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Abstract: Cannabis (marijuana) is a leafy plant that has
medical, recreational, and other uses. Cannabis is socially
accepted and widely used throughout the United States.
Though cannabis use is increasingly gaining popularity,
studies detail the deleterious effects of chronic cannabis
smoking on mental health, as well as the immunosuppres-
sive properties of cannabinoids. Additionally, oral dysbio-
sis induced by cannabis smoking serves as a novel cat-
alyst for neurological abnormalities, potentially possible
through microbial translocation via the oral-brain axis. This
review summarizes the effects and link of smoking cannabis
on neurological abnormalities, immunity, and oral micro-
biome.
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Introduction

Cannabis sativa (cannabis), commonly known as marijuana,
is a leafy flowering plant that has long been cultivated in
Central Asia [1]. Cannabis was utilized by Central Asians
for dietary needs, such as a source of food, fiber, and oil,
as well as for religious, medicinal, and recreational pur-
poses [2]. Present-day, cannabis is commonly used medic-
inally and recreationally. Notably, cannabis use disorder
(CUD) is also common. CUD is characterized by symp-
toms including excessive cannabis consumption, unsuc-
cessful attempts to cut down or control use, continued
use despite social or interpersonal issues, and tolerance
or withdrawal symptoms [3]. The CUD rate in the United
States more than doubled from 4.1% between 2001 and
2002 to 9.5 % between 2012 and 2013 [4]. This stark increase
in CUD coincides with more lenient cannabis legislation.
In 2012, citizens of Colorado and Washington State voted
to legalize the recreational use of cannabis. Today, 24
states and the District of Columbia have fully legalized
cannabis, while many others have approved medicinal
cannabis use and/or decriminalized possession of cannabis
in small amounts [5]. This continued shift toward fully
legalizing cannabis throughout the United States is lead-
ing to an increased prevalence of cannabis users [6].
With increased legalization, there is more opportunity for
chronic cannabis abuse, especially when users are exposed
to cannabis in their adolescence [7]. It is well-documented
that acute cannabis use causes changes in neural activity
and psychological behaviors [8-10]. Although the effects
of cannabis use have been widely studied and reported,
there are still conflicting views in the literature regard-
ing chronic cannabis exposure. The beneficial and detri-
mental effects are highly debated throughout the medi-
cal and scientific community. In this review, we summa-
rized current studies related to cannabis smoking, immu-
nity, oral microbiome, and central nervous system (CNS)
abnormalities.
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Tetrahydrocannabinol (THC) is the
primary psychoactive component in
cannabis

Cannabis contains over 500 compounds, with over 60 being
psychoactive cannabinoids [11]. Although many cannabi-
noids have now been identified, there are two main chemi-
cal constituents: tetrahydrocannabinol (THC) and cannabid-
iol (CBD). THC is the primary psychoactive component of
cannabis, while CBD is the primary non-psychoactive com-
ponent [12]. Evidence confirms that THC influences both
immune and neural responses [13]. The effects CBD has on
the CNS, however, are more elusive. CBD has well-known
anti-inflammatory and neuroprotective properties [14]. In
fact, a drug comprised of CBD is now an FDA-approved
treatment for two rare forms of epilepsy [15]. Alternatively,
CBD can increase cytokine production under certain con-
ditions and cause lipopolysaccharide (LPS)-induced pul-
monary inflammation in vivo [16, 17]. In humans, side effects
of CBD use include liver and male reproductive dysfunction
[18]. Further research is necessary to fully understand the
immunological effects of CBD. For this review, we will focus
on the immunologic effects of THC.

THC exerts its effects by interacting with specific endo-
cannabinoid system (ECS) endogenous cannabinoid (CB)
receptors, CB1 and CB2. The ECS plays a central role in
CNS development, synaptic plasticity, and both endoge-
nous and exogenous challenges to the neuromodulatory
system [19]. These proteins have been purified and shown to
be G-protein-coupled 7-transmembrane receptors (GPCRs),
which typically modulate neuronal activity by affecting sec-
ond messengers (e.g., adenylate cyclase) [20, 21]. The CB1
receptor is considered to be the most abundant GPCR in the
brain; the high distribution of the CB1 receptor in neurons
accounts for the majority of cannabis-associated behavioral
actions [22]. CB1 receptor signaling activity on neuronal
membranes contributes to a fine-tuned control of synap-
tic efficacy and plasticity [23]. Meanwhile, the CB2 recep-
tor is found predominantly in cells in the immune system.
CB2 is most prevalent in macrophages, though it is also
found at lower levels in the CNS, with abundant expression
in microglial cells and astrocytes [24-26]. Microglia have
known involvement in the maturation of the brain’s neo-
cortex region, which plays a role in learning and memory
[27]. In mice, prenatal THC exposure (PTE) caused alter-
ations in microglia function that lasted into young adult-
hood, which affected the overall development of the neo-
cortex in young adults. In addition, PTE was found to have
long-lasting effects on the overall brain, olfactory bulb,
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and diencephalon volume [28]. Studies have shown that
THC inhibits CB1/CB2 second messengers cyclic-adenosine
monophosphate (cCAMP) in a reversible manner, as well as
adenylate cyclase activity via GPCR activity both in vitro and
in mice [29, 30]. These findings indicate potential neuronal
signaling pathways that are affected by THC exposure and
warrant further research into THC effects on downstream
signaling of cAMP and adenylate cyclase activity.

Studies suggest THC may also be involved with ion
transport through interactions with transient receptor
potential (TRP) channels [31]. TRPs consist of transmem-
brane proteins that respond to various chemical and phys-
ical stimuli [32]. TRPs are implicated in physiologic and
pathophysiologic conditions in the CNS and have been con-
nected to neurodegenerative diseases such as Alzheimer’s
disease and Parkinson’s disease [33]. THC was shown to be
a functional agonist at the following TRP subsets in rats:
TRPV2, TRPV3, TRPV4, and TRPMS8 [34]. THC was not shown
to influence TRPV1, however, which has analgesic effects
[35]. THC interacting with TRPV2, TRPV3, TRPV4, and TRPM8
may contribute to the adverse effects of cannabis.

Chronic cannabis smoking
negatively impacts mental health

The adverse effects of cannabis have been summarized
in several reviews [36—40]. Cannabis users have reported
biphasic psychological effects of THC: they may involve
either euphoria and relaxation or dysphoria and anxiety,
the outcome of which principally depends on the dose level
[41, 42]. Frequent users showed blunted psychotomimetic
effects, perceptual alteration, cognitive impairment, anx-
iogenesis, and cortisol increase [8]. When challenged with
acute psychosocial stress, lower doses of THC were asso-
ciated with euphoria and relaxation while higher dosages
correlated with increased negative psychological responses
[43]. Additional adverse effects of chronic cannabis use
include negative impacts on mental health and promotion
of psychosis.

Routine cannabis use is associated with an increased
risk of anxiety and depression [44], though causality has not
been established. Cannabis exacerbates the development of
schizophrenia, especially among people who have a genetic
vulnerability, and is associated with other psychoses [45].
It has also been previously reported that the inhalation
of THC increases striatal dopamine, which is thought to
be responsible for psychotic symptoms [46, 47]. Further-
more, high-frequency and high-potency cannabis are inde-
pendent factors that lead to a significantly higher risk of
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psychosis [48, 49]. Intravenous administration of THC may
result in psychotic symptoms in a dose-dependent manner
[41]. Likewise, the age of onset of cannabis usage may also
impact the occurrence of psychosis. Early onset of psychosis
was found to be potentially age-dependent, where cannabis
abuse before the age of 15 correlated with a higher risk
of experiencing an early psychotic episode [50]. There is
a strong association between cannabis use and the risk
of psychosis for those who start using cannabis in early
adolescence. This may be because the brain developmental
processes at this stage increases sensitivity to cannabis [48,
51]. Although studies suggest some populations benefit from
using cannabis [52, 53], the negative short and long-term
effects of cannabis use on mental health cannot be ignored.
Moreover, the risks of cannabis use are related to the extent
of usage, drug potency, age of exposure, and several other
factors [54].

Furthermore, serotonin receptor 1b (5-HTR1B) expres-
sion was found to be upregulated with short-term usage of
cannabis, but long-term cannabis abuse resulted in signifi-
cant 5-HTR1B downregulation and behavioral changes [55].
These findings further indicate the frequency of cannabis
use as a risk factor in the development of psychoses symp-
toms. In addition, polymorphisms in 5-HTR1B were found to
be associated with the risk of schizophrenia development
[56], indicating that cannabis use may also exacerbate psy-
chosis symptoms in predisposed individuals. Further stud-
iesinto the potential gene regulatory effects of cannabis are
warranted.

Cannabinoids are
immunosuppressive

At the cellular level, cannabis exhibits immunosuppressive
activity on several different immune cell types. Cannabi-
noids inhibited cytotoxic T lymphocytes (CTLs) by sup-
pressing the cytotoxic activity [57] and lymphocyte matu-
ration and differentiation [58]. Phytocannabinoids inhib-
ited monocyte migration in isolated cells from cannabis
users and expressed CB1 expression in monocytes [59].
Furthermore, cannabinoid receptor activation selectively
inhibited the release of angiogenic factors from human
lung macrophages [60], which could be explained by their
reduced migratory function. Treatment of murine peri-
toneal macrophages with cannabis extracts has been shown
tolead to impaired oxidative burst in response to LPS, which
is characterized by down-regulated nitric oxide production
and reduced levels of COX-2 and IL-1f [61]. The reduction of
COX-2, cytokine production, and phagocytosis may account
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for impaired antimicrobial activity in alveolar macrophages
from marijuana smokers in response to Staphylococcus
aureus [62]. In this review, we summarize and discuss the
immunosuppressive effects of THC.

THC can decrease the number of splenic dendritic cells
(DCs), and alter the function of DCs by inhibiting MHC-II
expression [63]. Consistently, THC is immunosuppressive
and impairs host immune response to bacterial and viral
infections. THC significantly inhibits natural killer (NK)
cytotoxic activity, mediated by the CB1 and CB2 receptors
[64]. Suppression of NK function was dependent on the
concentration and duration of THC treatment [57, 65]. THC
has also been shown to inhibit proliferation and induce
apoptosis of other lymphocyte cell populations. Mice that
received THC had significantly reduced proliferation of
splenocytes following in vitro analysis of stimulating cells
with anti-CD3 monoclonal antibody (mAb), Concanavalin
A (ConA), and LPS in vitro [66]. In the same study, thymo-
cytes, naive and activated splenocytes exposed to 10 mM
or 20 mM of THC had significantly increased apoptosis in a
dose-dependent manner [66]. Furthermore, THC decreased
Bcl-2 and increased caspase-1 activity in naive and LPS-
activated macrophages isolated from mouse splenocytes
[67, 68]. Because THC and other cannabinoids induce apop-
tosis, inhibit cell proliferation, and suppress cytokine pro-
duction, they are identified as anti-inflammatory molecules
[69]. It is important to note, however, that patients with
highly dysfunctional inflammatory activation (e.g., multiple
sclerosis) may fail to exhibit the immunosuppressive effects
of cannabis [70]. Outside of these conditions, the immuno-
suppressive effects of cannabis can decrease the robustness
of the immune system.

The immunosuppressive effects of cannabinoids may
lead to compromised immunologic competence in the res-
piratory system of cannabis smokers. This is indicated by
an increased rate of respiratory infections and pneumo-
nia [71, 72] and increased susceptibility to infection and
poor outcomes of COVID-19 [73]. Cannabinoid-altered immu-
nity depends on the duration of use; within the injured
tissues, monocyte inflammatory responses were inhib-
ited more extensively in individuals with chronic expo-
sure to cannabis compared to short-term users or non-
users [59]. Previous studies have demonstrated that THC
treatment shifts the protective Thl response to a non-
protective Th2 response [74-76]. For example, Legionella
pneumophila infection of mice induced IL-1, IL-12, and IFN-
y pro-inflammatory cytokines and Thl immune response,
whereas THC treatment prior to the infection suppressed
immunity and early-stage IFN-y, IL-12, and IL-12 receptor
B2 responses during L. pneumophila infection [77]. More
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research is required to determine if the immunological sup-
pression associated with chronic cannabis exposure can be
reversed with cannabis extinction. Ultimately, the outcome
of cannabis-induced inhibition of myeloid cell function may
be an enhanced susceptibility to infectious disease and can-
cer in cannabis users.

The cytokine response to THC may
contribute to immunosuppression

Cytokines can be a double-edged sword that promote
antimicrobial defenses against infections while accelerating
pathogenesis [78]. In response to THC, macrophages altered
the cytokine network, leading to a shift in the Th1/Th2
cytokine profile [79]. The anti-inflammatory effect of THC
and other cannabinoids suggests that cannabinoids might
be useful in mitigating the symptoms of autoimmunity and
chronic inflammatory diseases [80, 81]. However, some stud-
ies have shown contradictory results. For example, one
study showed that individuals with cannabis use disorder
had an impaired oxidative balance and elevated levels of
pro-inflammatory cytokine, including IL-1f, IL-6, IL-8, and
TNF-a [82]. Therefore, the dosage, duration, and compo-
nents (THC vs. CBD) of cannabis usage may lead to varied
thresholds in response to cannabinoids, which may explain
some of the contradictory results of cannabinoid-altered
immune response [83]. Unfortunately, it is difficult to clin-
ically determine the extent or longevity of the immunosup-
pression induced by cannabis and its consequences. This
challenge is primarily due to multiple confounders, such
as cannabis users are likely to be multiple drug users (e.g.,
tobacco smoking, alcohol abuse). The effects of cannabis use
on cytokine production and concurrent immune response
warrant further studies.

Smoking cannabinoids induces oral
dysbiosis

The oral microbiome is one of the many microbiomes
in the human body and can influence health and dis-
ease. It is made up of expansive populations of bacteria,
viruses, fungi, and other microbes that colonize surfaces
in the oral cavity, including the gingiva, teeth, cheeks, and
tongue [84]. Under homeostatic conditions, microbes com-
pete for resources [85], and this competition limits the
growth of opportunistic and pathogenic microbes, low-
ering the chances of infection and encouraging a mutu-
alistic relationship with healthy hosts [86]. Additional
protection is provided by the oral epithelium, such as the
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gingiva, which serves as a selectively permeable membrane
that prevents microbes and their metabolites from entering
the bloodstream [87]. However, external factors, such as
smoking, can cause a deviation from the typical resident
oral microbes. This shift, known as oral dysbiosis, leads
to increased pathogenic bacteria, biofilm formation, and
host systemic responses [88]. Overall, increased pathogenic
bacteria and worsened systemic host response can damage
the epithelium, thus allowing microbes and their metabo-
lites to enter systemic circulation. Smoking cannabis causes
deviations from homeostasis that negatively impact the oral
environment (Figure 1).

Smoking is the primary method for using cannabis
[89]. Here, the smoking category does not include vaping.
While vaping is becoming increasingly common, there is
not yet enough data to comment on how the oral micro-
biome is affected by cannabis vaping exclusively. It is
known, however, that smoking cannabis can change the oral
environment. Cannabis users tend to show compromised
oral health, with increased incidences of dental caries and
periodontal diseases, increased rates of leukoedema, and
increased prevalence and density of Candida albicans [82,
90]. Cannabis smoking may also act as a carcinogen. Specif-
ically, cannabis smokers developed premalignant lesions
in the oral mucosa with significantly increased decay on
the surface of the teeth when compared to a non-cannabis-
exposed control group [91]. A previous study of 903 partici-
pants from Dunedin and New Zealand found that cannabis
smoking may be a risk factor for periodontal disease that
is independent of the use of tobacco [92]. Oral bacteria
have been linked to cardiovascular diseases, pre-term birth,
and Alzheimer’s disease [93-95]. Therefore, the effects of
cannabis on the oral environment can have a systemic
impact. Based on these considerations, the oral micro-
biome that develops with cannabis use may modulate brain
function directly through bacteria or product translocation
into the brain or indirectly through pathways yet to be
discovered.

Pathogens may use the oral-brain axis to
access the CNS

The oral microbiome has the second most abundant bac-
terial population after the intestines. The Human Oral
Microbiome Database (HOMD) currently has 774 oral bac-
terial species cataloged, with 58 % being officially named,
16 % cultivated but not yet named, and 26 % unculti-
vated [96]. These bacterial genomes are categorized into
18 phyla; Absconditabacteria (SR1), Actinobacteria, Bacte-
riodetes, Chlamydiae, Chlorobi, Chloroflexi, Euyarchaeota,
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Figure 1: Smoking cannabis can induce oral dysbiosis.

Firmicutes, Fusobacteria, Grancilibacteria (GN02), Ignav-
ibacteriae, Lentisphaerae, Proteobacteria, Saccharibacteria
(TM7), Spirochetes, Synergistetes, Tenericutes, and WPS-2
[96]. While the oral microbiota themselves have been well
characterized, more research into their influence on the
body is needed.

Several studies have confirmed the existence of the
gut-brain axis: a bidirectional communication pathway
between the microbes of the gastrointestinal (GI) tract and
the brain. Though the GI tract encompasses the mouth,
esophagus, stomach, intestines, and anus, most current lit-
erature focuses on intestinal microbiota. This focus is likely
because the intestines having the largest microbial popula-
tion at 102 cells per milliliter of intestinal constituents [97].
Gut dysbiosis has been connected to various CNS abnormal-
ities, including migraines, depression, autism, schizophre-
nia, and Alzheimer’s disease [98, 99]. Based on these find-
ings, it is reasonable to postulate that the microbiota of
other body cavities in the GI tract can also influence CNS
abnormalities. Emerging evidence supports the existence of
an oral-brain axis, similar to the gut-brain axis, that bacteria
and/or their products can utilize to impact the CNS.

Cannabis use may influence the ability of pathogens to
access the oral-brain axis. As addressed above, a decrease
in host resistance may be the consequence of the immuno-
suppressive action of cannabinoids on the functionality of
macrophages, T lymphocytes, and NK cells. Little is known
concerning the potential of cannabinoids other than THC
and CBD to alter immune functionality. The documented
evidence that THC decreases salvation via CB1 activation

and thus alters the innate anti-microbial activity of saliva
in vivo indicates that cannabis use presents a potential risk
of decreased resistance to infections in humans [100]. Stud-
ies suggest that marijuana is a co-factor that can increase
the severity of infection by microbial agents by altering
the host resistance [101]. Therefore, the effects of cannabis
use on increased pathogen susceptibility in hosts pose an
additional increased risk to immunocompromised individ-
uals such as HIV-positive individuals [102]. Further studies
addressing the enhancement of disease in immunocompro-
mised individuals are warranted.

Smoking cannabis may lead to cannabis stomatitis,
which includes changes in the oral epithelium, leukoedema
of the buccal mucosa, and hyperkeratosis [103, 104]. Fur-
thermore, opportunistic infectious bacteria from the mouth
or gut may escape to new colonization sites and mod-
ulate the local environment. For example, Arthrobacter
spp. and Massilia timonae have been isolated in patients
from blood, cerebrospinal fluid, and bone [105, 106]. In
periodontal bacterial overgrowth, increased presence of
opportunistic bacterial infections and decreased inflam-
matory signals are observed in oral epithelial cells [107]
exposed to E-cigarette aerosols. This infers that an altered
local environment may stimulate a shift in the bacterial
response. Many studies have demonstrated that the micro-
biome, microbiota-derived products, and related factors are
correlated with or modulate neuro-psychiatric and behav-
ioral disorders [108—113]. Among these, Actinomyces meyeri
has been shown to cause brain abscesses and other types
of CNS infections [114, 115], indicating that this organism



188 = Hazzard et al.: Cannabis use, oral dysbiosis, and neurological disorders

Trigeminal
nerves

nerve

\\Olfactory
/
=

Legend

Treponema pectinovorum or Staphylococcus
Treponema socranskii aureus

' Neisseria meningitidis

DE GRUYTER

Created with BioRender.com

Figure 2: Bacteria translocation into the trigeminal and olfactory nerves of people with Alzheimer’s disease.

may contribute directly to CNS damage or neurological
abnormalities.

Many nerves lead from the oronasal cavity directly to
the brain, including the trigeminal and olfactory nerves.
These nerve pathways initiate in the nasal cavity at the
olfactory neurepithelium and terminate at the central ner-
vous system, which provides a direct route for pathogenic
infection of the brain (Figure 2). Drugs can be directly trans-
ported from the nose to the brain along the olfactory and
trigeminal nerve pathways to overcome the blood-brain
barrier (BBB) [116]. The trigeminal nerve is thought to pro-
vide a route of entry for oral bacteria into the brain in
Alzheimer’s disease. Treponema pectinovorum and/or Tre-
ponema socranskii are found in trigeminal ganglia and pons
in some Alzheimer patients, indicating that oral Treponema
may infect the brain via branches of the trigeminal nerve
[117]. Another potential route is the olfactory nerve. Neisse-
ria meningitidis can pass directly from the nasopharynx to
the meninges through the olfactory nerve system [118]. In
Alzheimer’s disease, hyposmia or anosmia are considered
heralding symptoms [119, 120]. Olfactory ensheathing cells
have many capabilities of macrophages to provide bacterici-
dal protection against invasion via the oronasal route. They
can migrate and engulf bacteria and can be activated to
express inducible nitric oxide synthase in response to bacte-
rial infiltration [121]. However, in some cases, compromised
olfactory ensheathing cells provide a vehicle for bacterial
transport. For example, S. aureus is able to penetrate the
immunological defense of the damaged olfactory mucosa
and infiltrate into the olfactory bulb [122].

Microbial dysbiosis negatively impacts
mental health

Previous studies suggest that LPS, produced by Gram-
negative bacteria, can disrupt the BBB. The BBB cells
respond to bacterial products (e.g., LPS) via Toll-like recep-
tors (TLRs) (e.g., TLR2, TLR3, TLR4, and TLR6) expressed
on the membranes of the constituent cells or intracellu-
lar expressed cells. LPS binding to TLR4 has been shown
to increase the permeability of leukemia inhibitor factor
from the blood to the brain [123]. Furthermore, activation
of TLR2/6 leads to downregulation of the expression of tight
junction proteins, such as occluding and claudin-5, on the
cell membrane, leading to an increased permeability of the
BBB [124]. Peripheral cytokine signals are amplified in the
CNS by local inflammatory networks, which include inflam-
matory signal transduction pathways and induction of local
cytokine production. In the brain, vagal afferents have
been shown to mediate sickness behavior in response to
peripherally administered LPS and IL-1 [125]. Additionally,
endothelial cells and perivascular macrophages respond to
circulating cytokines to induce expression of COX-2 [126,
127], which leads to neuronal injury in the setting of exci-
totoxicity [128]. After stimulation, cytokines in the brain
are primarily produced by microglia [129] but also can be
produced by oligodendrocytes [130] and astrocytes [131].
However, after acute inflammatory stimulation, increased
CNS cytokine levels may play a role in protecting the
brain. At the same time, under chronic immune activation,
microglia may provide a source of inflammatory mediators
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that influence the brain neurotransmitter system and neu-
ronal integrity [132].

LPS can induce microglia activation in vivo and in
vitro. Microglia enhance neuronal survival by releasing
trophic and anti-inflammatory factors, regulating brain
development by enforcing the programmed elimination
of neural cells. Activated microglia can produce inducible
NO synthase (iNOS), reactive oxygen and nitrogen species
(ROS/RNS), and MCP-1/CCL2, a chemokine involved in
attracting peripheral immune cells to the brain; once acti-
vated, microglia cause progressive tyrosine hydroxylase
and dopamine neuron loss [133, 134] potentially leading
to behavioral changes. LPS and typhoid vaccination have
been shown to affect basal ganglia activity that regulates
microglia activity at neuronal synapses [135, 136]. In ani-
mal studies, after acute immune activation induced by
LPS, indoleamine 2,3-dioxygenase activity is significantly
increased at 24h and peaks at 48 h in response to LPS
administration. 2,3-dioxygenase has been proposed to medi-
ate comorbid depression in inflammatory disorders, in
which 5-hydroxytryptamine (5-HT) and other monoamines
are released in the hypothalamus to mediate fever and sick-
ness behavior [137]. Acute administration of cytokines, such
as IFN-y, IL-1B, TNF-o, and IL-6, increases 5-HT release in
several brain regions, which could be mediated by increased
5-HT activity in addition to the cytokine-induced changes
in 5-HT metabolism [138, 139]. Administration of inflam-
matory cytokines acutely increases 5-HT turnover in brain
regions such as the cortex and nucleus accumbens, and
these changes occur in concert with the appearance of later,
more persistent depressive-like behaviors. For these rea-
sons, LPS is an important bacterial component that can
impact mental health, especially during microbial dysbiosis.

While evidence has linked inflammatory cytokines
to the development of neuropsychiatric symptoms such
as anxiety and depression, cannabis is generally thought
to have an anti-inflammatory effect. For this reason, the
inflammatory cytokine-mediated effects of cannabis on the
CNS have not been discussed.

Conclusions

Cannabis is the most widely used illicit drug in the world,
with both therapeutic and recreational effects. However,
chronic cannabis smoking can also have detrimental conse-
quences on oral health and brain function. In this review,
we have discussed the current documented effects smok-
ing cannabis has on the immune system and brain func-
tion and development, which warrants further research
into the risk factors associated with cannabis smoking. We
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highlighted evidence on how smoking cannabis alters the
oral microbiome, leading to dysbiosis and increased levels
of potentially harmful bacteria. We have also explored the
possible mechanisms by which oral dysbiosis can affect
the central nervous system through the oral-brain axis
and contribute to cognitive impairment and neurodegen-
erative diseases, such as Alzheimer’s disease. Although the
negative psychological and developmental risks associated
with routine cannabis use are documented, there remains
a strong push by researchers and medical doctors for its
controlled use to treat psychosocial and inflammatory con-
ditions in patients. However, this oral microbiome-centered
connection between the brain and immune system war-
rants further immunological studies into the development
of and risks of neuronal diseases associated with cannabis
smoking.
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