Home Non-coding repeat expansions associated with familial adult myoclonic epilepsy: a new paradigm of gene-independent monogenic disorders
Article
Licensed
Unlicensed Requires Authentication

Non-coding repeat expansions associated with familial adult myoclonic epilepsy: a new paradigm of gene-independent monogenic disorders

  • Theresa Kühnel

    Theresa Kühnel studied biology at the Martin-Luther University Halle-Wittenberg specialized in molecular ecology. She then moved into the field of human genetics. She received her Ph.D. in 2020 from the Institute of Human Genetics, University Duisburg-Essen. Since 2021, she is following postdoctoral research work in the group of Prof. Dr. Christel Depienne at the Institute of Human Genetics in Essen.

    ORCID logo EMAIL logo
    and Christel Depienne

    Christel Depienne is W2 professor at the Institute of Human Genetics, University Hospital Essen. She studied biology and graduated from the Institute National Agronomique Paris-Grignon (France) in 1996. She received a PhD molecular and cellular biology in 2000 and became assistant professor in human genetics at Pierre & Marie University and Hôpital Pitié Salpêtrière in 2002 with promotion to associate professor in 2008. In 2017, she moved to the University of Essen in Germany where she has been leading research projects aiming to identify new genes and mechanisms involved in neurogenetic disorders.

    ORCID logo EMAIL logo
Published/Copyright: November 2, 2022
Become an author with De Gruyter Brill

Abstract

Familial adult myoclonic epilepsy (FAME) is a rare autosomal dominant disorder characterized by cortical myoclonic tremor and seizures. FAME has been mapped to chromosomes (chr) 2, 3, 5 and 8, but the cause has remained elusive for more than a decade. An expansion of intronic TTTTA and TTTCA repeats in SAMD12 was identified as the cause of FAME1 in Japanese families linked to chr 8 in 2018. This discovery triggered the identification of identical repeat expansions at five additional loci (FAME2: STARD7; FAME3: MARCHF6; FAME4: YEATS2; FAME6: TNRC6A and FAME7: RAPGEF2). These genes encode proteins with different functions and subcellular localizations and their expression is unaltered in available peripheral tissues, suggesting that the expansion is pathogenic independently of the gene itself. The pathophysiological mechanisms are not yet known but possibly include toxicity at the RNA level or translation of toxic polypeptides from the repeats, a mechanism known as repeat-associated non-AUG (RAN) translation. FAME is a paradigm of human genetic disorder caused by a non-coding expansion unrelated to the gene where it occurs.

Zusammenfassung

Die familiäre myoklonische Epilepsie bei Erwachsenen (FAME) ist eine seltene autosomal-dominante Störung, die durch kortikalen myoklonischen Tremor und Krampfanfälle gekennzeichnet ist. FAME wurde auf den Chromosomen (Chr) 2, 3, 5 und 8 kartiert, aber die Ursache ist seit mehr als einem Jahrzehnt unklar geblieben. Im Jahr 2018 wurde eine Expansion der intronischen TTTTA-und TTTCA-Wiederholungen in SAMD12 als Ursache von FAME1 in japanischen Familien identifiziert, die mit Chr 8 verbunden sind. Diese Entdeckung löste die Identifizierung identischer Wiederholungsexpansionen an fünf weiteren Loci aus (FAME2: STARD7; FAME3: MARCHF6; FAME4: YEATS2; FAME6: TNRC6A; und FAME7: RAPGEF2). Diese Gene kodieren für Proteine mit unterschiedlichen Funktionen und subzellulären Lokalisierungen, und ihre Expression ist in den verfügbaren peripheren Geweben unverändert, was darauf hindeutet, dass die Expansion unabhängig vom Gen selbst pathogen ist. Die pathophysiologischen Mechanismen sind noch nicht bekannt, umfassen aber möglicherweise eine Toxizität auf RNA-Ebene oder die Translation toxischer Polypeptide aus den Wiederholungen, ein Mechanismus, der als Repeat-associated non-AUG (RAN)-Translation bekannt ist. FAME ist ein Beispiel für eine genetische Störung beim Menschen, die durch eine nicht kodierende Expansion verursacht wird, die nicht mit dem Gen zusammenhängt, in dem sie auftritt.


Corresponding authors: Theresa Kühnel and Christel Depienne, Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany, E-mail: (T. Kühnel), (C. Depienne)

Award Identifier / Grant number: 455314768

About the authors

Theresa Kühnel

Theresa Kühnel studied biology at the Martin-Luther University Halle-Wittenberg specialized in molecular ecology. She then moved into the field of human genetics. She received her Ph.D. in 2020 from the Institute of Human Genetics, University Duisburg-Essen. Since 2021, she is following postdoctoral research work in the group of Prof. Dr. Christel Depienne at the Institute of Human Genetics in Essen.

Christel Depienne

Christel Depienne is W2 professor at the Institute of Human Genetics, University Hospital Essen. She studied biology and graduated from the Institute National Agronomique Paris-Grignon (France) in 1996. She received a PhD molecular and cellular biology in 2000 and became assistant professor in human genetics at Pierre & Marie University and Hôpital Pitié Salpêtrière in 2002 with promotion to associate professor in 2008. In 2017, she moved to the University of Essen in Germany where she has been leading research projects aiming to identify new genes and mechanisms involved in neurogenetic disorders.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Our work was supported by the Deutsche Forschungsgemeinschaft (DFG) – project number 455314768: Dissecting the dynamics and pathological mechanisms associated with TTTCA repeat expansions in Familial Adult Myoclonic Epilepsy.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Web resources: GnomAD browser: Pathogenic Short Tandem Repeats: https://gnomad.broadinstitute.org/short-tandem-repeats?dataset=gnomad_r3. National Center for Biotechnology Information: Ideogram: https://www.ncbi.nlm.nih.gov/genome/tools/gdp. Online Mendelian Inheritance in Man, http://www.omim. org. UniProt consortium: https://www.uniprot.org/.

References

Asamitsu, S., Yabuki, Y., Ikenoshita, S., Kawakubo, K., Kawasaki, M., Usuki, S., Nakayama, Y., Adachi, K., Kugoh, H., Ishii, K., et al.. (2021). CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci. Adv. 7, 1–15, https://doi.org/10.1126/sciadv.abd9440.Search in Google Scholar PubMed PubMed Central

Bennett, M.F., Oliver, K.L., Regan, B.M., Bellows, S.T., Schneider, A.L., Rafehi, H., Sikta, N., Crompton, D.E., Coleman, M., Hildebrand, M.S., et al.. (2020). Familial adult myoclonic epilepsy type 1 SAMD12 TTTCA repeat expansion arose 17,000 years ago and is present in Sri Lankan and Indian families. Eur. J. Hum. Genet. 28, 973–978, https://doi.org/10.1038/s41431-020-0606-z.Search in Google Scholar PubMed PubMed Central

Boivin, M., and Charlet-Berguerand, N. (2022). Trinucleotide CGG repeat diseases: An expanding field of polyglycine proteins? Front. Genet. 13, 1–19, https://doi.org/10.3389/fgene.2022.843014.Search in Google Scholar PubMed PubMed Central

Boivin, M., Deng, J., Pfister, V., Grandgirard, E., Oulad-Abdelghani, M., Morlet, B., Ruffenach, F., Negroni, L., Koebel, P., Jacob, H., et al.. (2021). Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases. Neuron. 109, 1825–1835, https://doi.org/10.1016/j.neuron.2021.03.038.Search in Google Scholar PubMed PubMed Central

Botta, A., Rinaldi, F., Catalli, C., Vergani, L., Bonifazi, E., Romeo, V., Loro, E., Viola, A., Angelini, C., and Novelli, G. (2008). The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients. J. Med. Genet. 45, 639–646, https://doi.org/10.1136/jmg.2008.058909.Search in Google Scholar PubMed

Buijink, A.W.G., Broersma, M., Van der Stouwe, A.M.M., Sharifi, S., Tijssen, M.A.J., Speelman, J.D., Maurits, N.M., and Van Rootselaar, A.F. (2016). Cerebellar Atrophy in cortical myoclonic tremor and not in hereditary essential tremor—a voxel-based morphometry study. Cerebellum 15, 696–704, https://doi.org/10.1007/s12311-015-0734-0.Search in Google Scholar PubMed PubMed Central

Buijsen, R.A.M., Visser, J.A., Kramer, P., Severijnen, E.A.W.F.M., Gearing, M., Charlet-Berguerand, N., Sherman, S.L., Berman, R.F., Willemsen, R., and Hukema, R.K. (2016). Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum. Reprod. 31, 158–168, https://doi.org/10.1093/humrep/dev280.Search in Google Scholar PubMed PubMed Central

Cen, Z., Chen, Y., Yang, D., Zhu, Q., Chen, S., Chen, X., Wang, B., Xie, F., Ouyang, Z., Jiang, Z., et al.. (2019). Intronic (TTTGA) n insertion in SAMD12 also causes familial cortical myoclonic tremor with epilepsy. Mov. Disord. 34, 1571–1576, https://doi.org/10.1002/mds.27832.Search in Google Scholar PubMed

Česnik, A.B., Darovic, S., Mihevc, S.P., Štalekar, M., Malnar, M., Motaln, H., Lee, Y.B., Mazej, J., Pohleven, J., Grosch, M., et al.. (2019). Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J. Cell Sci. 132, jcs224303, https://doi.org/10.1242/jcs.224303.Search in Google Scholar PubMed

Corbett, M.A., Kroes, T., Veneziano, L., Bennett, M.F., Florian, R., Schneider, A.L., Coppola, A., Licchetta, L., Franceschetti, S., Suppa, A., et al.. (2019). Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat. Commun. 10, 1–10, https://doi.org/10.1038/s41467-019-12671-y.Search in Google Scholar PubMed PubMed Central

Corral-Juan, M., Serrano-Munuera, C., Rábano, A., Cota-González, D., Segarra-Roca, A., Ispierto, L., Cano-Orgaz, A.T., Adarmes, A.D., Méndez-del-Barrio, C., Jesús, S., et al.. (2018). Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 141, 1981–1997, https://doi.org/10.1093/brain/awy137.Search in Google Scholar PubMed

Depienne, C., and Mandel, J.-L. (2021). 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785, https://doi.org/10.1016/j.ajhg.2021.03.011.Search in Google Scholar PubMed PubMed Central

Deng, J., Yu, J., Li, P., Luan, X., Cao, L., Zhao, J., Yu, M., Zhang, W., Lv, H., Xie, Z., et al.. (2020). Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am. J. Hum. Genet. 106, 793–804, https://doi.org/10.1016/j.ajhg.2020.04.011. 32413282.Search in Google Scholar PubMed PubMed Central

Depienne, C., Magnin, E., Bouteiller, D., Stevanin, G., Saint-Martin, C., Vidailhet, M., Apartis, E., Hirsch, E., LeGuern, E., Labauge, P., et al.. (2010). Familial cortical myoclonic tremor with epilepsy. Neurology 74, 2000–2003, https://doi.org/10.1212/wnl.0b013e3181e396a8.Search in Google Scholar

Florian, R.T., Kraft, F., Leitão, E., Kaya, S., Klebe, S., Magnin, E., Van Rootselaar, A.-F., Buratti, J., Kühnel, T., Schröder, C., et al.. (2019). Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial Adult myoclonic epilepsy type 3. Nat. Commun. 10, 4919, https://doi.org/10.1038/s41467-019-12763-9.Search in Google Scholar PubMed PubMed Central

Gall-Duncan, T., Sato, N., Yuen, R.K.C., and Pearson, C.E. (2022). Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res. 32, 1–27, https://doi.org/10.1101/gr.269530.120.Search in Google Scholar PubMed PubMed Central

Glineburg, M.R., Todd, P.K., Charlet-berguerand, N., and Sellier, C. (2018). Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res. 1693, 43–54, https://doi.org/10.1016/j.brainres.2018.02.006.Search in Google Scholar PubMed PubMed Central

Guerrini, R. (2001). Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures: A newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2. Brain 124, 2459–2475, https://doi.org/10.1093/brain/124.12.2459.Search in Google Scholar PubMed

Gymrek, M. (2017). A genomic view of short tandem repeats. Curr. Opin. Genet. Dev 44, 9–16, https://doi.org/10.1016/j.gde.2017.01.012.Search in Google Scholar PubMed

Hagerman, R.J., Leehey, M., Heinrichs, W., Tassone, F., Wilson, R., Hills, J., Grigsby, J., Gage, B., and Hagerman, P.J. (2001). Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57, 127–30, https://doi.org/10.1212/wnl.57.1.127. 11445641.Search in Google Scholar PubMed

Hannan, A.J. (2018). Tandem repeats and repeatomes: Delving deeper into the ‘dark matter’ of genomes. EBioMedicine 31, 3–4, https://doi.org/10.1016/j.ebiom.2018.04.004.Search in Google Scholar PubMed PubMed Central

Heinz, A., Nabariya, D.K., and Krauss, S. (2021). Huntingtin and its role in mechanisms of rna-mediated toxicity. Toxins 13, 487, https://doi.org/10.3390/toxins13070487.Search in Google Scholar PubMed PubMed Central

Henden, L., Freytag, S., Afawi, Z., Baldassari, S., Berkovic, S.F., Bisulli, F., Canafoglia, L., Casari, G., Crompton, D.E., Depienne, C., et al.. (2016). Identity by descent fine mapping of familial adult myoclonus epilepsy (FAME) to 2p11.2–2q11.2. Hum. Genet. 135, 1117–1125, https://doi.org/10.1007/s00439-016-1700-8.Search in Google Scholar PubMed

Hitomi, T., Kondo, T., Kobayashi, K., Matsumoto, R., Takahashi, R., and Ikeda, A. (2012). Clinical anticipation in Japanese families of benign adult familial myoclonus epilepsy. Epilepsia 53, e33–36, https://doi.org/10.1111/j.1528-1167.2011.03349.x.Search in Google Scholar PubMed

Hitomi, T., Kobayashi, K., Jingami, N., Nakagawa, T., Imamura, H., Matsumoto, R., Kondo, T., Chin, K., Takahashi, R., and Ikeda, A. (2013). Increased clinical anticipation with maternal transmission in benign adult familial myoclonus epilepsy in Japan. Epileptic Disord. 15, 428–432, https://doi.org/10.1684/epd.2013.0608.Search in Google Scholar PubMed

Hutten, S., and Dormann, D. (2019). RAN translation down. Nat. Neurosci. 22, 1379–1380, https://doi.org/10.1038/s41593-019-0482-4.Search in Google Scholar PubMed

Ikeda, A., Kakigi, R., Funai, N., Neshige, R., Kuroda, Y., and Shibasaki, H. (1990). Cortical tremor: A variant of cortical reflex myoclonus. Neurology 40, 1561–1565, https://doi.org/10.1212/wnl.40.10.1561.Search in Google Scholar PubMed

Ishiura, H., Shibata, S., Yoshimura, J., Suzuki, Y., Qu, W., Doi, K., Almansour, M.A., Kikuchi, J.K., Taira, M., Mitsui, J., et al.. (2019). Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51, 1222–1232, https://doi.org/10.1038/s41588-019-0458-z. 31332380.Search in Google Scholar PubMed

Ishiura, H., and Tsuji, S. (2020). Advances in repeat expansion diseases and a new concept of repeat motif–phenotype correlation. Curr. Opin. Genet. Dev. 65, 176–185, https://doi.org/10.1016/j.gde.2020.05.029.Search in Google Scholar PubMed

Ishiura, H., Doi, K., Mitsui, J., Yoshimura, J., Matsukawa, M.K., Fujiyama, A., Toyoshima, Y., Kakita, A., Takahashi, H., Suzuki, Y., et al.. (2018). Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy + Suplement. Nat. Genet. 50, 581–590, https://doi.org/10.1038/s41588-018-0067-2.Search in Google Scholar PubMed

Lagorio, I., Zara, F., Striano, S., and Striano, P. (2019). Familial adult myoclonic epilepsy: A new expansion repeats disorder. Seizure 67, 73–77, https://doi.org/10.1016/j.seizure.2019.03.009.Search in Google Scholar PubMed

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., et al.. (2001). Erratum: initial sequencing and analysis of the human genome: International human genome sequencing consortium (nature (2001) 409 (860-921)). Nature 412, 565–566, https://doi.org/10.1038/35057062.Search in Google Scholar PubMed

Latorre, A., Rocchi, L., Magrinelli, F., Mulroy, E., Berardelli, A., Rothwell, J.C., and Bhatia, K.P. (2020). Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 143, 2653–2663, https://doi.org/10.1093/brain/awaa129.Search in Google Scholar PubMed

Lei, X.X., Liu, Q., Lu, Q., Huang, Y., Zhou, X.Q., Sun, H.Y., Wu, L.W., Cui, L.Y., and Zhang, X. (2019). TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy. Eur. J. Neurol. 26, 513–518, https://doi.org/10.1111/ene.13848.Search in Google Scholar PubMed

Licchetta, L., Pippucci, T., Bisulli, F., Cantalupo, G., Magini, P., Alvisi, L., Baldassari, S., Martinelli, P., Naldi, I., Vanni, N., et al.. (2013). A novel pedigree with familial cortical myoclonic tremor and epilepsy (FCMTE): clinical characterization, refinement of the FCMTE2 locus, and confirmation of a founder haplotype. Epilepsia 54, 1298–1306, https://doi.org/10.1111/epi.12216.Search in Google Scholar PubMed

Liufu, T., Zheng, Y., Yu, J., Yuan, Y., Wang, Z., Deng, J., and Hong, D. (2022). The polyG diseases: a new disease entity. Acta Neuropathol. Commun. 10, 1–15, https://doi.org/10.1186/s40478-022-01383-y.Search in Google Scholar PubMed PubMed Central

Madia, F., Striano, P., Di Bonaventura, C., De Falco, A., De Falco, F.A., Manfredi, M., Casari, G., Striano, S., Minetti, C., and Zara, F. (2008). Benign adult familial myoclonic epilepsy (BAFME): evidence of an extended founder haplotype on chromosome 2p11.1-q12.2 in five Italian families. Neurogenetics 9, 139–142, https://doi.org/10.1007/s10048-008-0118-4.Search in Google Scholar PubMed

Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G., Neville, C., Narang, M., Barceló, J., O’Hoy, K., et al.. (1992). Myotonic dystrophy mutation: An unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255, https://doi.org/10.1126/science.1546325.Search in Google Scholar PubMed

Malik, I., Kelley, C.P., Wang, E.T., and Todd, P.K. (2021). Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607, https://doi.org/10.1038/s41580-021-00382-6.Search in Google Scholar PubMed PubMed Central

Mankodi, A., Urbinati, C.R., Yuan, Q.P., Moxley, R.T., Sansone, V., Krym, M., Henderson, D., Schalling, M., Swanson, M.S., and Thornton, C.A. (2001). Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum. Mol. Genet. 10, 2165–2170, https://doi.org/10.1093/hmg/10.19.2165.Search in Google Scholar PubMed

Mikami, M., Yasuda, T., Terao, A., Nakamura, M., Ueno, S.I., Tanabe, H., Tanaka, T., Onuma, T., Goto, Y.I., Kaneko, S., et al.. (1999). Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. Am. J. Hum. Genet. 65, 745–751, https://doi.org/10.1086/302535.Search in Google Scholar PubMed PubMed Central

Mizuguchi, T., Toyota, T., Miyatake, S., Mitsuhashi, S., Doi, H., Kudo, Y., Kishida, H., Hayashi, N., Tsuburaya, R.S., Kinoshita, M., et al.. (2021). Complete sequencing of expanded SAMD12 repeats by long-read sequencing and Cas9-mediated enrichment. Brain 144, 1103–1117, https://doi.org/10.1093/brain/awab021.Search in Google Scholar PubMed

Morato Torres, C.A., Zafar, F., Tsai, Y., Vazquez, J.P., Gallagher, M.D., McLaughlin, I., Hong, K., Lai, J., Lee, J., Chirino-Perez, A., et al.. (2022). ATTCT and ATTCC repeat expansions in the ATXN10 gene affect disease penetrance of spinocerebellar ataxia type 10. Hum. Genet. Genomics Adv. 3, 100137, https://doi.org/10.1016/j.xhgg.2022.100137.Search in Google Scholar PubMed PubMed Central

Okino, S. (1997). Familial benign myoclonus epilepsy of adult onset: A previously unrecognized myoclonic disorder. J. Neurol. Sci. 145, 113–118, https://doi.org/10.1016/s0022-510x(96)00245-6.Search in Google Scholar PubMed

Paulson, H. (2018). Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9.Search in Google Scholar PubMed PubMed Central

Van Den Ende, T., Sharifi, S., Van Der Salm, S.M.A., and Van Rootselaar, A.F. (2018). Familial cortical myoclonic tremor and epilepsy, an enigmatic disorder: From phenotypes to pathophysiology and genetics. A systematic review. Tremor Other Hyperkinet. Mov. 8, 503, https://doi.org/10.5334/tohm.434.Search in Google Scholar

Van Rootselaar, A.-F., Van Schaik, I.N., Van den Maagdenberg, A.M.J.M., Koelman, J.H.T.M., Callenbach, P.M.C., and Tijssen, M.A.J. (2005). Familial cortical myoclonic tremor with epilepsy: A single syndromic classification for a group of pedigrees bearing common features. Mov. Disord. 20, 665–673, https://doi.org/10.1002/mds.20413.Search in Google Scholar PubMed

Van Rootselaar, A.F., Aronica, E., Jansen Steur, E.N.H., Rozemuller-Kwakkel, J.M., de Vos, R.A.I., and Tijssen, M.A.J. (2004). Familial cortical tremor with epilepsy and cerebellar pathological findings. Mov. Disord. 19, 213–217, https://doi.org/10.1002/mds.10662.Search in Google Scholar PubMed

Van Rootselaar, A.F., Van Den Maagdenberg, A.M.J.M., Depienne, C., and Tijssen, M.A.J. (2020). Pentameric repeat expansions: cortical myoclonus or cortical tremor? Brain 143, E86, https://doi.org/10.1093/brain/awaa259.Search in Google Scholar PubMed

Saint-Martin, C., Bouteiller, D., Stevanin, G., Popescu, C., Charon, C., Ruberg, M., Baulac, S., LeGuern, E., Labauge, P., and Depienne, C. (2008). Refinement of the 2p11.1-q12.2 locus responsible for cortical tremor associated with epilepsy and exclusion of candidate genes. Neurogenetics 9, 69–71, https://doi.org/10.1007/s10048-007-0107-z.Search in Google Scholar PubMed

Seixas, A.I., Loureiro, J.R., Costa, C., Andre´s Ordonez-Ugalde, H.M., Oliveira, C.L., Jose´ Loureiro, L., Dhingra, A., Brandao, E., Cruz, V.T., Timoteo, A., et al.. (2017). A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1 , mapping to SCA37, causes spinocerebellar Ataxia. Am. J. Hum. Genet. 101, 87–103 https://doi.org/10.1016/j.ajhg.2017.06.007.Search in Google Scholar PubMed PubMed Central

Smits, D.J., Schot, R., Wilke, M., Van Slegtenhorst, M., de Wit, M.C.Y., Dremmen, M.H.G., Dobyns, W.B., Barkovich, A.J., and Mancini, G.M.S. (2021). Biallelic DAB1 variants Are Associated with mild lissencephaly and cerebellar hypoplasia. Neurol. Genet. 7, e558, https://doi.org/10.1212/nxg.0000000000000558.Search in Google Scholar

Striano, P., and Zara, F. (2016). Autosomal dominant cortical tremor, myoclonus and epilepsy. Epileptic Disord. 18, 139–144, https://doi.org/10.1684/epd.2016.0860.Search in Google Scholar PubMed

Subramanian, S., Mishra, R.K., and Singh, L. (2003). Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol. 4, R13, https://doi.org/10.1186/gb-2003-4-2-r13.Search in Google Scholar PubMed PubMed Central

Wojciechowska, M., and Krzyzosiak, W.J. (2011). Cellular toxicity of expanded RNA repeats: Focus on RNA foci. Hum. Mol. Genet. 20, 3811–3821, https://doi.org/10.1093/hmg/ddr299.Search in Google Scholar PubMed PubMed Central

Yeetong, P., Ausavarat, S., Bhidayasiri, R., Piravej, K., Pasutharnchat, N., Desudchit, T., Chunharas, C., Loplumlert, J., Limotai, C., Suphapeetiporn, K., et al.. (2013). A newly identified locus for benign adult familial myoclonic epilepsy on chromosome 3q26.32-3q28. Eur. J. Hum. Genet. 21, 225–228, https://doi.org/10.1038/ejhg.2012.133.Search in Google Scholar PubMed PubMed Central

Yeetong, P., Pongpanich, M., Srichomthong, C., Assawapitaksakul, A., Shotelersuk, V., Tantirukdham, N., Chunharas, C., Suphapeetiporn, K., and Shotelersuk, V. (2019). TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain 142, 3360–3366, https://doi.org/10.1093/brain/awz267.Search in Google Scholar PubMed

Yu, J., Shan, J., Yu, M., Di, L., Xie, Z., Zhang, W., Lv, H., Meng, L., Zheng, Y., Zhao, Y., et al.. (2022). The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum Genet 109, 533–541, https://doi.org/10.1016/j.ajhg.2022.01.012. 35148830.Search in Google Scholar PubMed PubMed Central

Zeng, S., Zhang, M.Y., Wang, X.J., Hu, Z.M., Li, J.C., Li, N., Wang, J.L., Liang, F., Yang, Q., Liu, Q., et al.. (2019). Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J. Med. Genet. 56, 265–270, https://doi.org/10.1136/jmedgenet-2018-105484.Search in Google Scholar PubMed

Zhang, N., and Ashizawa, T. (2017). RNA toxicity and foci formation in microsatellite expansion diseases. Curr. Opin. Genet. Dev. 44, 17–29, https://doi.org/10.1016/j.gde.2017.01.005.Search in Google Scholar PubMed PubMed Central

Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A.C., et al.. (2011). Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U. S. A. 108, 260–265, https://doi.org/10.1073/pnas.1013343108.Search in Google Scholar PubMed PubMed Central

Published Online: 2022-11-02
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/nf-2022-0024/html
Scroll to top button