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Abstract: Neuroimmunity drives the pathophysiology of

Parkinson’s disease (PD). This disease affects both the cen-

tral and peripheral nervous systems. The immune system

is engaged through the progressive accumulation of alpha-

synuclein (α-syn), a driver of immunity and a pathological
hallmark of PD. Consequent α-syn-induced immune activa-
tion leads to neuronal damage. This leads not only to the

activation of microglia within the central nervous system,

but also to the recruitment and activation of peripheral

immune cells that infiltrate the brain and contribute to

a widespread immune response. Moreover, PD-associated

genes and risk factors have been increasingly recognized as

essential regulators of immune functions. This review sum-

marizes the current understanding of adaptive immunity

in PD and explores emerging immunomodulatory strategies

that may inform future therapeutic development.

Keywords: Parkinson’s disease; adaptive immunity; alpha-

synuclein

Introduction

Parkinson’s disease (PD) is a chronic, progressive neu-

rodegenerative disorder primarily defined by the loss of

dopaminergic neurons in the substantia nigra pars com-

pacta (SNpc) and the accumulation of α-synuclein aggre-

gates, forming Lewy bodies. While many studies have
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focused onmitochondrial dysfunction, oxidative stress, and

protein clearance deficits, growing evidence suggests that

immune dysregulation significantly contributes to disease

onset and progression (Figure 1) [1, 2]. Recent findings have

indicated both innate and adaptive immune responses in PD

[3]. T lymphocytes, both CD4+ and CD8+ T cells, have been

observed in the substantia nigra (SN) of patients with PD

and may play a direct role in neuronal injury. CD8+ T cell

infiltration has been observed early in the disease course,

even before detectable α-synuclein (α-syn) aggregation and
dopaminergic neuron loss and express cytotoxic molecules

such as granzyme A/B and IFN-γ, suggesting that adaptive
immune responses may contribute to the initiation or pro-

gression of neurodegeneration [4]. Supporting this idea, T

cells from PD patients have been shown to recognize spe-

cific α-syn-derived epitopes presented by major histocom-

patibility complex (MHC) molecules, implicating antigen-

specific adaptive immune responses in PD pathogenesis [5].

Although the precise triggers remain unclear, these findings

suggest a potential link between α-syn pathology and T-cell
activation. Immune alterations have also been reported at

the systemic level. Peripheral T and B cells in patients with

PD show clonal expansion and are skewed toward effector

and memory phenotypes, indicating that adaptive immune

responses are not confined to the central nervous sys-

tem [6]. Moreover, elevated neutrophil-to-lymphocyte ratios

have been observed years before PD diagnosis, suggesting

that immune dysregulation may occur early in the disease

course [6]. The role of B cells in PD is poorly understood

and remains unclear. Some studies have reported reduced

peripheral B-cell counts in patients with PD, although the

findings are inconsistent [1]. Evidence of IgG deposition on

dopaminergic neurons and the expression of Fcγ recep-

tors on activated microglia suggests that humoral immu-

nity may contribute to neuroinflammation. Additionally,

autoantibodies against α-syn have been detected in the

serum and cerebrospinal fluid of patients with PD, and

their levels appear to correlate with disease activity, raising

the possibility that these antibodies could serve as poten-

tial biomarkers. Together, this research suggests that the
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Figure 1: Neuroinflammation and adaptive immune response in PD. Exposure of modified and aggregated α-synuclein (α-syn) in the brain activates
microglia that secrete neurotoxic proinflammatory cytokines such as TNF-α, IL-6 and IL-1β. Modified α-syn and inflammatory mediators drain to
peripheral immune tissues to activate antigen presenting cells that lead to induction of α-syn-specific CD4+ and CD8+ T cells that differentiate to

specific effector T cells (Teffs), such as Th1, Th17, and Tc, extravasate to foci of brain inflammation, and release proinflammatory cytokines such as

IFN-γ, IL-17, and TNF-α that exacerbate microglial activation, inflammation, and neurodegeneration. These responses also induce astrocyte activation,
resulting in the production of additional inflammatory mediators including TNF-α, IL-6, and IL-1β, thereby contributing to neuronal degeneration.
Regulatory T cells (Tregs) infiltrating the brain counteract neuroinflammation by suppressing activated astrocytes through the secretion of IL-10 and

TGF-β. According to the “gut-first” hypothesis, dysbiosis of the intestinal microbiota disrupts gut metabolic activity and barrier integrity, leading to
increased levels of microbial products such as lipopolysaccharide (LPS). Elevated levels of LPS can translocate into systemic circulation, promoting

peripheral immune activation. Microbial dysbiosis and breech of the gut barrier along the gut-brain axis may contribute to α-syn misfolding and
aggregation, central inflammation via immune cell trafficking, and spreading and transmission via vagus nerve.

adaptive immune system is not merely a bystander in PD

but may actively contribute to disease development. This

review will provide a summary of classical PD mechanisms

and explore how T- and B-cell activity intersect with neu-

rodegeneration, with a focus on emerging immunomodula-

tory strategies targeting adaptive immunity.

Pathogenesis and pathophysiology

PD is a progressive neurodegenerative disorder character-

ized by the loss of dopaminergic neurons in the SNpc and

accumulation of misfolded α-syn aggregates, forming Lewy
bodies. Its pathogenesis involves interconnected mecha-

nisms, including α-syn aggregation, mitochondrial dysfunc-
tion, oxidative stress, impaired protein clearance, genetic

mutations, and neuroinflammation. α-Syn, for which its

aggregation is one of the hallmarks of PD and related synu-

cleinopathies, is a 140-amino acid protein highly expressed

in neurons, especially at synaptic terminals, where it

regulates neurotransmitter release and vesicle trafficking

[7]. Under physiological conditions, α-syn interacts with

negatively charged lipids and adopts a membrane-bound

α-helical structure [7, 8]. However, both unfolded and

membrane-bound forms can be converted into β-sheet-rich
amyloid structures, leading to oligomers, protofibrils, and

Lewy bodies [9–11]. These oligomers are particularly neu-

rotoxic and possess seeding potential that spreads misfold-

ing across brain regions, impairing membranes, including

dopaminergic vesicles and mitochondria, leading to cell

death [12, 13]. Misfolding and aggregation are mediated by

pathogenic mutations in the SNCA gene, as well as post-

translational modifications such as serine 129 phosphory-

lation, ubiquitination, nitration, and truncation [8, 14–16].
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Misfolded α-syn can spread from cell to cell, serving as

a template that induces misfolding of native α-syn and

causes synaptic dysfunction and neuronal injury, thereby

propagating the disease with progressive loss of dopamin-

ergic neurons in the SNpc and impaired motor coordina-

tion [17, 18]. Misfolded or aggregated α-syn can stimulate

microglia and peripheral monocytes with an intensity of

immune activation that varies according to their structural

conformation. This innate immune activation may subse-

quently facilitate the recruitment and engagement of adap-

tive immune responses, possibly through antigen presen-

tation and cytokine-mediated signaling [10]. Mitochondrial

dysfunction, particularly complex inhibition, leads to the

accumulation of reactive oxygen species (ROS), oxidative

damage, and neuronal apoptosis [19]. When α-syn accu-

mulates in the mitochondria, it contributes to complex I

dysfunction, impairing electron transport and ATP synthe-

sis, increasing reactive oxygen species (ROS), and oxida-

tive damage. This mitochondrial stress may amplify α-syn
pathology, forming a vicious cycle that drives neuronal

death and PD progression, further impairs mitochondrial

function, and creates a cycle of cellular stress [19, 20]. Dam-

aged mitochondria release damage-associated molecular

patterns (DAMPs), such asmitochondrial DNA (mtDNA), car-

diolipin, and cytochrome c, which activate innate immune

receptors such as toll-like receptors (TLRs) and the stim-

ulator of interferon genes (STING) pathway, particularly

in microglia [21]. These mitochondrial signals can also

prime antigen-presenting cells, such as dendritic cells and

microglia, possibly leading to the downstream activation of

adaptive immune responses.

In addition, the clearance of unwanted and damaged

proteins plays a critical role in PD pathogenesis [22]. Two

major proteostasis systems, ubiquitin-proteasome system

(UPS) and autophagy-lysosomepathway (ALP), are responsi-

ble for degrading damaged proteins [8, 22]. The UPS mainly

clears soluble misfolded proteins via ubiquitin tagging and

proteasomal guidance [23], while ALP handles insoluble

aggregates through macroautophagy, microautophagy, and

chaperone-mediated autophagy [24]. Dysfunction of either

pathway promotes toxic α-syn accumulation. Mutations

in PD-related genes, such as SNCA, LRRK2, PINK1, PRKN ,

GBA, and DJ-1, and most likely environmental exposures,

contribute to disease onset by impairing mitochondrial

homeostasis, protein degradation, and immune regulation.

Notably, mutations in SNCA, LRRK2, and PRKN have been

implicated in familial PD and linked to abnormal immune

activation and enhanced neuroinflammatory responses [25,

26]. This pathological process leads to loss of dopaminergic

neurons.

Gene-driven adaptive immunity

Variants in the glucosylceramidase beta 1 (GBA1) gene,

which encodes the lysosomal enzyme glucocerebrosidase

(GCase) and is associated with Gaucher disease (GD), a lyso-

somal storage disorder involving immune system dysfunc-

tion [27], have also been identified in PD patients, suggesting

a potential link between lysosomal dysfunction, immune

dysregulation, and PD pathogenesis [28]. GD is a recessively

inherited disease caused by GBA1 variants. Notably, GD-

naive GBA1 variant carriers are susceptible to developing

PD [29]. Several variants of GBA1 are associated with the

development of PD, including p.E326K, p.T369M, p.N370S,

and p.L444P, with a concomitant decrease in glucocere-

brosidase activity, the enzyme encoded by GBA1. Reduced

glucocerebrosidase activity diminishes lysosomal degrada-

tion of α-syn [30]. The prevalence of GBA1 variants varies

across populations; for example, p.E326K has a 1–5% fre-

quency in the European population, but is rare in Asians.

Approximately 25 % of the PD risk is attributed to genetic

variations [31, 32], and several of these genes modulate

immune responses and neuroinflammation, including auto-

somal dominant variants such as LRRK2 (PARK8), SNCA

(PARK1/PARK4), and VPS35 (PARK17), and autosomal reces-

sivemutations in genes such asDJ-1 (PARK7),PRKN (PARK2),

GBA, and PINK1 (PARK6) [33–35].

Among these, LRRK2 is one of the most significant

genetic risk factors for both familial and sporadic PD, and is

strongly associated with immune dysfunction. In addition

to its known function in microglia, LRRK2 is also found in

adaptive immune cells, such as B and T lymphocytes. These

cells regulate cytokine production, antigen processing, and

signaling pathways involved in immune responses [35, 36].

Microglial activation in PD is further driven by α-syn aggre-
gation, which engages receptors, such as TLR2, FcγRIIB, and
CD36, triggering NF-κB signaling and nucleotide-binding

oligomerization domain, leucine rich repeat and pyrin

domain containing proteins-3 (NLRP3) inflammasome acti-

vation [37]. These pathways promote the release of IL-6,

IL-1β, and tumor necrosis factor-α (TNF-α), thereby sustain-
ing chronic neuroinflammation. Additionally, α-syn bind-

ing to FcγRIIB suppresses microglial phagocytosis via Src

homology region 2 domain-containing phosphatase-1 (SHP-

1) [38, 39], and uptake of α-syn fibrils involves Fyn kinase

and CD36, amplifying IL-1β production [40]. Vacuolar pro-

tein sorting-associated protein 35 (VPS35), a critical compo-

nent of the retromer complex, plays a role in endosomal

sorting, autophagy, and mitochondrial function by sharing

pathways with LRRK2 [41]. Dysfunctional VPS35 disrupts
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autophagy-lysosomal pathways in dopaminergic neurons,

cortical neurons, and microglia, leading to α-syn accumula-
tion and impaired mitochondrial dynamics via interactions

with dynamin-1-like protein-1 (DLP1) and mitochondrial E3

ubiquitin protein ligase 1 (MUL1) [42]. DJ-1 (PARK7) protects

neurons, microglia, and astrocytes from oxidative stress by

scavenging reactive oxygen species (ROS) and stabilizing

nuclear factor erythroid 2-related factor 2 (NRF2), a key

regulator of antioxidant responses. DJ-1 deficiency results

in pro-inflammatory microglial activation and increased

TNF, IL-1β, and IL-6 release, exacerbating neurodegenera-

tion [43]. Parkin (PARK2), an E3 ubiquitin ligase encoded by

PRKN , works alongside PINK1 to facilitate the degradation

of damaged mitochondria [44, 45]. Mitochondrial depolar-

ization leads to PINK1 accumulation on the outer mem-

brane, which recruits parkin to ubiquitinate dysfunctional

proteins for degradation [46]. Overall, PD-associated genetic

mutations not only lead to mitochondrial impairment and

neuronal cell death but also contribute to chronic neuroin-

flammation and PD progression.

Gut-brain axis

The gut-brain axis, a bidirectional communication network

between the gastrointestinal (GI) system and CNS, plays a

vital role in the pathogenesis of PD [47]. Extensive research

has shown that alterations in the gut microbiota and intesti-

nal permeability (“leaky gut”) contribute to neuroinflamma-

tion and PD progression (Figure 1) [48]. Gut microbiota, one

of the most abundant and diverse microbial communities

in the human body, has been associated with numerous

diseases, including systemic inflammatory conditions. The

gut represents a complex microecosystem inhabited by var-

ious microorganisms such as bacteria, parasites, archaea,

fungi, and viruses [49]. Clinical studies have consistently

reported gut microbiota alterations, known as dysbiosis, in

patients with PD, with altered microbial profiles identified

using high-throughput sequencing techniques [50]. A key

finding in PD research is the increased abundance of bacte-

ria traditionally regarded as beneficial, such as Akkerman-

sia, Lactobacillus, and Bifidobacterium, which contribute to

maintaining gut barrier integrity by enhancing the produc-

tion of tight junction proteins [48, 51, 52]. However, dis-

ruption of the microbiome composition results in altered

metabolic activities, gut barrier dysfunction, and compro-

mised gut homeostasis [53], contributing to aberrant inflam-

matory responses that may accelerate neurodegeneration

[54, 55]. In humans, the gut microbiota is a major source of

lipopolysaccharide (LPS) [56]. LPS, an immunostimulatory

component of Gram-negative bacterial cell walls, exhibits

variable inflammatory and neurotoxic properties and can

enter systemic circulation [53]. LPS activates TLR4-mediated

inflammatory signaling in the gut, compromising intestinal

barrier function. The resulting systemic inflammation has

been shown to increase blood-brain barrier (BBB) perme-

ability, allowing pro-inflammatory mediators to enter the

CNS, disrupting Treg function, and intensifying neuroin-

flammation [57–59]. The “gut-first” hypothesis, proposed by

Braak and colleagues, suggests that α-syn aggregates may

originate in the enteric nervous system (ENS) and propagate

to the CNS via the vagus nerve [60–62]. Additionally, studies

have shown that gut luminal signals, particularly via gluta-

mate metabolism, can be transmitted rapidly to glutamater-

gic neurons in the hippocampus through vagal pathways

[63], suggesting a highly sensitive gut–brain communica-

tion mechanism. Braak’s theory suggests that gut dysbio-

sis, chronic inflammation, and microbial imbalance in the

ENS may trigger α-syn misfolding, initiating PD pathology

[64]. Microbial dysbiosis and chronic intestinal inflamma-

tion may contribute to α-syn misfolding in the gut. The

innate immune system, including gut-residentmacrophages

and enteric endothelial cells, responds by releasing pro-

inflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α), which
may enhance α-syn aggregation and propagation to the CNS
[65]. Disruption of the BBB, potentially triggered by periph-

eral immune activation and microbial inflammation in the

gut, facilitates the infiltration of adaptive immune cells such

as T and B lymphocytes into the central nervous system

[66], contributing to sustained neuroinflammation and the

progression of Parkinson’s disease.

Immune cell subsets in PD

pathogenesis

T effector cells (Teffs)

While T cells are sporadic in the CNS of healthy subjects,

mostly in the choroid plexus or CSF, most T cells found in

the parenchyma result from the infiltration of activated T

cells from the periphery [66]. Both CD4+ and CD8+ T cells

have been reported to be involved in neurodegeneration in

patients with PD [67]. Additionally, increased frequencies of

T cells with Teff phenotypes in patients with PD have been

correlated with motor function severity [68]. The migration

of peripheral T cells into the CNS occurs after T cell lig-

ands on endothelial cells bridge integrins and selectins on T

cells that capture lymphocytes and allow extravasation into

the brain and injurious foci (Figure 1) [66]. Both CD4+ and

CD8+ T cells extravasate into the CNS through the interac-

tion of α4β1-integrin with activated T cells and vascular cell
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adhesion protein 1 (VCAM-1) on capillary endothelial cells

[69]. CD4+ and CD8+ T cells that are permitted to

extravasate typically have Teff phenotypes, defined by the

function and cytokines expressed upon reactivation in the

CNS. Reactivation occurs when the T-cell receptor (TCR)

recognizes its cognate antigen presented by MHC I or II on

APCs such asmicroglia ormacrophages. This induces Teff to

initiate its defensive effector function, that is, the expression

of cytokines or killer programs. In turn, Teffshavedirect and

indirect associations with neurons, astrocytes, and other

microglia within the CNS, with varied responses depending

on Teff type.

CD4+ T cells

In PD, CD4+ Teffs play a critical role in the adaptive

immune response in the CNS by promoting neurodegenera-

tion through proinflammatory cytokines and chemokines as

well as the Fas/FasL pathway [70]. Inflammatory conditions

are permissive to CD4+T cellmigration through the BBB [71,

72]. Once inside, activated CD4+ Teffs become re-activated

bymicrobial or modified self-antigens released from degen-

erating neurons that have been processed and presented

by microglia or other APCs [73]. Modified-self antigens are

implicated in the induction of autoreactive CD4+ Teffs

responses in PDandPDmodels, includingnitrated andphos-

phorylated α-syn [74]. In one report, most CD4+ Teffs from

patients with PDwere reactive to phosphorylated α-syn and
exhibited a rare phenotype that primarily expressed IFN-γ
and IL-5 [5]. In mice treated with MPTP, peripheral T cells

respond to nitrated α-syn but not native α-syn, and polar-

ization of CD4+ Teffs from the immune system to nitratedα-
syn yields type-1 T helper (Th1) Teffs that express IFN-γ and
type-17 T helper (Th17) Teffs that express IL-17 [75]. Adoptive

transfer of either Th1 or Th17 Teffs to MPTP mice exac-

erbates MPTP-induced microglial activation and dopamin-

ergic lesions; however, Th17 Teffs significantly enhanced

these effects. Interestingly, a meta-analysis of clinical stud-

ies confirmed the association between elevated Th17 Teffs

levels and PD and found that the percentage of Th17 cells

correlated with motor impairments in patients [76]. Teffs

interactions with microglia and astrocytes, particularly via

pro-inflammatory cytokines, exacerbate the inflammatory

cascade [77, 78]. Thus, targeting the inflammatory pathways

mediated by CD4+ T cells is a potential therapeutic strategy

for slowing PD progression [79, 80].

CD8+ T cells

CD8+ T cells play a significant role in CNS through

their involvement in adaptive immunity and impact on

neurological conditions. The primary responsibility of

CD8+ T cells in the periphery and CNS is to kill infected

cells by recognizing antigens presented byMHC Imolecules.

Upon encountering antigens presented by MHC I, CD8+ T

cells differentiate into cytotoxic effector T cells (Tc), which

are capable of releasing cytokines, such as TNF-α and IFN-

γ, and cytotoxic molecules, such as granzymes and per-

forins, to induce apoptosis of target cells [81]. In the brain

and elsewhere, CD8+ Tc cells are responsible for provid-

ing defense against virus-infected cells by attacking and

destroying viral-infected cells such as neurons [82]. This

cytotoxic function can also contribute to neuroinflamma-

tion and neuronal damage in conditions such as traumatic

brain injury (TBI) and ischemic stroke, where CD8+ T cells

infiltrate damaged brain tissue, exacerbating neuronal cell

death [83–85].

In PD, CD8+ Teffs are found in both peripheral blood

and cerebrospinal fluid, indicating their activation and pos-

sible involvement in the progression of these disorders [84,

86]. Interestingly, in patients with PD and animal models,

both CD4+ and CD8+ T cells infiltrate the brain,with studies

reporting a reduced CD4+/CD8+ ratio, suggesting a relative

predominance of cytotoxic CD8+ T cells in neurodegenera-

tive regions. In the brains of patients with early PD, robust

infiltration of CD8+ T cells was found with little change in

CD4+ T cells; however, later stages of PD presented milder

infiltrates of CD8+ T cells, suggesting the potential con-

tribution of CD8+ Teffs to pathological changes in PD [4].

Although, whether CD8+ Teffs recognize cognate antigen in

PD is uncertain, the increased clonality of the TCR reper-

toire in PD patients suggests that antigen-specific CD8+
Teff responses triggered by CNS antigens lead to increased

release of proinflammatory mediators, such as IFN-γ and

TNF-α, as well as perforins and granzymes that contribute
to chronic neuroinflammation and neurodegeneration [87].

However, whether CD8+ T-cell clonality is due to PD pro-

cesses or from a constricting repertoire due to aging is

unknown [88]. Additionally, in the context of neuroinflam-

mation, CD8+ T cells have been shown to shift immune

responses, potentially leading to demyelination and neuro-

logical impairments [89]. Thus, the presence of clonal CD8+
T cells, given their cytotoxic capabilities, underscore the

possible role of CD8+ T cells in dopaminergic neurodegen-

eration and highlight their potential as therapeutic targets,

however, their role in PD etiology and disease progression

has yet to be determined.

Regulatory T cells (Tregs)

Tregs play a crucial role in maintaining immune homeosta-

sis and preventing chronic inflammation [79, 90]. Patients
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with PD exhibit reduced Treg activity compared to controls

and show increased numbers of CD4+ Teffs that correlate

with clinical motor scores. Exposure to immunizing levels

of nitrated α-syn also reduces Treg activity in preclinical

models [74]. Therefore, strategies to enhance Treg function

are being explored to mitigate microglial reactivity, atten-

uate neuroinflammation, and enhance neuroprotection.

Tregs have been shown to suppress pro-inflammatory α-
syn activated microglia by expression of anti-inflammatory

cytokines and by inducing microglia apoptosis via Fas/Fas

ligand interactions [91, 92]. Tregs also reduce ROS produc-

tion by activatedmicroglia, and of considerable importance,

Tregs also suppress activated Teffs and Teffs induction [93].

Moreover, Tregs have been shown to increase expression

of glial cell derived neurotrofic factor (GDNF) and brain

derived neurotrophic factor (BDNF) by astrocytes in ani-

mal models of PD [70, 92]. Immune modulatory agents such

as granulocyte-macrophage colony-stimulating factor (GM-

CSF) show potential to increase Treg numbers and func-

tionality, thereby reducing neuroinflammatory processes

and protecting neuronal integrity [79, 90, 94]. Phase 1 clin-

ical trials of human GM-CSF (sargramostim, Leukine®) in

PD patients demonstrated GM-CSF was safe and tolerated

for up to 36 months, increased Treg frequencies and func-

tion, increased neuronal activity in cortical motor areas,

and improved Unified PD Rating Scale part III (UPDRS III)

scores [39, 80, 95]. Importantly, after 36 months of treat-

ment and 1 month washout period, UPDRS III scores did

not significantly increase from pre-treatment scores, in con-

trast to historical controls [80, 96]. Phase II clinical trials to

assess the efficacy of GM-CSF are ongoing. Anti-CD3 mon-

oclonal antibodies also promote Treg induction and func-

tion, which in turn induce apoptosis of activated Teffs and

microglia via Fas/FasL interactions [79, 92], thus promot-

ing non-mitogenic anti-CD3 antibodies as therapeutic strate-

gies for inflammatory-mediated neurodegenerative disor-

ders [97, 98]. Vasoactive intestinal peptide (VIP) and VIP

receptor-2 (VIPR2) agonists also increase Treg frequency

and function, and these agents and their induced Tregs are

anti-inflammatory and neuroprotective in animalmodels of

PD [99, 100]. Finally, treatment with low-dose IL-2 increases

Treg number and function, and adoptive transfer of IL-2-

inducedTregs is neuroprotective along thenigrostriatal axis

in MPTP-treated mice, thus providing another promising

Treg-inducing strategy for PD [101].

The primary role of Tregs is to maintain immuno-

logical tolerance, particularly in the context of controlling

ongoing immune responses to prevent pathological out-

comes. The main Treg attribute is the ability to attenuate

inflammatory responses with anti-inflammatory cytokines

such as IL-10 and TGF-β. Similarly, Tregs in the CNS play a

critical role in maintaining immune homeostasis and con-

trolling inflammation [102]. Brain-resident Tregs, character-

ized by markers such as CD69, are present in the CNS and

help modulate neuroinflammatory responses by releasing

anti-inflammatory molecules, such as IL-10 and amphireg-

ulin, which inhibit astrogliosis and promote neuroprotec-

tion [70]. Under neuroinflammatory conditions, such as

those found in multiple sclerosis and stroke, Tregs suppress

autoreactive T cell responses and reduce damage by pro-

moting remyelination and aiding in white matter repair

[70]. In adaptive immunity, Treg interaction with CNS anti-

gens leads to the release of anti-inflammatory factors that

transformmicroglia towards a more neurotrophic M2 state,

ultimately reducing the overall inflammatory response.

Research suggests that peripheral Tregs might also con-

tribute to CNS protection by not only mitigating systemic

inflammation that ultimately influences CNS homeostasis

but also by migrating to sites of neuronal injury and inflam-

mation [103–105]. Notably, peripheral Tregs in patients with

PD have diminished inhibitory activity compared to age-

and environment-matched caregivers [68]. While the thera-

peutic potential of Tregs is promising in neurodegenerative

disorders, such as PD and [70, 74, 79, 80], distinguishing the

specific roles of circulating and resident Tregs remains a

major challenge [102].

B cells

In neurodegenerative diseases, B cells can contribute to CNS

pathology through antibody production and antigen pre-

sentation, thus intensifying adaptive and innate functional

capabilities [106]. B cells exacerbate neurodegeneration by

releasing neurotoxic molecules, such as GM-CSF, IL-6, and

TNF-α, which are injurious to neuronal structures and pro-
mote local inflammation in afflicted brain regions. Addi-

tionally, B cells support T cell activation through antigen

presentation, although diminished from that of professional

APCs such as DCs, microglia, and monocytes, sufficient pre-

sentation is provided to reinforce T cell-mediated inflam-

matory processes within the CNS and accelerate disease

progression. While there is a general paucity of reports con-

cerning B cells in PD [107], diminished levels of peripheral

B cells have been documented in patients with PD and in

some α-syn over-expression models [108]. Recently, single-

cell RNA analyses of peripheral B cells frompatientswith PD

showed evidence of decreased naïve B cells with increased

levels and clonal expansion of memory B cells compared

to age-matched controls [109]. As in most immune cells of

PD patients, LRRK2 expression is upregulated in B cells,

suggesting a role of activated immune cells in PD patients
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[2]. Moreover, increased activity in stimulated B cells from

LRRK2 knockout mice suggested a regulatory function for

LRRK2 [110]. Although direct evidence of B-cell infiltration

of neurodegenerative foci in PD has yet to be reported,

sufficient evidence of antibodies toα-synuclein in blood and
CSF abound [107, 111, 112], and IgGdepositionhas been found

on dopaminergic neurons and associated with Lewy bodies

in PD patients [1]. Moreover, antibodies against nitrated

α-synuclein, but not native α-synuclein, are produced in

mice intoxicated with MPTP [113]. Interestingly, stereotactic

injection of IgG from patients with PD into the rat substan-

tia nigra yielded significant increases in dopaminergic loss

compared with rats treated with control IgG [114]. Though

preliminary in scope, evidence is suggestive for putative

roles for B cells or anti-CNS antibodies in PD.

Immunotherapies

Like many other neurodegenerative disorders, interven-

tional treatment of PD presents a significant challenge, due

to the lack of therapies that can modify or arrest disease

progression. Standard treatments, such as levodopa, replen-

ish dopamine levels that address symptom management

but do not address underlying pathological processes [90,

115]. Recent insights into the role of the immune system in

PD have propelled the development of novel therapies that

target immune pathways, thereby offering new hope for

disease modification.

𝛂-syn
Both active and passive immunotherapeutic strategies have

been developed to reduce the burden of α-syn aggre-

gates [116]. Different approaches include (1) silencing the

SNCA gene using small hairpin RNA and antisense oligonu-

cleotides; (2) enhancing proteasomal activity and autophagy

pathways using molecules such as the deubiquitinase

inhibitor 1U1 and autophagy/lysosomal regulating tran-

scription factors such as transcription factor EB (TFEB);

and (3) inhibiting α-syn misfolding and aggregation [116].

Active immunization approaches involve vaccines designed

to stimulate the immune system to produce antibodies

against α-syn [116, 117]. Vaccines, such as AFFITOPE PD01A

and PD03A, are mimotopes engineered to target specific

epitopes of α-synuclein that promote α-syn clearance from
the CNS [115–118]. Vaccines can recognize and neutralize

α-synuclein aggregates, potentially halting disease progres-
sion. Clinical trials are ongoing to evaluate the efficacy and

safety [119].

In contrast, passive immunotherapy uses monoclonal

antibodies (mAbs) that are parenterally administered and

target native or modified α-syn [116, 117]. Prasinezumab

(PRX002) is a prominent mAb that recognizes aa118-126 and

was designed to bind and neutralize extracellular α-syn
aggregates and prevent dissemination and toxicity [90, 115,

117, 118]. These and other mAbs have shown promise in

preclinical models and are currently undergoing clinical

trials to assess their therapeutic potential in humans [119].

Recently, antigen-recognizing antibody fragments such as

intrabodies have shown potential for reducing the levels

of misfolded proteins and providing neuroprotection [118].

An intrabody is a single-chain, antibody variable region

fragment (scFv) that is designed to be expressed intracel-

lularly and targets intracellular proteins. Thus, anti-α-syn
intrabodies targetα-syn intracellular aggregation and guide
α-syn complexes toward proteasomal degradation.

Growth factors

Gene therapy offers a promising avenue for delivering neu-

rotrophic factors and genes directly to the affected brain

regions using viral vectors to support the survival and func-

tion of dopaminergic neurons [115, 117]. An early clinical

trial of direct intraputamendelivery of glial cell line-derived

neurotrophic factor (GDNF) showed improved UPDRS III

scores and 18F-dopamine storage [120]. This study provides

the basis for several successive GDNF trials; however, these

have yielded inconsistent results, and alternative delivery

methods have been explored [121]. A clinical trial of the

AAV2-GDNF construct delivered to the putamen showed no

improvement in the post-administration UPDRS III scores

after 18 months; however, 18F-DOPA uptake improved [122].

Thus, although repeated trials have exhibited inconsistent

results, the use of GDNF in animal models and clinical

trials remains an active area of investigation. Other neu-

rotrophic factors under clinical evaluation with varying

degrees of success using native or modified protein formu-

lations or vector-formulated constructs include neurturin

(NRTN), brain-derived neurotrophic factor (BDNF), armetin

(ARTN), persephin (PSNP), cerebral dopamine neurotrophic

factor (CDNF), mesencephalic astrocyte-derived neural fac-

tor (MANF), andnuclear receptor-related 1 protein orNR4A2

(Nurr1), a transcription factor for nuclear receptors that reg-

ulates dopaminergic neurondevelopment andmaintenance

[123–125].

CAR-Tregs

Based on strategies for cancer treatment, chimeric antigen

receptor (CAR) T-cell platforms are being explored for neu-

rodegenerative diseases [126]. CAR T cells utilize antigen

recognition regions from variable domains of antibodies
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directed at the target of choice. The cDNA encoding the vari-

able regions is constructed to encode a single-chain peptide

of variable fragments (scFv) that retain antigen reactivity.

The expression of this construct results in transmembrane

orientation of an external antigen recognition site. Ligation

of the cognate antigen and antigen recognition site initi-

ates the appropriate signal cascade and interventional T-cell

program. Similar to cancer therapeutics, several CAR T cell

strategies utilize cytotoxic T cell platforms to initiate the

killing of targets such as glial tumors or autoreactive B and

T cells. However, this approach has several limitations for

neurodegeneration, including the introduction of unregu-

lated autoreactive cytotoxic and pro-inflammatory T-cells,

which may potentially exacerbate neuroinflammation and

disease progression. For neurodegenerative disorders with

inflammatory components, a contrasting approach utilizes

CAR-Tregs with CARs that target misfolded proteins asso-

ciated with respective disorders, such as amyloid β (Aβ)
for Alzheimer’s disease, superoxide dismutase 1 (SOD1) or

Tar DNA binding protein-43 (TDP-43) for amyotrophic lat-

eral sclerosis (ALS). For PD and synucleinopathies, mod-

ified proteins such as nitrated or phosphorylated α-syn
could provide an appropriate recognition target for CAR.

Strategies for this CAR-Treg platform would isolate patient

Tregs, delete endogenous TCRs, transduce the CAR construct

encoding the anti-modified α-syn scFv protein, and expand
CAR-Tregs to be adoptively transferred to the patient. The

underlying rationale for this strategy is based on the trans-

formative nature of Tregs, which attenuate microglial- and

Teff-mediated neuroinflammation, diminishes α-syn mis-

folding and aggregation, and provides neuroprotection to

dopaminergic neurons along the nigrostriatal axis.

Concluding Remarks

Abundant evidence from both human and animal studies

supports the important role of the innate and adaptive

immune systems in the pathogenesis and progression of

PD. These immune responses change over time during dis-

ease progression. α-Syn, a central feature of PD pathology,

not only forms toxic aggregates but also plays an active

role in triggering and sustaining immune activation. It

stimulates both innate and adaptive immune responses,

promotes neuroinflammation, and contributes to neuronal

damage. Because α-synuclein is recognized as an anti-

gen by both microglia and peripheral monocytes, innate

immune responses can be initiated in both the brain and the

periphery. In addition to chronic inflammationmediated by

microglia in the brain, changes in immune cell populations

have also been observed in the peripheral blood of patients

with PD, involving both innate and adaptive immune cells.

Peripheral immune cells, such as T and B lymphocytes, have

been shown to infiltrate the brain, further contributing to

inflammation in the CNS. It is possible that an initial innate

immune response to modified α-syn triggers a more sus-

tained adaptive immune reaction that spreads damage to

other parts of the brain. T cells require antigen presenta-

tion via MHC molecules, whereas B cells recognize anti-

gens through their surface receptors. Once activated, adap-

tive immune cells may further promote inflammation and

neurodegeneration. In the future, tracking inflammatory

changes over time, along with peripheral immune profil-

ing, microbiome analysis, α-syn measurements, and imag-

ing, may help identify useful immune-based biomarkers for

predicting disease risk and progression. PD is a complex

disease that includes themultiple genetic variants, gut-brain

interactions, immune cell changes, and clinical symptoms.

A better understanding of how specific antigens activate

the immune system, how immune cells change over time,

and how the interaction between the brain and periph-

eral immune systems is essential for developing effective

immunotherapies and identifying reliable biomarkers for

PD treatment.
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