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Abstract: Cannabis (marijuana) is a leafy plant that has

medical, recreational, and other uses. Cannabis is socially

accepted and widely used throughout the United States.

Though cannabis use is increasingly gaining popularity,

studies detail the deleterious effects of chronic cannabis

smoking on mental health, as well as the immunosuppres-

sive properties of cannabinoids. Additionally, oral dysbio-

sis induced by cannabis smoking serves as a novel cat-

alyst for neurological abnormalities, potentially possible

throughmicrobial translocation via the oral-brain axis. This

review summarizes the effects and link of smoking cannabis

on neurological abnormalities, immunity, and oral micro-

biome.
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Introduction

Cannabis sativa (cannabis), commonly knownasmarijuana,

is a leafy flowering plant that has long been cultivated in

Central Asia [1]. Cannabis was utilized by Central Asians

for dietary needs, such as a source of food, fiber, and oil,

as well as for religious, medicinal, and recreational pur-

poses [2]. Present-day, cannabis is commonly used medic-

inally and recreationally. Notably, cannabis use disorder

(CUD) is also common. CUD is characterized by symp-

toms including excessive cannabis consumption, unsuc-

cessful attempts to cut down or control use, continued

use despite social or interpersonal issues, and tolerance

or withdrawal symptoms [3]. The CUD rate in the United

States more than doubled from 4.1 % between 2001 and

2002 to 9.5 % between 2012 and 2013 [4]. This stark increase

in CUD coincides with more lenient cannabis legislation.

In 2012, citizens of Colorado and Washington State voted

to legalize the recreational use of cannabis. Today, 24

states and the District of Columbia have fully legalized

cannabis, while many others have approved medicinal

cannabis use and/or decriminalized possession of cannabis

in small amounts [5]. This continued shift toward fully

legalizing cannabis throughout the United States is lead-

ing to an increased prevalence of cannabis users [6].

With increased legalization, there is more opportunity for

chronic cannabis abuse, especially when users are exposed

to cannabis in their adolescence [7]. It is well-documented

that acute cannabis use causes changes in neural activity

and psychological behaviors [8–10]. Although the effects

of cannabis use have been widely studied and reported,

there are still conflicting views in the literature regard-

ing chronic cannabis exposure. The beneficial and detri-

mental effects are highly debated throughout the medi-

cal and scientific community. In this review, we summa-

rized current studies related to cannabis smoking, immu-

nity, oral microbiome, and central nervous system (CNS)

abnormalities.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/nipt-2024-0012
mailto:jianw@musc.edu


184 — Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders

Tetrahydrocannabinol (THC) is the

primary psychoactive component in

cannabis

Cannabis contains over 500 compounds, with over 60 being

psychoactive cannabinoids [11]. Although many cannabi-

noids have now been identified, there are two main chemi-

cal constituents: tetrahydrocannabinol (THC) and cannabid-

iol (CBD). THC is the primary psychoactive component of

cannabis, while CBD is the primary non-psychoactive com-

ponent [12]. Evidence confirms that THC influences both

immune and neural responses [13]. The effects CBD has on

the CNS, however, are more elusive. CBD has well-known

anti-inflammatory and neuroprotective properties [14]. In

fact, a drug comprised of CBD is now an FDA-approved

treatment for two rare forms of epilepsy [15]. Alternatively,

CBD can increase cytokine production under certain con-

ditions and cause lipopolysaccharide (LPS)-induced pul-

monary inflammation in vivo [16, 17]. In humans, side effects

of CBD use include liver andmale reproductive dysfunction

[18]. Further research is necessary to fully understand the

immunological effects of CBD. For this review, we will focus

on the immunologic effects of THC.

THC exerts its effects by interacting with specific endo-

cannabinoid system (ECS) endogenous cannabinoid (CB)

receptors, CB1 and CB2. The ECS plays a central role in

CNS development, synaptic plasticity, and both endoge-

nous and exogenous challenges to the neuromodulatory

system [19]. These proteins have been purified and shown to

be G-protein-coupled 7-transmembrane receptors (GPCRs),

which typically modulate neuronal activity by affecting sec-

ond messengers (e.g., adenylate cyclase) [20, 21]. The CB1

receptor is considered to be the most abundant GPCR in the

brain; the high distribution of the CB1 receptor in neurons

accounts for themajority of cannabis-associated behavioral

actions [22]. CB1 receptor signaling activity on neuronal

membranes contributes to a fine-tuned control of synap-

tic efficacy and plasticity [23]. Meanwhile, the CB2 recep-

tor is found predominantly in cells in the immune system.

CB2 is most prevalent in macrophages, though it is also

found at lower levels in the CNS, with abundant expression

in microglial cells and astrocytes [24–26]. Microglia have

known involvement in the maturation of the brain’s neo-

cortex region, which plays a role in learning and memory

[27]. In mice, prenatal THC exposure (PTE) caused alter-

ations in microglia function that lasted into young adult-

hood, which affected the overall development of the neo-

cortex in young adults. In addition, PTE was found to have

long-lasting effects on the overall brain, olfactory bulb,

and diencephalon volume [28]. Studies have shown that

THC inhibits CB1/CB2 second messengers cyclic-adenosine

monophosphate (cAMP) in a reversible manner, as well as

adenylate cyclase activity via GPCR activity both in vitro and

in mice [29, 30]. These findings indicate potential neuronal

signaling pathways that are affected by THC exposure and

warrant further research into THC effects on downstream

signaling of cAMP and adenylate cyclase activity.

Studies suggest THC may also be involved with ion

transport through interactions with transient receptor

potential (TRP) channels [31]. TRPs consist of transmem-

brane proteins that respond to various chemical and phys-

ical stimuli [32]. TRPs are implicated in physiologic and

pathophysiologic conditions in the CNS and have been con-

nected to neurodegenerative diseases such as Alzheimer’s

disease and Parkinson’s disease [33]. THC was shown to be

a functional agonist at the following TRP subsets in rats:

TRPV2, TRPV3, TRPV4, and TRPM8 [34]. THC was not shown

to influence TRPV1, however, which has analgesic effects

[35]. THC interactingwith TRPV2, TRPV3, TRPV4, and TRPM8

may contribute to the adverse effects of cannabis.

Chronic cannabis smoking

negatively impacts mental health

The adverse effects of cannabis have been summarized

in several reviews [36–40]. Cannabis users have reported

biphasic psychological effects of THC: they may involve

either euphoria and relaxation or dysphoria and anxiety,

the outcome of which principally depends on the dose level

[41, 42]. Frequent users showed blunted psychotomimetic

effects, perceptual alteration, cognitive impairment, anx-

iogenesis, and cortisol increase [8]. When challenged with

acute psychosocial stress, lower doses of THC were asso-

ciated with euphoria and relaxation while higher dosages

correlated with increased negative psychological responses

[43]. Additional adverse effects of chronic cannabis use

include negative impacts on mental health and promotion

of psychosis.

Routine cannabis use is associated with an increased

risk of anxiety and depression [44], though causality has not

been established. Cannabis exacerbates the development of

schizophrenia, especially among people who have a genetic

vulnerability, and is associated with other psychoses [45].

It has also been previously reported that the inhalation

of THC increases striatal dopamine, which is thought to

be responsible for psychotic symptoms [46, 47]. Further-

more, high-frequency and high-potency cannabis are inde-

pendent factors that lead to a significantly higher risk of
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psychosis [48, 49]. Intravenous administration of THC may

result in psychotic symptoms in a dose-dependent manner

[41]. Likewise, the age of onset of cannabis usage may also

impact the occurrence of psychosis. Early onset of psychosis

was found to be potentially age-dependent, where cannabis

abuse before the age of 15 correlated with a higher risk

of experiencing an early psychotic episode [50]. There is

a strong association between cannabis use and the risk

of psychosis for those who start using cannabis in early

adolescence. This may be because the brain developmental

processes at this stage increases sensitivity to cannabis [48,

51]. Although studies suggest some populations benefit from

using cannabis [52, 53], the negative short and long-term

effects of cannabis use on mental health cannot be ignored.

Moreover, the risks of cannabis use are related to the extent

of usage, drug potency, age of exposure, and several other

factors [54].

Furthermore, serotonin receptor 1b (5-HTR1B) expres-

sion was found to be upregulated with short-term usage of

cannabis, but long-term cannabis abuse resulted in signifi-

cant 5-HTR1B downregulation and behavioral changes [55].

These findings further indicate the frequency of cannabis

use as a risk factor in the development of psychoses symp-

toms. In addition, polymorphisms in 5-HTR1Bwere found to

be associated with the risk of schizophrenia development

[56], indicating that cannabis use may also exacerbate psy-

chosis symptoms in predisposed individuals. Further stud-

ies into the potential gene regulatory effects of cannabis are

warranted.

Cannabinoids are

immunosuppressive

At the cellular level, cannabis exhibits immunosuppressive

activity on several different immune cell types. Cannabi-

noids inhibited cytotoxic T lymphocytes (CTLs) by sup-

pressing the cytotoxic activity [57] and lymphocyte matu-

ration and differentiation [58]. Phytocannabinoids inhib-

ited monocyte migration in isolated cells from cannabis

users and expressed CB1 expression in monocytes [59].

Furthermore, cannabinoid receptor activation selectively

inhibited the release of angiogenic factors from human

lung macrophages [60], which could be explained by their

reduced migratory function. Treatment of murine peri-

toneal macrophages with cannabis extracts has been shown

to lead to impaired oxidative burst in response to LPS,which

is characterized by down-regulated nitric oxide production

and reduced levels of COX-2 and IL-1β [61]. The reduction of
COX-2, cytokine production, and phagocytosis may account

for impaired antimicrobial activity in alveolarmacrophages

from marijuana smokers in response to Staphylococcus

aureus [62]. In this review, we summarize and discuss the

immunosuppressive effects of THC.

THC can decrease the number of splenic dendritic cells

(DCs), and alter the function of DCs by inhibiting MHC-II

expression [63]. Consistently, THC is immunosuppressive

and impairs host immune response to bacterial and viral

infections. THC significantly inhibits natural killer (NK)

cytotoxic activity, mediated by the CB1 and CB2 receptors

[64]. Suppression of NK function was dependent on the

concentration and duration of THC treatment [57, 65]. THC

has also been shown to inhibit proliferation and induce

apoptosis of other lymphocyte cell populations. Mice that

received THC had significantly reduced proliferation of

splenocytes following in vitro analysis of stimulating cells

with anti-CD3 monoclonal antibody (mAb), Concanavalin

A (ConA), and LPS in vitro [66]. In the same study, thymo-

cytes, naive and activated splenocytes exposed to 10 mM

or 20 mM of THC had significantly increased apoptosis in a

dose-dependent manner [66]. Furthermore, THC decreased

Bcl-2 and increased caspase-1 activity in naive and LPS-

activated macrophages isolated from mouse splenocytes

[67, 68]. Because THC and other cannabinoids induce apop-

tosis, inhibit cell proliferation, and suppress cytokine pro-

duction, they are identified as anti-inflammatory molecules

[69]. It is important to note, however, that patients with

highly dysfunctional inflammatory activation (e.g., multiple

sclerosis) may fail to exhibit the immunosuppressive effects

of cannabis [70]. Outside of these conditions, the immuno-

suppressive effects of cannabis can decrease the robustness

of the immune system.

The immunosuppressive effects of cannabinoids may

lead to compromised immunologic competence in the res-

piratory system of cannabis smokers. This is indicated by

an increased rate of respiratory infections and pneumo-

nia [71, 72] and increased susceptibility to infection and

poor outcomes of COVID-19 [73]. Cannabinoid-altered immu-

nity depends on the duration of use; within the injured

tissues, monocyte inflammatory responses were inhib-

ited more extensively in individuals with chronic expo-

sure to cannabis compared to short-term users or non-

users [59]. Previous studies have demonstrated that THC

treatment shifts the protective Th1 response to a non-

protective Th2 response [74–76]. For example, Legionella

pneumophila infection of mice induced IL-1, IL-12, and IFN-

γ pro-inflammatory cytokines and Th1 immune response,

whereas THC treatment prior to the infection suppressed

immunity and early-stage IFN-γ, IL-12, and IL-12 receptor

β2 responses during L. pneumophila infection [77]. More
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research is required to determine if the immunological sup-

pression associated with chronic cannabis exposure can be

reversed with cannabis extinction. Ultimately, the outcome

of cannabis-induced inhibition of myeloid cell functionmay

be an enhanced susceptibility to infectious disease and can-

cer in cannabis users.

The cytokine response to THC may
contribute to immunosuppression

Cytokines can be a double-edged sword that promote

antimicrobial defenses against infectionswhile accelerating

pathogenesis [78]. In response to THC, macrophages altered

the cytokine network, leading to a shift in the Th1/Th2

cytokine profile [79]. The anti-inflammatory effect of THC

and other cannabinoids suggests that cannabinoids might

be useful in mitigating the symptoms of autoimmunity and

chronic inflammatory diseases [80, 81]. However, some stud-

ies have shown contradictory results. For example, one

study showed that individuals with cannabis use disorder

had an impaired oxidative balance and elevated levels of

pro-inflammatory cytokine, including IL-1β, IL-6, IL-8, and
TNF-α [82]. Therefore, the dosage, duration, and compo-

nents (THC vs. CBD) of cannabis usage may lead to varied

thresholds in response to cannabinoids, which may explain

some of the contradictory results of cannabinoid-altered

immune response [83]. Unfortunately, it is difficult to clin-

ically determine the extent or longevity of the immunosup-

pression induced by cannabis and its consequences. This

challenge is primarily due to multiple confounders, such

as cannabis users are likely to be multiple drug users (e.g.,

tobacco smoking, alcohol abuse). The effects of cannabis use

on cytokine production and concurrent immune response

warrant further studies.

Smoking cannabinoids induces oral

dysbiosis

The oral microbiome is one of the many microbiomes

in the human body and can influence health and dis-

ease. It is made up of expansive populations of bacteria,

viruses, fungi, and other microbes that colonize surfaces

in the oral cavity, including the gingiva, teeth, cheeks, and

tongue [84]. Under homeostatic conditions, microbes com-

pete for resources [85], and this competition limits the

growth of opportunistic and pathogenic microbes, low-

ering the chances of infection and encouraging a mutu-

alistic relationship with healthy hosts [86]. Additional

protection is provided by the oral epithelium, such as the

gingiva, which serves as a selectively permeable membrane

that prevents microbes and their metabolites from entering

the bloodstream [87]. However, external factors, such as

smoking, can cause a deviation from the typical resident

oral microbes. This shift, known as oral dysbiosis, leads

to increased pathogenic bacteria, biofilm formation, and

host systemic responses [88]. Overall, increased pathogenic

bacteria and worsened systemic host response can damage

the epithelium, thus allowing microbes and their metabo-

lites to enter systemic circulation. Smoking cannabis causes

deviations from homeostasis that negatively impact the oral

environment (Figure 1).

Smoking is the primary method for using cannabis

[89]. Here, the smoking category does not include vaping.

While vaping is becoming increasingly common, there is

not yet enough data to comment on how the oral micro-

biome is affected by cannabis vaping exclusively. It is

known, however, that smoking cannabis can change the oral

environment. Cannabis users tend to show compromised

oral health, with increased incidences of dental caries and

periodontal diseases, increased rates of leukoedema, and

increased prevalence and density of Candida albicans [82,

90]. Cannabis smoking may also act as a carcinogen. Specif-

ically, cannabis smokers developed premalignant lesions

in the oral mucosa with significantly increased decay on

the surface of the teeth when compared to a non-cannabis-

exposed control group [91]. A previous study of 903 partici-

pants from Dunedin and New Zealand found that cannabis

smoking may be a risk factor for periodontal disease that

is independent of the use of tobacco [92]. Oral bacteria

have been linked to cardiovascular diseases, pre-term birth,

and Alzheimer’s disease [93–95]. Therefore, the effects of

cannabis on the oral environment can have a systemic

impact. Based on these considerations, the oral micro-

biome that develops with cannabis use maymodulate brain

function directly through bacteria or product translocation

into the brain or indirectly through pathways yet to be

discovered.

Pathogens may use the oral-brain axis to
access the CNS

The oral microbiome has the second most abundant bac-

terial population after the intestines. The Human Oral

Microbiome Database (HOMD) currently has 774 oral bac-

terial species cataloged, with 58 % being officially named,

16 % cultivated but not yet named, and 26 % unculti-

vated [96]. These bacterial genomes are categorized into

18 phyla; Absconditabacteria (SR1), Actinobacteria, Bacte-

riodetes, Chlamydiae, Chlorobi, Chloroflexi, Euyarchaeota,
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Figure 1: Smoking cannabis can induce oral dysbiosis.

Firmicutes, Fusobacteria, Grancilibacteria (GN02), Ignav-

ibacteriae, Lentisphaerae, Proteobacteria, Saccharibacteria

(TM7), Spirochetes, Synergistetes, Tenericutes, and WPS-2

[96]. While the oral microbiota themselves have been well

characterized, more research into their influence on the

body is needed.

Several studies have confirmed the existence of the

gut-brain axis: a bidirectional communication pathway

between the microbes of the gastrointestinal (GI) tract and

the brain. Though the GI tract encompasses the mouth,

esophagus, stomach, intestines, and anus, most current lit-

erature focuses on intestinal microbiota. This focus is likely

because the intestines having the largest microbial popula-

tion at 1012 cells per milliliter of intestinal constituents [97].

Gut dysbiosis has been connected to various CNS abnormal-

ities, including migraines, depression, autism, schizophre-

nia, and Alzheimer’s disease [98, 99]. Based on these find-

ings, it is reasonable to postulate that the microbiota of

other body cavities in the GI tract can also influence CNS

abnormalities. Emerging evidence supports the existence of

an oral-brain axis, similar to the gut-brain axis, that bacteria

and/or their products can utilize to impact the CNS.

Cannabis use may influence the ability of pathogens to

access the oral-brain axis. As addressed above, a decrease

in host resistance may be the consequence of the immuno-

suppressive action of cannabinoids on the functionality of

macrophages, T lymphocytes, and NK cells. Little is known

concerning the potential of cannabinoids other than THC

and CBD to alter immune functionality. The documented

evidence that THC decreases salvation via CB1 activation

and thus alters the innate anti-microbial activity of saliva

in vivo indicates that cannabis use presents a potential risk

of decreased resistance to infections in humans [100]. Stud-

ies suggest that marijuana is a co-factor that can increase

the severity of infection by microbial agents by altering

the host resistance [101]. Therefore, the effects of cannabis

use on increased pathogen susceptibility in hosts pose an

additional increased risk to immunocompromised individ-

uals such as HIV-positive individuals [102]. Further studies

addressing the enhancement of disease in immunocompro-

mised individuals are warranted.

Smoking cannabis may lead to cannabis stomatitis,

which includes changes in the oral epithelium, leukoedema

of the buccal mucosa, and hyperkeratosis [103, 104]. Fur-

thermore, opportunistic infectious bacteria from themouth

or gut may escape to new colonization sites and mod-

ulate the local environment. For example, Arthrobacter

spp. and Massilia timonae have been isolated in patients

from blood, cerebrospinal fluid, and bone [105, 106]. In

periodontal bacterial overgrowth, increased presence of

opportunistic bacterial infections and decreased inflam-

matory signals are observed in oral epithelial cells [107]

exposed to E-cigarette aerosols. This infers that an altered

local environment may stimulate a shift in the bacterial

response. Many studies have demonstrated that the micro-

biome,microbiota-derived products, and related factors are

correlated with or modulate neuro-psychiatric and behav-

ioral disorders [108–113]. Among these, Actinomyces meyeri

has been shown to cause brain abscesses and other types

of CNS infections [114, 115], indicating that this organism
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Figure 2: Bacteria translocation into the trigeminal and olfactory nerves of people with Alzheimer’s disease.

may contribute directly to CNS damage or neurological

abnormalities.

Many nerves lead from the oronasal cavity directly to

the brain, including the trigeminal and olfactory nerves.

These nerve pathways initiate in the nasal cavity at the

olfactory neurepithelium and terminate at the central ner-

vous system, which provides a direct route for pathogenic

infection of the brain (Figure 2). Drugs can be directly trans-

ported from the nose to the brain along the olfactory and

trigeminal nerve pathways to overcome the blood-brain

barrier (BBB) [116]. The trigeminal nerve is thought to pro-

vide a route of entry for oral bacteria into the brain in

Alzheimer’s disease. Treponema pectinovorum and/or Tre-

ponema socranskii are found in trigeminal ganglia and pons

in some Alzheimer patients, indicating that oral Treponema

may infect the brain via branches of the trigeminal nerve

[117]. Another potential route is the olfactory nerve. Neisse-

ria meningitidis can pass directly from the nasopharynx to

the meninges through the olfactory nerve system [118]. In

Alzheimer’s disease, hyposmia or anosmia are considered

heralding symptoms [119, 120]. Olfactory ensheathing cells

havemany capabilities ofmacrophages to provide bacterici-

dal protection against invasion via the oronasal route. They

can migrate and engulf bacteria and can be activated to

express inducible nitric oxide synthase in response to bacte-

rial infiltration [121]. However, in some cases, compromised

olfactory ensheathing cells provide a vehicle for bacterial

transport. For example, S. aureus is able to penetrate the

immunological defense of the damaged olfactory mucosa

and infiltrate into the olfactory bulb [122].

Microbial dysbiosis negatively impacts
mental health

Previous studies suggest that LPS, produced by Gram-

negative bacteria, can disrupt the BBB. The BBB cells

respond to bacterial products (e.g., LPS) via Toll-like recep-

tors (TLRs) (e.g., TLR2, TLR3, TLR4, and TLR6) expressed

on the membranes of the constituent cells or intracellu-

lar expressed cells. LPS binding to TLR4 has been shown

to increase the permeability of leukemia inhibitor factor

from the blood to the brain [123]. Furthermore, activation

of TLR2/6 leads to downregulation of the expression of tight

junction proteins, such as occluding and claudin-5, on the

cell membrane, leading to an increased permeability of the

BBB [124]. Peripheral cytokine signals are amplified in the

CNS by local inflammatory networks, which include inflam-

matory signal transduction pathways and induction of local

cytokine production. In the brain, vagal afferents have

been shown to mediate sickness behavior in response to

peripherally administered LPS and IL-1 [125]. Additionally,

endothelial cells and perivascular macrophages respond to

circulating cytokines to induce expression of COX-2 [126,

127], which leads to neuronal injury in the setting of exci-

totoxicity [128]. After stimulation, cytokines in the brain

are primarily produced by microglia [129] but also can be

produced by oligodendrocytes [130] and astrocytes [131].

However, after acute inflammatory stimulation, increased

CNS cytokine levels may play a role in protecting the

brain. At the same time, under chronic immune activation,

microglia may provide a source of inflammatory mediators
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that influence the brain neurotransmitter system and neu-

ronal integrity [132].

LPS can induce microglia activation in vivo and in

vitro. Microglia enhance neuronal survival by releasing

trophic and anti-inflammatory factors, regulating brain

development by enforcing the programmed elimination

of neural cells. Activated microglia can produce inducible

NO synthase (iNOS), reactive oxygen and nitrogen species

(ROS/RNS), and MCP-1/CCL2, a chemokine involved in

attracting peripheral immune cells to the brain; once acti-

vated, microglia cause progressive tyrosine hydroxylase

and dopamine neuron loss [133, 134] potentially leading

to behavioral changes. LPS and typhoid vaccination have

been shown to affect basal ganglia activity that regulates

microglia activity at neuronal synapses [135, 136]. In ani-

mal studies, after acute immune activation induced by

LPS, indoleamine 2,3-dioxygenase activity is significantly

increased at 24 h and peaks at 48 h in response to LPS

administration. 2,3-dioxygenase has been proposed tomedi-

ate comorbid depression in inflammatory disorders, in

which 5-hydroxytryptamine (5-HT) and other monoamines

are released in the hypothalamus to mediate fever and sick-

ness behavior [137]. Acute administration of cytokines, such

as IFN-γ, IL-1β, TNF-α, and IL-6, increases 5-HT release in

several brain regions,which could bemediated by increased

5-HT activity in addition to the cytokine-induced changes

in 5-HT metabolism [138, 139]. Administration of inflam-

matory cytokines acutely increases 5-HT turnover in brain

regions such as the cortex and nucleus accumbens, and

these changes occur in concert with the appearance of later,

more persistent depressive-like behaviors. For these rea-

sons, LPS is an important bacterial component that can

impactmental health, especially duringmicrobial dysbiosis.

While evidence has linked inflammatory cytokines

to the development of neuropsychiatric symptoms such

as anxiety and depression, cannabis is generally thought

to have an anti-inflammatory effect. For this reason, the

inflammatory cytokine-mediated effects of cannabis on the

CNS have not been discussed.

Conclusions

Cannabis is the most widely used illicit drug in the world,

with both therapeutic and recreational effects. However,

chronic cannabis smoking can also have detrimental conse-

quences on oral health and brain function. In this review,

we have discussed the current documented effects smok-

ing cannabis has on the immune system and brain func-

tion and development, which warrants further research

into the risk factors associated with cannabis smoking. We

highlighted evidence on how smoking cannabis alters the

oral microbiome, leading to dysbiosis and increased levels

of potentially harmful bacteria. We have also explored the

possible mechanisms by which oral dysbiosis can affect

the central nervous system through the oral-brain axis

and contribute to cognitive impairment and neurodegen-

erative diseases, such as Alzheimer’s disease. Although the

negative psychological and developmental risks associated

with routine cannabis use are documented, there remains

a strong push by researchers and medical doctors for its

controlled use to treat psychosocial and inflammatory con-

ditions in patients. However, this oral microbiome-centered

connection between the brain and immune system war-

rants further immunological studies into the development

of and risks of neuronal diseases associated with cannabis

smoking.

Acknowledgment: Figures created with BioRender.com.

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions: AH, ZL, MM and XF wrote the

manuscript; SF, TS, DJ, AK and WJ revised the manuscript.

All authors have accepted responsibility for the entire con-

tent of this manuscript and approved its submission.

Competing interests: The authors state no conflict of

interest.

Research funding: This work was supported by grants from

the National Institute on Drug Abuse R01DA045596 (Fit-

ting), R03DA057164 (Jiang), R01DA055523 (Fitting & Jiang),

the Medical Research Service at the Ralph H. Johnson VA

Medical Center (merit grant VA CSRD MERIT I01 CX-002422,

Jiang), NIH National Institute of General Medical Sciences

R25GM072643 (Catrina Robinson).

Data availability: Not applicable.

References

1. Russo EB, Jiang H-E, Li X, Sutton A, Carboni A, del Bianco F, et al.

Phytochemical and genetic analyses of ancient cannabis from

Central Asia. J Exp Bot 2008;59:4171−82.,.
2. Piluzza G, Delogu G, Cabras A, Marceddu S, Bullitta S.

Differentiation between fiber and drug types of hemp (Cannabis

sativa L.) from a collection of wild and domesticated accessions.

Genet Resour Crop Evol 2013;60:2331−42.,.
3. American Psychiatric Association, DSM-5 Task Force. Diagnostic

and statistical manual of mental disorders: DSM-5TM, 5th ed.

Arlington, VA: American Psychiatric Publishing, Inc.; 2013.

4. Hasin DS, Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H,

et al. Prevalence of marijuana use disorders in the United States

between 2001−2002 and 2012−2013. JAMA Psychiatry
2015;72:1235−42.,.

5. Legislatures NCoS. State medical cannabis laws: NCSL; 2023.

Available from: https://www.ncsl.org/health/state-medical-

cannabis-laws#Body.

https://www.ncsl.org/health/state-medical-cannabis-laws#Body


190 — Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders

6. Smart R, Pacula RL. Early evidence of the impact of cannabis

legalization on cannabis use, cannabis use disorder, and the use

of other substances: findings from state policy evaluations. Am J

Drug Alcohol Abuse 2019;45:644−63.,.
7. Ladegard K, Thurstone C, Rylander M. Marijuana legalization and

youth. Pediatrics 2020;145:S165−74.,.
8. D’Souza DC, Ranganathan M, Braley G, Gueorguieva R, Zimolo Z,

Cooper T, et al. Blunted psychotomimetic and amnestic effects of

Δ-9-tetrahydrocannabinol in frequent users of cannabis.
Neuropsychopharmacology 2008;33:2505−16.,.

9. Ranganathan M, D’Souza DC. The acute effects of cannabinoids

on memory in humans: a review. Psychopharmacology (Berl)

2006;188:425−44.,.
10. Batalla A, Crippa JA, Busatto GF, Guimaraes FS, Zuardi AW,

Valverde O, et al. Neuroimaging studies of acute effects of THC

and CBD in humans and animals: a systematic review. Curr

Pharm Des 2014;20:2168−85.,.
11. Pertwee R. Handbook of cannabis. Oxford: Oxford University

Press; 2014.

12. Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R.

Non-psychotropic plant cannabinoids: new therapeutic

opportunities from an ancient herb. Trends Pharmacol Sci

2009;30:515−27.,.
13. Ashton CH. Pharmacology and effects of cannabis: a brief review.

Br J Psychiatry 2001;178:101−6.,.
14. Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug

with wide spectrum of action. Braz J Psychiatr 2008;30:271−80.,.
15. Administration FFaD. FDA approves first drug comprised of an

active ingredient derived from marijuana to treat rare, severe

forms of epilepsy. FDA; 2018. Available from: https://www.fda

.gov/news-events/press-announcements/fda-approves-first-

drug-comprised-active-ingredient-derived-marijuana-treat-rare-

severe-forms.

16. Karmaus PW, Wagner JG, Harkema JR, Kaminski NE, Kaplan BL.

Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced

pulmonary inflammation in C57BL/6 mice. J Immunotoxicol

2013;10:321−8.,.
17. Chen W, Kaplan BL, Pike ST, Topper LA, Lichorobiec NR, Simmons

SO, et al. Magnitude of stimulation dictates the cannabinoid-

mediated differential T cell response to HIVgp120. J Leukoc Biol

2012;92:1093−102.,.
18. National Center for Complementary and Inegrative Health.

Cannabis (Marijuana) and Cannabinoids: What You Need To

Know: NIH NCCIH; 2019 Available from: https://www.nccih.nih

.gov/health/cannabis-marijuana-and-cannabinoids-what-you-

need-to-know.

19. Lu HC, Mackie K. An introduction to the endogenous cannabinoid

system. Biol Psychiatr 2016;79:516−25.,.
20. Howlett AC. Cannabinoid inhibition of adenylate cyclase.

Biochemistry of the response in neuroblastoma cell membranes.

Mol Pharmacol 1985;27:429−36.
21. Howlett AC. Cannabinoid receptor signalling. Handb Exp

Pharmacol 2005;168:53−79.,.
22. Gobira PH, Joca SR, Moreira FA. Roles of cannabinoid CB1 and CB2

receptors in the modulation of psychostimulant responses. Acta

Neuropsychiatr 2024;36:67−77.,.
23. Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson

RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30

years of progress. Neuropharmacology 2004;47:345−58.,.

24. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN.

Modulation of the cannabinoid CB2 receptor in microglial cells

in response to inflammatory stimuli. J Neurochem 2005;95:

437−45.,.
25. Onaivi ES, Ishiguro H, Gong J-P, Patel S, Meozzi PA, Myers L, et al.

Functional expression of brain neuronal CB2 cannabinoid

receptors are involved in the effects of drugs of abuse and in

depression. Ann N Y Acad Sci 2008;1139:434−49.,.
26. Onaivi ES, Ishiguro H, Gong J-P, Patel S, Perchuk A, Meozzi PA,

et al. Discovery of the presence and functional expression of

cannabinoid CB2 receptors in brain. Ann N Y Acad Sci

2006;1074:514−36.,.
27. Anderson SR, Vetter ML. Developmental roles of microglia: a

window into mechanisms of disease. Dev Dynam 2019;248:

98−117.,.
28. Benevenuto SGM, Domenico MD, Yariwake VY, Dias CT,

Mendes-da-Silva C, Alves NO, et al. Prenatal exposure to cannabis

smoke induces early and lasting damage to the brain.

Neurochem Int 2022;160:105406.,.

29. Castillo Pablo E, Younts Thomas J, Chávez Andrés E,

Hashimotodani Y. Endocannabinoid signaling and synaptic

function. Neuron 2012;76:70−81.,.
30. Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde

modulation of synaptic transmission. Curr Opin Neurobiol

2014;29:1−8.,.
31. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting

TRP channels. Front Mol Neurosci 2019;11:487.,.

32. Morelli MB, Amantini C, Liberati S, Santoni M, Nabissi M. TRP

channels: new potential therapeutic approaches in CNS

neuropathies. CNS Neurol Disord Drug Targets 2013;12:

274−93.,.
33. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting

TRP channels. Front Mol Neurosci 2019;11:487.,.

34. De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T,

Petrosino S, et al. Effects of cannabinoids and

cannabinoid-enriched Cannabis extracts on TRP channels and

endocannabinoid metabolic enzymes. Br J Pharmacol

2011;163:1479−94.,.
35. Wong GY, Gavva NR. Therapeutic potential of vanilloid receptor

TRPV1 agonists and antagonists as analgesics: Recent advances

and setbacks. Brain Res Rev 2009;60:267−77.,.
36. Campbell FA, Tramèr MR, Carroll D, Reynolds DJM, Moore RA,

McQuay HJ. Are cannabinoids an effective and safe treatment

option in the management of pain? A qualitative systematic

review. BMJ 2001;323:13.,.

37. Hall W, Solowij N. Adverse effects of cannabis. Lancet 1998;352:

1611−6.,.
38. Kalant H. Adverse effects of cannabis on health: an update of the

literature since 1996. Prog Neuro Psychopharmacol Biol Psychiatr

2004;28:849−63.,.
39. Thomas H. A community survey of adverse effects of cannabis

use. Drug Alcohol Depend 1996;42:201−7.,.
40. Wang T, Collet J-P, Shapiro S, Ware MA. Adverse effects of medical

cannabinoids: a systematic review. Can Med Assoc J 2008;178:

1669.,.

41. D’Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu

YT, et al. The psychotomimetic effects of intravenous

delta-9-tetrahydrocannabinol in healthy individuals: implications

for psychosis. Neuropsychopharmacology 2004;29:1558−72.,.

https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms
https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms
https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms
https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms
https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know
https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know
https://www.nccih.nih.gov/health/cannabis-marijuana-and-cannabinoids-what-you-need-to-know


Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders — 191

42. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary

controlled study to determine whether whole-plant cannabis

extracts can improve intractable neurogenic symptoms. Clin

Rehabil 2003;17:21−9.,.
43. Childs E, Lutz JA, de Wit H. Dose-related effects of delta-9-THC on

emotional responses to acute psychosocial stress. Drug Alcohol

Depend 2017;177:136−44.,.
44. Patton GC, Coffey C, Carlin JB, Degenhardt L, Lynskey M, Hall W.

Cannabis use and mental health in young people: cohort study.

BMJ 2002;325:1195.,.

45. Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H,

et al. Moderation of the effect of adolescent-onset cannabis use

on adult psychosis by a functional polymorphism in the

Catechol-O-Methyltransferase gene: longitudinal evidence of a

gene X environment interaction. Biol Psychiatr 2005;57:1117−27.,.
46. Bossong MG, van Berckel BNM, Boellaard R, Zuurman L, Schuit

RC, Windhorst AD, et al.Δ9-Tetrahydrocannabinol induces
dopamine release in the human striatum.

Neuropsychopharmacology 2009;34:759−66.,.
47. Kapur S, Mizrahi R, Li M. From dopamine to salience to

psychosis−linking biology, pharmacology and phenomenology
of psychosis. Schizophr Res 2005;79:59−68.,.

48. Casadio P, Fernandes C, Murray RM, Di Forti M. Cannabis use in

young people: the risk for schizophrenia. Neurosci Biobehav Rev

2011;35:1779−87.,.
49. Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques

TR, et al. High-potency cannabis and the risk of psychosis. Br J

Psychiatry 2009;195:488−91.,.
50. Pardo M, Matali JL, Sivoli J, Regina VB, Butjosa A, Dolz M, et al.

Early onset psychosis and cannabis use: prevalence, clinical

presentation and influence of daily use. Asian J Psychiatr

2021;62:102714.,.

51. Andersen SL. Trajectories of brain development: point of

vulnerability or window of opportunity? Neurosci Biobehav Rev

2003;27:3−18.,.
52. Orsolini L, Chiappini S, Volpe U, Berardis D, Latini R, Papanti GD,

et al. Use of medicinal cannabis and synthetic cannabinoids in

post-traumatic stress disorder (PTSD): a systematic review.

Medicina (Kaunas) 2019;55:525.,.

53. MacCallum CA, Russo EB. Practical considerations in medical

cannabis administration and dosing. Eur J Intern Med 2018;

49:12−19.,.
54. Di Forti M, Sallis H, Allegri F, Trotta A, Ferraro L, Stilo SA, et al.

Daily use, especially of high-potency cannabis, drives the earlier

onset of psychosis in cannabis users. Schizophr Bull 2014;40:

1509−17.,.
55. Dosumu OA, Taiwo OA, Akinloye OA, Obadina AO, Rotimi SO,

Owolabi OP, et al. Implications of Cannabis sativa on serotonin

receptors 1B (HTR1B) and 7 (HTR7) genes in modulation of

aggression and depression. Vegetos 2021;35:19−25.,.
56. Xia X, Ding M, Xuan JF, Xing JX, Pang H, Wang BJ, et al.

Polymorphisms in the human serotonin receptor 1B (HTR1B) gene

are associated with schizophrenia: a case control study. BMC

Psychiatr 2018;18:303.,.

57. Karmaus PWF, Chen W, Kaplan BLF, Kaminski NE.

Δ9-Tetrahydrocannabinol suppresses cytotoxic T lymphocyte
function independent of CB1 and CB2, disrupting early activation

events. J Neuroimmune Pharmacol 2012;7:843−55.,.

58. Klein TW, Kawakami Y, Newton C, Friedman H. Marijuana

components suppress induction and cytolytic function of murine

cytotoxic T cells in vitro and in vivo. J Toxicol Environ Health

1991;32:465−77.,.
59. Sexton M, Silvestroni A, Moller T, Stella N. Differential migratory

properties of monocytes isolated from human subjects naive and

non-naive to Cannabis. Inflammopharmacology 2013;21:253−9.,.
60. Staiano RI, Loffredo S, Borriello F, Iannotti FA, Piscitelli F, Orlando

P, et al. Human lung-resident macrophages express CB1 and CB2

receptors whose activation inhibits the release of angiogenic and

lymphangiogenic factors. J Leukoc Biol 2016;99:531−40.,.
61. Romano B, Pagano E, Orlando P, Capasso R, Cascio MG, Pertwee

R, et al. PureΔ9-tetrahydrocannabivarin and a Cannabis sativa

extract with high content inΔ9-tetrahydrocannabivarin inhibit

nitrite production in murine peritoneal macrophages. Pharmacol

Res 2016;113−(Pt A):199−208.
62. Shay AH, Choi R, Whittaker K, Salehi K, Kitchen CMR, Tashkin DP,

et al. Impairment of antimicrobial activity and nitric oxide

production in alveolar macrophages from smokers of marijuana

and cocaine. J Infect Dis 2003;187:700−4.,.
63. Karmaus PWF, Chen W, Crawford R, Kaplan BLF, Kaminski NE.

Δ9-Tetrahydrocannabinol impairs the inflammatory response to
influenza infection: role of antigen-presenting cells and the

cannabinoid receptors 1 and 2. Toxicol Sci 2013;131:419−33.,.
64. Massi P, Fuzio D, Viganò D, Sacerdote P, Parolaro D. Relative

involvement of cannabinoid CB1 and CB2 receptors in the

Δ9-tetrahydrocannabinol-induced inhibition of natural killer
activity. Eur J Pharmacol 2000;387:343−7.,.

65. Specter SC, Klein TW, Newton C, Mondragon M, Widen R,

Friedman H. Marijuana effects on immunity: suppression of

human natural killer cell activity by delta-9-tetrahydrocannabinol.

Int J Immunopharm 1986;8:741−5.,.
66. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS.

Δ9-Tetrahydrocannabinol-induced apoptosis in the thymus and

spleen as a mechanism of immunosuppression in vitro and in

vivo. J Pharmacol Exp Therapeut 2002;302:451.,.

67. Zhu W, Friedman H, Klein TW.Δ9-Tetrahydrocannabinol induces

apoptosis in macrophages and lymphocytes: involvement of Bcl-2

and caspase-1. J Pharmacol Exp Therapeut 1998;286:1103.

68. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS.

Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus

and spleen as a mechanism of immunosuppression in vitro and in

vivo. (0022-3565 (Print)).

69. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M.

Cannabinoids as novel anti-inflammatory drugs. Future Med

Chem 2009;1:1333−49.,.
70. Lima MG, Tardelli VS, Brietzke E, Fidalgo TM. Cannabis and

inflammatory mediators. Eur Addiction Res 2021;27:16−24.,.
71. Owen KP, Sutter ME, Albertson TE. Marijuana: respiratory tract

effects. Clin Rev Allergy Immunol 2014;46:65−81.,.
72. Tashkin DP. Increasing cannabis use: what we still need to know

about its effects on the lung. Respirology 2014;19:619−20.,.
73. Huang D, Xu R, Na R. Cannabis use is associated with lower

COVID-19 susceptibility but poorer survival. Front Public Health

2022;10:829715.,.

74. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of

lymphokine secretion lead to different functional properties.

Annu Rev Immunol 1989;7:145−73.,.



192 — Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders

75. Newton CA, Klein TW, Friedman H. Secondary immunity to

Legionella pneumophila and Th1 activity are suppressed by

delta-9-tetrahydrocannabinol injection. Infect Immun 1994;

62:4015−20.,.
76. Klein TW, Newton CA, Nakachi N, Friedman H.

Δ9-Tetrahydrocannabinol treatment suppresses immunity and
early IFN-γ, IL-12, and IL-12 receptor β2 responses to Legionella
pneumophila infection. J Immunol 2000;164:6461−6.,.

77. Newton CA, Chou P-J, Perkins I, Klein TW. CB1 and CB2

cannabinoid receptors mediate different aspects of

delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift

following immune activation by Legionella pneumophila infection.

J Neuroimmune Pharmacol 2009;4:92−102.,.
78. Leonard WJ, Lin JX. Strategies to therapeutically modulate

cytokine action. Nat Rev Drug Discov 2023;22:827−54.,.
79. Newton C, Klein T, Friedman H. The role of macrophages in

THC-induced alteration of the cytokine network. Adv Exp Med Biol

1998;437:207−14.,.
80. Aziz AI, Nguyen LC, Oumeslakht L, Bensussan A, Ben Mkaddem S.

Cannabinoids as immune system modulators: cannabidiol

potential therapeutic approaches and limitations. Cannabis

Cannabinoid Res 2023;8:254−69.,.
81. Holloman BA-O, Nagarkatti MA-O, Nagarkatti PA-O. Epigenetic

regulation of cannabinoid-mediated attenuation of inflammation

and its impact on the use of cannabinoids to treat autoimmune

diseases. https://doi.org/10.3390/ijms22147302.

82. Moalic E, Gestalin A, Quinio D, Gest PE, Zerilli A, Le Flohic AM.

The extent of oral fungal flora in 353 students and possible

relationships with dental caries. Caries Res 2001;35:

149−55.,.
83. Freeman TP, Craft S, Wilson J, Stylianou S, ElSohly M, Di Forti M,

et al. Changes in delta-9-tetrahydrocannabinol (THC) and

cannabidiol (CBD) concentrations in cannabis over time:

systematic review and meta-analysis. Addiction 2021;116:

1000−10.,.
84. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu W-H, et al.

The human oral microbiome. J Bacteriol 2010;192:5002−17.,.
85. Miller DP, Fitzsimonds ZR, Lamont RJ. Metabolic signaling and

spatial interactions in the oral polymicrobial community. J Dent

Res 2019;98:1308−14.,.
86. Marsh PD, Head DA, Devine DA. Ecological approaches to oral

biofilms: control without killing. Caries Res 2015;49(Suppl

1):46−54.,.
87. Wang SS, Tang YL, Pang X, Zheng M, Tang YJ, Liang XH. The

maintenance of an oral epithelial barrier. Life Sci 2019;227:

129−36.,.
88. Marsh PD, Moter A, Devine DA. Dental plaque biofilms:

communities, conflict and control. Periodontol 2000

2011;55:16−35.
89. Schauer GL, King BA, Bunnell RE, Promoff G, McAfee TA. Toking,

vaping, and eating for health or fun: marijuana use patterns in

adults, U.S., 2014. Am J Prev Med 2016;50:1−8.
90. Darling MR, Arendorf TM, Coldrey NA. Effect of cannabis use on

oral candidal carriage. J Oral Pathol Med 1990;19:319−21.,.
91. Schulz-Katterbach M, Imfeld T, Imfeld C. Cannabis and

caries−does regular cannabis use increase the risk of caries in
cigarette smokers? Schweiz Monatsschr Zahnmed 2009;119:

576−83.

92. Thomson WM, Poulton R, Broadbent JM, Moffitt TE, Caspi A, Beck

JD, et al. Cannabis smoking and periodontal disease among

young adults. JAMA 2008;299:525−31.,.
93. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A,

et al. Porphyromonas gingivalis in Alzheimer’s disease brains:

evidence for disease causation and treatment with

small-molecule inhibitors. Sci Adv 2019;5:eaau3333.,.

94. Shira Davenport E. Preterm low birthweight and the role of oral

bacteria. J Oral Microbiol 2010;2. https://doi.org/10.3402/jom.v2i0

.5779.

95. Leishman SJ, Do HL, Ford PJ. Cardiovascular disease and the role

of oral bacteria. J Oral Microbiol 2010;2. https://doi.org/10.3402/

jom.v2i0.5781.

96. Expanded human oral microbiome database [Internet]. eHOMD.

[cited 2023]. Available from: https://homd.org/.

97. O’Hara AM, Shanahan F. The gut flora as a forgotten organ.

EMBO Rep 2006;7:688−93.,.
98. Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota

on neuropsychiatric disorders. World J Gastroenterol 2017;23:

5486−98.,.
99. Arzani M, Jahromi SR, Ghorbani Z, Vahabizad F, Martelletti P,

Ghaemi A, et al. Gut-brain axis and migraine headache: a

comprehensive review. J Headache Pain 2020;21:15.,.

100. Andreis K, Billingsley J, Naimi Shirazi K, Wager-Miller J, Johnson C,

Bradshaw H, et al. Cannabinoid CB1 receptors regulate salivation.

Sci Rep 2022;12:14182.,.

101. Lee HL, Jung KM, Fotio Y, Squire E, Palese F, Lin L, et al. Frequent

low-dose delta(9)-tetrahydrocannabinol in adolescence disrupts

microglia homeostasis and disables responses to microbial

infection and social stress in young adulthood. Biol Psychiatr

2022;92:845−60.,.
102. Wenger DS, Crothers K. Marijuana smoking in men with HIV

infection: a cause for concern. E Clinical Medicine 2019;7:5−6.,.
103. Darling MR, Arendorf TM. Effects of cannabis smoking on oral

soft tissues. Community Dent Oral Epidemiol 1993;21:78−81.,.
104. Rawal SY, Tatakis DN, Tipton DA. Periodontal and oral

manifestations of marijuana use. J Tenn Dent Assoc

2012;92:26−31; quiz 31−2.
105. Lindquist D, Murrill D, Burran WP, Winans G, Janda JM, Probert W.

Characteristics of Massilia timonae and Massilia timonae-like

isolates from human patients, with an emended description of

the species. J Clin Microbiol 2003;41:192−6.,.
106. Mages Irene S, Frodl R, Bernard Kathryn A, Funke G. Identities

of Arthrobacter spp. and Arthrobacter-like bacteria encountered

in human clinical specimens. J Clin Microbiol 2008;46:2980−6.,.
107. Catala-Valentin AR, Almeda J, Bernard JN, Cole AM, Cole AL, Moore

SD, et al. E-cigarette aerosols promote oral S. aureus colonization

by delaying an immune response and bacterial clearing. Cells

2022;11:773.,.

108. Wang Y, Kasper LH. The role of microbiome in central nervous

system disorders. Brain Behav Immun 2014;38:1−12.,.
109. Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, et al.

Effects of Lactobacillus helveticus on murine behavior are

dependent on diet and genotype and correlate with alterations

in the gut microbiome. Psychoneuroendocrinology 2013;38:

1738−47.,.
110. Mulle JG, Sharp WG, Cubells JF. The gut microbiome: a new

frontier in autism research. Curr Psychiatry Rep 2013;15:337.,.

https://doi.org/10.3390/ijms22147302
https://doi.org/10.3402/jom.v2i0.5779
https://doi.org/10.3402/jom.v2i0.5779
https://doi.org/10.3402/jom.v2i0.5781
https://doi.org/10.3402/jom.v2i0.5781
https://homd.org/


Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders — 193

111. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott

DJ, et al. Bacterial infection causes stress-induced memory

dysfunction in mice. Gut 2011;60:307−17.,.
112. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH.

Probiotic treatment of rat pups normalises corticosterone release

and ameliorates colonic dysfunction induced by maternal

separation. Gut 2007;56:1522−8.,.
113. Arseneault-Bréard J, Rondeau I, Gilbert K, Girard S-A, Tompkins

TA, Godbout R, et al. Combination of Lactobacillus helveticus R0052

and Bifidobacterium longum R0175 reduces post-myocardial

infarction depression symptoms and restores intestinal

permeability in a rat model. (1475-2662 (Electronic)).

114. Smego RA, Jr. Actinomycosis of the central nervous system. Rev

Infect Dis 1987;9:855−65.,.
115. Könönen E, Wade WG. Actinomyces and related organisms in

human infections. Clin Microbiol Rev 2015;28:419−42.,.
116. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via

integrated nerve pathways bypassing the blood−brain barrier:
an excellent platform for brain targeting. Expet Opin Drug Deliv

2013;10:957−72.,.
117. Riviere GR, Riviere KH, Smith KS. Molecular and immunological

evidence of oral Treponema in the human brain and their

association with Alzheimer’s disease. Oral Microbiol Immunol

2002;17:113−8.,.
118. Sjölinder H, Jonsson A-B. Olfactory nerve−a novel invasion route

of Neisseria meningitidis to reach the meninges. PLoS One

2010;5:e14034.,.

119. Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili

K, et al. Early olfactory involvement in Alzheimer’s disease. Can J

Neurol Sci 2003;30:20−5.,.
120. Conti MZ, Vicini-Chilovi B, Riva M, Zanetti M, Liberini P, Padovani

A, et al. Odor identification deficit predicts clinical conversion

from mild cognitive impairment to dementia due to Alzheimer’s

disease. Arch Clin Neuropsychol 2013;28:391−9.,.
121. Harris JA, West AK, Chuah MI. Olfactory ensheathing cells:

nitric oxide production and innate immunity. Glia 2009;57:

1848−57.,.
122. Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI.

Cytokines and olfactory bulb microglia in response to bacterial

challenge in the compromised primary olfactory pathway. J

Neuroinflammation 2012;9:109.,.

123. Pan W, Yu C, Hsuchou H, Zhang Y, Kastin AJ. Neuroinflammation

facilitates LIF entry into brain: role of TNF. Am J Physiol Cell

Physiol 2008;294:C1436−2.,.
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