Ther
Targets 2022;26:1031—5.

Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein
degradation: mechanisms, strategies and application. Signal
Transduction Targeted Ther 2022;7:113.

Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez
A, et al. The different autophagy degradation pathways and
neurodegeneration. Neuron 2022;110:935—66.

Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic
etiology of Parkinson disease associated with mutations in the
SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation
update. Hum Mutat 2010;31:763—80.

Selvaraj S, Piramanayagam S. Impact of gene mutation in the
development of Parkinson’s disease. Genes Dis 2019;6:

120-8.

Al-Azzawi ZAM, Arfaie S, Gan-Or Z. GBA1 and the immune system:
a potential role in Parkinson’s disease? | Parkinsons Dis
2022;12:553—64.

Smith L, Schapira AHV. GBA variants and Parkinson disease:
mechanisms and treatments. Cells 2022;11:1261.

Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 variants
and Parkinson’s disease: paving the way for targeted therapy.

] Mov Disord 2023;16:261—78.

Blauwendraat C, Reed X, Krohn L, Heilbron K, Bandres-Ciga S,
Tan M, et al. Genetic modifiers of risk and age at onset in GBA
associated Parkinson’s disease and Lewy body dementia. Brain
2020;143:234—-48.

Goldman SM, Marek K, Ottman R, Meng C, Comyns K, Chan P,

et al. Concordance for Parkinson’s disease in twins: a 20-year
update. Ann Neurol 2019;85:600—5.

Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga
S, Chang D, et al. Identification of novel risk loci, causal insights,
and heritable risk for Parkinson’s disease: a meta-analysis of
genome-wide association studies. Lancet Neurol
2019;18:1091—102.

Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: a common
target for genetic mutations and environmental toxicants in
Parkinson’s disease. Front Genet 2017;8:177.

Lu J, Wu M, Yue Z. Autophagy and Parkinson’s disease. Adv Exp
Med Biol 2020;1207:21—51.

Bailey HM, Cookson MR. How Parkinson’s disease-linked LRRK2
mutations affect different CNS cell types. ) Parkinsons Dis
2024;14:1331-52.

Wallings RL, Tansey MG. LRRK2 regulation of immune-pathways
and inflammatory disease. Biochem Soc Trans 2019;47:1581—95.
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and
astrocyte dysfunction in Parkinson’s disease. Neurobiol Dis
2020;144:105028.

Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon
monoxide for therapeutic modulation of inflammation. Transl| Res
2016;167:7—34.



282

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

= X. Du et al.: Adaptive immunity and Parkinson’s disease

Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR,
Bhatti D, et al. Evaluation of the safety and immunomodulatory
effects of sargramostim in a randomized, double-blind phase 1
clinical Parkinson’s disease trial. NP) Parkinson’s Dis 2017;3:10.
Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O,
et al. CSF and blood biomarkers for Parkinson’s disease. Lancet
Neurol 2019;18:573 —86.

Sargent D, Moore D). Mechanisms of VPS35-mediated
neurodegeneration in Parkinson’s disease. Int Rev Mov Disord
2021;2:221—44.

Williams ET, Chen X, Otero PA, Moore DJ. Understanding the
contributions of VPS35 and the retromer in neurodegenerative
disease. Neurobiol Dis 2022;170:105768.

Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1
in microglia: implications in Parkinson’s disease and relevance as
a therapeutic target. ] Neuroinflammation 2023;20:95.

Sun S, Hou H, Ma G, Ma Q, Li N, Zhang L, et al. The interaction
between E3 ubiquitin ligase Parkin and mitophagy receptor PHB2
links inner mitochondrial membrane ubiquitination to efficient
mitophagy. ] Biol Chem 2022;298:102704.

Aly KA, Moutaoufik MT, Zilocchi M, Phanse S, Babu M. Insights
into SACS pathological attributes in autosomal recessive spastic
ataxia of Charlevoix-Saguenay (ARSACS)+¢. Curr Opin Chem Biol
2022;71:102211.

Lewin CDC, Leamy M, Palmer L. How do people conceptualize
self-harm recovery and what helps in adolescence, young and
middle adulthood? A qualitative meta-synthesis. | Clin Psychol
2024;80:39—-64.

Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW,
Ramirez-Zamora A, et al. The gut-brain axis and its relation to
Parkinson’s disease: a review. Front Aging Neurosci
2021;13:782082.

Solanki R, Karande A, Ranganathan P. Emerging role of gut
microbiota dysbiosis in neuroinflammation and
neurodegeneration. Front Neurol 2023;14:1149618.

Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what
happens in vagus. Neuron 2019;101:998 —1002.

Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, et al. Gut microbiota: a
novel therapeutic target for Parkinson’s disease. Front Immunol
2022;13:937555.

Tan AH, Hor JW, Chong CW, Lim SY. Probiotics for Parkinson’s
disease: current evidence and future directions. JGH Open
2021;5:414—9.

Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in
Parkinson disease — from basic research to the clinic. Nat Rev
Neurol 2022;18:476 —95.

Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj
SS, et al. Role of endogenous lipopolysaccharides in neurological
disorders. Cells 2022;11. https://doi.org/10.3390/cells11244038.
Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s
disease. ] Neurogastroenterol Motil 2019;25:48 —60.

Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D,
Brzozowska E, Leszek J. The gut microbiome alterations and
inflammation-driven pathogenesis of Alzheimer’s disease-a
critical review. Mol Neurobiol 2019;56:1841—51.

Du L, Lei X, Wang J, Wang L, Zhong Q, Fang X, et al.
Lipopolysaccharides derived from Gram-negative bacterial pool
of human gut microbiota promote inflammation and obesity
development. Int Rev Immunol 2022;41:45—56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

DE GRUYTER

Skrzypczak-Wiercioch A, Salat K. Lipopolysaccharide-induced
model of neuroinflammation: mechanisms of action, research
application and future directions for its use. Molecules 2022;27.
https://doi.org/10.3390/molecules27175481.

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M,
et al. The gut microbiota influences blood-brain barrier
permeability in mice. Sci Transl Med 2014;6:263ra158.

Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The
blood-brain barrier in aging and neurodegeneration. Mol
Psychiatry 2022;27:2659—73.

Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel R}, Kraneveld AD.
Exploring braak’s hypothesis of Parkinson’s disease. Front Neurol
2017,8:37.

. BreitS, Kupferberg A, Rogler G, Hasler G. Vagus nerve as

modulator of the brain-gut axis in psychiatric and inflammatory
disorders. Front Psychiatry 2018;9:44.

Han'Y, Wang B, Gao H, He C, Hua R, Liang C, et al. Vagus nerve
and underlying impact on the gut microbiota-brain axis in
behavior and neurodegenerative diseases. ] Inflamm Res
2022;15:6213—30.

Suarez AN, Hsu TM, Liu CM, Noble EE, Cortella AM, Nakamoto EM,
et al. Gut vagal sensory signaling regulates hippocampus function
through multi-order pathways. Nat Commun 2018;9:2181.
Chantra S, Chaitanuwong P, Seresirikachorm K, Brinks M, Serirat
0, Chamberlain W, et al. Ocular surface erosion after suspected
exposure to evaporated COVID-19 vaccine. Case Rep Ophthalmol
2021;12:944—51.

Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark
KE, Ertan S, et al. The immune system in Parkinson’s disease:
what we know so far. Brain 2024;147:3306 —24.

Marchetti L, Engelhardt B. Immune cell trafficking across the
blood-brain barrier in the absence and presence of
neuroinflammation. Vasc Biol 2020;2:H1—18.

Karikari AA, McFleder RL, Ribechini E, Blum R, Bruttel V, Knorr S,
et al. Neurodegeneration by alpha-synuclein-specific T cells in
AAV-A53T-alpha-synuclein Parkinson’s disease mice. Brain Behav
Immun 2022;101:194—210.

Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM,
Torres-Russotto DR, et al. CD44 regulatory and effector/memory
T cell subsets profile motor dysfunction in Parkinson’s disease.
Neuroimmune Pharmacol 2012;7:927—38.

Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, et al. Targeting integrin
pathways: mechanisms and advances in therapy. Signal
Transduction Targeted Ther 2023;8:1.

Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE,
Mosley RL, et al. Harnessing regulatory T cell neuroprotective
activities for treatment of neurodegenerative disorders. Mol
Neurodegener 2020;15:32.

Korn T, Kallies A. T cell responses in the central nervous system.
Nat Rev Immunol 2017;17:179 —94.

Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune
responses in the Parkinson’s disease brain. Neurobiol Dis
2022;168:105700.

Rickenbach C, Gericke C. Specificity of adaptive immune
responses in central nervous system health, aging and diseases.
Front Neurosci 2021;15:806260.

Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL.
Therapeutic strategies for immune transformation in Parkinson’s
disease. ] Parkinsons Dis 2022;12:5201—2.


https://doi.org/10.3390/cells11244038
https://doi.org/10.3390/molecules27175481

DE GRUYTER

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Pacheco R. T-cell based immunotherapies for Parkinsons disease.
Explor Neuroprot Ther 2021;1:72—85.

Jiang Z, Huang H, Chen Y, Xie H, Lu Y, Ge Y, et al. The role of the
immune system in Parkinson’s disease pathogenesis: a focus on
Th17 cells — a systematic review and meta-analysis. ]
Neuroimmunol 2025;398:578484.

Sun M, You H, Hu X, Luo Y, Zhang Z, Song Y, et al.
Microglia-astrocyte interaction in neural development and neural
pathogenesis. Cells 2023;12. https://doi.org/10.3390/
cells12151942.

Campos-Acuna J, Elgueta D, Pacheco R. T-cell-driven inflammation
as a mediator of the gut-brain axis involved in Parkinson’s
disease. Front Immunol 2019;10:239.

Schwab AD, Thurston M), Machhi J, Olson KE, Namminga KL,
Gendelman HE, et al. Immunotherapy for Parkinson’s disease.
Neurobiol Dis 2020;137:104760.

Olson KE, Abdelmoaty MM, Namminga KL, Lu Y, Obaro H,
Santamaria P, et al. An open-label multiyear study of
sargramostim-treated Parkinson’s disease patients examining
drug safety, tolerability, and immune biomarkers from limited
case numbers. Transl Neurodegener 2023;12:26.
Rauschenberger L, Behnke ], Grotemeyer A, Knorr S, Volkmann J,
Ip CW. Age-dependent neurodegeneration and
neuroinflammation in a genetic A30P/A53T double-mutated
alpha-synuclein mouse model of Parkinson’s disease. Neurobiol
Dis 2022;171:105798.

Mockus TE, Ren HM, Shwetank, Lukacher AE. To go or stay: the
development, benefit, and detriment of tissue-resident memory
CD8 T cells during central nervous system viral infections. Viruses
2019;11. https://doi.org/10.3390/v11090842.

Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in
the recovery of neurological function after ischemic stroke. Front
Cell Neurosci 2022;16:1013905.

Bersano A, Engele J, Schafer MKE. Neuroinflammation and brain
disease. BMC Neurol 2023;23:227.

Chen Z, Islam M, Ford KP, Zhao G, Chen SY, Wang Y, et al.
Microglia and infiltrating T-cells adopt long-term, age-specific,
transcriptional changes after traumatic brain injury in mice.
Shock 2023;59:267—76.

Zhang Z, Duan Z, Cui Y. CD8(+) T cells in brain injury and
neurodegeneration. Front Cell Neurosci 2023;17:1281763.
Yoshimura A, Ohyagi M, Ito M. T cells in the brain inflammation.
Adv Immunol 2023;157:29—-58.

Weng NP. Numbers and odds: TCR repertoire size and its age
changes impacting on T cell functions. Semin Immunol
2023;69:101810.

Terrabuio E, Zenaro E, Constantin G. The role of the CD8+ T cell
compartment in ageing and neurodegenerative disorders. Front
Immunol 2023;14:1233870.

Olson KE, Gendelman HE. Immunomodulation as a
neuroprotective and therapeutic strategy for Parkinson’s disease.
Curr Opin Pharmacol 2016;26:87—95.

Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Nitrated
alpha-synuclein-induced alterations in microglial immunity are
regulated by CD4+ T cell subsets. ] Immunol 2009;182:

413749,

Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL.
Neuroprotective activities of CD4+4-CD25+ regulatory T cells in an

X. Du et al.: Adaptive immunity and Parkinson’s disease == 283

93.

94,

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

animal model of Parkinson’s disease. | Leukoc Biol
2007;82:1083—94.

Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL,
Gendelman HE. Regulatory T cells attenuate Th17 cell-mediated
nigrostriatal dopaminergic neurodegeneration in a model of
Parkinson’s disease. | Immunol 2010;184:2261—71.

Schutt CR, Gendelman HE, Mosley RL. Tolerogenic bone
marrow-derived dendritic cells induce neuroprotective regulatory
T cells in a model of Parkinson’s disease. Mol Neurodegener
2018;13:26.

. Olson KE, Namminga KL, Lu Y, Schwab AD, Thurston MJ,

Abdelmoaty MM, et al. Safety, tolerability, and
immune-biomarker profiling for year-long sargramostim
treatment of Parkinson’s disease. EBioMedicine 2021;67:103380.
Holden SK, Finseth T, Sillau SH, Berman BD. Progression of
MDS-UPDRS scores over five years in de novo Parkinson disease
from the Parkinson’s progression markers initiative cohort. Mov
Disord Clin Pract 2018;5:47—53.

Kohm AP, Turley DM, Miller SD. Targeting the TCR: T-cell receptor
and peptide-specific tolerance-based strategies for restoring
self-tolerance in CNS autoimmune disease. Int Rev Immunol
2005;24:361—92.

Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal
antibodies: from bench to bedside. Inmunotherapy
2016;8:889—906.

Olson KE, Kosloski-Bilek LM, Anderson KM, Diggs BJ, Clark BE,
Gledhill JM Jr., et al. Selective VIP receptor agonists facilitate
immune transformation for dopaminergic neuroprotection in
MPTP-intoxicated mice. ] Neurosci 2015;35:16463 —78.

Mosley RL, Lu Y, Olson KE, Machhi J, Yan W, Namminga KL, et al.
A synthetic agonist to vasoactive intestinal peptide receptor-2
induces regulatory T cell neuroprotective activities in models of
Parkinson’s disease. Front Cell Neurosci 2019;13:421.

Markovic M, Yeapuri P, Namminga KL, Lu Y, Saleh M, Olson KE,
et al. Interleukin-2 expands neuroprotective regulatory T cells in
Parkinson’s disease. Neuroimmune Pharmacol Ther
2022;1:43-50.

Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells.
Nat Rev Immunol 2024;24:326—37.

Ciurkiewicz M, Herder V, Beineke A. Beneficial and detrimental
effects of regulatory T cells in neurotropic virus infections. Int
Mol Sci 2020;21. https://doi.org/10.3390/ijms21051705.

Harkins AL, Kopec AL, Keeler AM. Regulatory T cell therapeutics
for neuroinflammatory disorders. Crit Rev Immunol
2022;42:1-27.

Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles
of regulatory T cells in Alzheimer’s disease. Cell Immunol
2023;393—394:104778.

Jain RW, Yong VW. B cells in central nervous system disease:
diversity, locations and pathophysiology. Nat Rev Immunol
2022;22:513—24.

Sabatino JJ, Jr., Probstel AK, Zamvil SS. B cells in autoimmune and
neurodegenerative central nervous system diseases. Nat Rev
Neurosci 2019;20:728 —45.

Scott KM. B lymphocytes in Parkinson’s disease. | Parkinsons Dis
2022;12:575—81.

Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, et al. Global
characterization of peripheral B cells in Parkinson’s disease by


https://doi.org/10.3390/cells12151942
https://doi.org/10.3390/cells12151942
https://doi.org/10.3390/v11090842
https://doi.org/10.3390/ijms21051705

284

110.

1.

12.

13.

14.

115.

116.

= X. Du et al.: Adaptive immunity and Parkinson’s disease

single-cell RNA and BCR sequencing. Front Immunol
2022;13:814239.

Kubo M, Nagashima R, Ohta E, Maekawa T, Isobe Y, Kurihara M,
et al. Leucine-rich repeat kinase 2 is a regulator of B cell
function, affecting homeostasis, BCR signaling, IgA production,
and TI antigen responses. | Neuroimmunol 2016;292:

1-8.

Horvath I, Iashchishyn IA, Forsgren L, Morozova-Roche LA.
Immunochemical detection of alpha-synuclein autoantibodies in
Parkinson’s disease: correlation between plasma and
cerebrospinal fluid levels. ACS Chem Neurosci 2017;8:

1170—6.

Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VM.
Measurements of auto-antibodies to alpha-synuclein in the
serum and cerebral spinal fluids of patients with Parkinson’s
disease. ] Neurochem 2018;145:489—503.

Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM,
Tsiperson V, et al. Nitrated alpha-synuclein immunity accelerates
degeneration of nigral dopaminergic neurons. PLoS One
2008;3:e1376.

Chen S, Le WD, Xie W), Alexianu ME, Engelhardt JI, Siklos L, et al.
Experimental destruction of substantia nigra initiated by
Parkinson disease immunoglobulins. Arch Neurol
1998;55:1075—80.

Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging
therapies in Parkinson disease — repurposed drugs and new
approaches. Nat Rev Neurol 2019;15:204—23.

Zella SMA, Metzdorf ), Ciftci E, Ostendorf F, Muhlack S, Gold R,
et al. Emerging immunotherapies for Parkinson disease. Neurol
Ther 2019;8:29—-44.

7.

118.

19.

120.

121.

122.

123.

124.

125.

126.

DE GRUYTER

Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for
Parkinson’s disease. Mov Disord 2015;30:1442 —50.

Chatterjee D, Kordower JH. Immunotherapy in Parkinson’s
disease: current status and future directions. Neurobiol Dis
2019;132:104587.

Alfaidi M, Barker RA, Kuan WL. An update on immune-based
alpha-synuclein trials in Parkinson’s disease. ] Neurol 2024;272:21.
Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M,
et al. Direct brain infusion of glial cell line-derived neurotrophic
factor in Parkinson disease. Nat Med 2003;9:589—95.

Gash DM, Gerhardt GA, Bradley LH, Wagner R, Slevin JT. GDNF
clinical trials for Parkinson’s disease: a critical human dimension.
Cell Tissue Res 2020;382:65—70.

Heiss JD, Lungu C, Hammoud DA, Herscovitch P, Ehrlich D),
Argersinger DP, et al. Trial of magnetic resonance-guided
putaminal gene therapy for advanced Parkinson’s disease. Mov
Disord 2019;34:1073—38.

Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease,
an update. ] Parkinsons Dis 2018;8:195—215.

Chmielarz P, Saarma M. Neurotrophic factors for
disease-modifying treatments of Parkinson’s disease: gaps
between basic science and clinical studies. Pharmacol Rep
2020;72:1195—217.

Kumari S, Kamiya A, Karnik SS, Rohilla S, Dubey SK, Taliyan R.
Novel gene therapy approaches for targeting neurodegenerative
disorders: focusing on delivering neurotrophic genes. Mol
Neurobiol 2025;62:386—411.

Pfeffer LK, Fischbach F, Heesen C, Friese MA. Current state and
perspectives of CAR T cell therapy in central nervous system
diseases. Brain 2025;148:723 —36.



	Introduction
	Pathogenesis and pathophysiology
	Gene-driven adaptive immunity
	Gut-brain axis
	Immune cell subsets in PD pathogenesis
	T effector cells (Teffs)

	0  CD4tnqx2b; T cells
	0  CD8tnqx2b; T cells
	Regulatory T cells (Tregs)
	B cells

	Immunotherapies
	0  tnqx3b1;-syn
	Growth factors
	CAR-Tregs

	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


