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Abstract: This review outlines behavioral and neurobiolog-
ical aspects of extinction learning,with a focus onnonaversive
experience. The extinction of acquired behavior is crucial for
readaptation to our environment and plays a central role in
therapeutic interventions. However, behavior that has been
extinguished can reappear owing to context changes. In the
first part of the article, we examine experimental strategies
aimed at reducing behavioral recovery after extinction of
nonaversive experience, focusing on extinction learning in
multiple contexts, reminder cues, and the informational value
of contexts. In the secondpart, we report findings fromhuman
imaging studies and studies with rodents on the neural cor-
relates of extinction and response recovery in nonaversive
learning, with a focus on ventromedial prefrontal cortex, hip-
pocampus, and neurotransmitter systems.
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Zusammenfassung: Dieser Artikel gibt einen Überblick
über verhaltens- und neurobiologische Aspekte der
Verhaltenslöschung (Extinktion) mit einem Schwerpunkt
auf nicht-aversive Lernerfahrungen. Die Löschung
gelernten Verhaltens ist entscheidend für Wieder-
anpassungsleistungen an unsere Umwelt und spielt
eine zentrale Rolle bei therapeutischen Interventionen.
Gelöschtes Verhalten kann jedoch aufgrund von Kon-
textänderungen wieder auftreten. Im ersten Teil des Arti-
kels stellen wir experimentelle Strategien vor, die darauf

abzielen, das Wiedererstarken gelöschten Verhaltens zu
reduzieren. Dabei stehen im Mittelpunkt die Extinktion in
multiplen Kontexten, Erinnerungsreize und der Informa-
tionswert von Kontexten. Der zweite Teil liefert eine
Übersicht über unsere Erkenntnisse zu neuronalen Kor-
relaten von Extinktion und Reaktionserholung, welche
auf Studien zur Bildgebung beim Menschen und Studien
mit Nagetieren beruhen. Hierbei liegt unser Schwerpunkt
auf dem ventromedialen präfrontalen Kortex, dem Hip-
pocampus und verschiedenenNeurotransmittersystemen.

Schlüsselwörter: Assoziatives Lernen; Kontext;
Erneuerungseffekt.

Extinction and the role of context

Our environment is usually quite predictable: it does not
rain when there is a cloudless sky; tasting your morning
coffee is preceded by visual and olfactory perceptions of
the beverage. Thus, certain events are related and often
occur in a particular order. Humans and other animals are
able to learn about event relationships, which allows us to
predict future events based on the presence of preceding
stimuli or actions (Lachnit et al., 2004; Melchers et al.,
2005). This ability for associative learning is a considerable
advantage for adaption and survival.

Classical conditioning and instrumental conditioning
are two basic forms of associative learning. In classical
conditioning (Pavlov, 1927), a neutral stimulus is repeatedly
presented before a motivationally relevant outcome. As a
result of these pairings, the neutral stimulus comes to elicit a
response that indicatesanticipationof theoutcome. Consider
Pavlov’s dog who salivated when hearing a bell that had
been repeatedly presented before feeding. Instrumental
conditioning (Skinner, 1938) reflects our ability to learn
about the consequences of our actions. Reward or punish-
ment that follows a behavior increases or decreases the
probability with which that behavior will occur in the future.

Classical conditioning and instrumental conditioning
are crucial for successful interactionswith our environment.
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However, they are also involved in the development of
maladaptive behavior. Both forms of associative learning
play key roles for a variety of psychopathological disorders,
including phobias, eating disorders, and drug abuse. Many
therapeutic treatments aimed at overcoming maladaptive
behavior are based on the principle of extinction learning
(Craske et al., 2014; Podlesnik et al., 2017). When a stimulus
or an action is no longer followed by the expected outcome,
we will cease the acquired behavior: Pavlov’s dog will
eventually stop salivating in response to the bell when
subsequent feeding is repeatedly omitted; a patient’s fear of
spiders will decrease significantlywhen repeatedly exposed
to spiders in the absence of actual danger.

However, extinction of acquired behavior does not al-
ways endure. Rather, acquired responses have beenobserved
to reappear after extinction under various conditions (Bou-
ton, 1993; Bouton et al., 2012). An intriguing example is the
renewal effect, which refers to the finding that changing the
context in which a behavior was extinguished can restore
(renew) the original response. In a typical renewal experi-
ment, the conditioned response is first established in a
particular context. Then, the acquired behavior is extin-
guished in a different context. During a final test, it has been
observed that the original response reoccurs either when the
individual is shifted to the context of initial conditioning or
when the individual is exposed to a third, novel context
(Bouton and Bolles, 1979). Renewal has also been observed
when behavioral acquisition and extinction take place in the
samecontext, but testingoccurs inadifferent context (Bouton
and Ricker, 1994). Analogous results have been reported for
human associative learning with motivationally insignificant
stimuli (Rosas and Callejas-Aguilera, 2006; Üngör and
Lachnit, 2006, 2008). Thus, the absence of the context of
extinction learning appears to be sufficient to induce a re-
covery of acquired behavior.

The renewal effect has rather challenging implications
for therapeutic treatments involving extinction learning. It
suggests that full expression of therapeutic success may be
limited to the therapeutic environment: the likelihood of
relapse increases outside the therapeutic setting.

Basic research has revealed several experimental stra-
tegies that reduce or even prevent the renewal effect. These
findings may provide important insights for improving the
long-term success of therapeutic interventions. One experi-
mental strategy that has received considerable attention
comprises extinction learning in multiple contexts (Craske
et al., 2014; Laborda et al., 2011). However, experiments
involving human associative learning (Bustamante et al.,
2016b) and instrumental conditioning in rats (Bernal-Gam-
boa et al., 2017) have indicated that the impact of this strat-
egymaydependon the typeof renewalprocedure: extinction

in multiple contexts resulted in weaker response recovery
than extinction in a single context, when testing for renewal
occurred in a novel context. However, when the test took
place in the context in which the response had been origi-
nally acquired, extinction in multiple contexts exerted no
attenuating effect on renewal (Bernal-Gamboa et al., 2017;
Bustamante et al., 2016b).

Another experimental strategy aimed to counter the
renewal effect is the application of so-called reminder cues,
which refer to discrete stimuli that are repeatedly pre-
sented during the extinction of a response. Using visual
reminder cues in human associative learning (Bustamante
et al., 2016a) and auditory reminder cues in instrumental
conditioning with rats (Nieto et al., 2020), experiments
have shown that the application of reminder cues during
renewal testing in a novel context completely prevented
the recovery of acquired responding. Although this level of
effectiveness is not reached when testing occurs in the
context of initial acquisition, reminder cues weaken the
degree of response recovery in this test situation (Nieto
et al., 2017).

The renewal effect is also influenced by experimental
manipulations that target the informational value of con-
texts. For many cases, contexts have low informational
value, in the sense that theyare irrelevant for the relationship
betweenevents– the delicious taste after biting into anapple
occurs regardless of whether you are at home or in your
workplace. However, in other cases, the relationship be-
tween events varies across contexts – having a lively con-
versation is welcomed at a party, but the same behavior is
considered inappropriate in a library. Thus, contexts can
carry relevant information about the current relationship
between events. Studies of human associative learning have
revealed that response recovery after extinction is weaker
when initial acquisition (Lucke et al., 2013) or extinction
(Lucke et al., 2014) was conducted in a context that had been
trained as being irrelevant for other stimulus-outcome re-
lationships, compared with a context trained as being rele-
vant. Measures of eye-gaze behavior (Lucke et al., 2013) and
other experimental approaches (Uengoeret al., 2018) suggest
that the impact of context information on context-dependent
learning is based on processes of selective attention.

Brain regions involved in extinction
and renewal of nonaversive
experience

Extinction learning can comprise aversive/maladaptive
(fear, phobias, addiction) or benign/appetitive elements.
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Extinction of aversive and maladaptive behavior has
received the greatest degree of scrutiny to date, and it has
become apparent that structures such as the amygdala,
prefrontal cortex, and hippocampus play important roles
in the processing of context in human subjects and in ro-
dents during extinction of fear responses (Kalisch, 2006;
Lang et al., 2009; Lingawi et al., 2019; Marek et al., 2019;
Milad et al., 2007) and in fear renewal (Hermann et al.,
2016). Extinction of appetitive, or nonaversive, learning in
humans (Lissek et al., 2013) and rodents (Mendez-Couz
et al., 2019) also involves the hippocampus.

Imaging studies investigating extinction related to
nonaversive learning in humans (Figure 1) have demon-
strated that the hippocampus and ventromedial prefron-
tal cortex (vmPFC) mediate renewal of acquired behavior

(Lissek et al., 2013). Both regions showed higher activa-
tion in participants who exhibited renewal than in those
who did not: the hippocampus encoded context infor-
mation during extinction, displaying even higher activa-
tion in response to a stimulus presented in a novel
context, while the vmPFC retrieved this information dur-
ing renewal testing to decide upon response recovery.
Recent studies on rats have demonstrated that informa-
tion processing in discrete hippocampal subfields
contribute to specific elements of context-dependent
acquisition, extinction, and renewal in an appetitive
spatial learning task (Mendez-Couz et al., 2019; see
Figure 1), indicating that the hippocampus may be
intrinsically involved in determining the specificity of the
learned response.

Figure 1: Paradigms for the study of
extinction learning in humans or in
rodents. A. In this paradigm, human
subjects are presented with a sequence of
trials each showing a compound of a food
item (cue) and the name of a restaurant
(context; e.g. “ZumKrug”). Each compound
is associated with a specific outcome.
Following an intertrial interval of 5–9 s, one
cue/context compound is presented for 3 s.
Then, a question appears asking the
participant to predict whether
consumption of the food in the restaurant
will cause stomachache in a hypothetical
patient, followed by a response period of
maximally 4 s. Feedback, providing the
correct answer, is then shown for 2 s
(Golisch et al., 2017). B. The task comprises
three phases: acquisition, extinction, and
test. In the AAA condition, all phases occur
in the same context, while in the ABA
condition, the extinction context differs.
During the test in both conditions, cues are
presented in the same context as during
acquisition (Golisch et al., 2017). C.
Examples of food images used in the task
(Golisch et al., 2017). D/E. In rodents,
nonaversive extinction learning can be
studied by examining associative spatial
learning and memory. Over a period of
days, rodents learn that a food reward can
be found (with low probability) at a specific
end of a T-Maze arm. The T-Maze has a
specific floor pattern, and a mild odor is

present at the endof both T-Maze arms and visuospatial cues are placedoutside of the T-maze, in visible range. The food reward is hidden in an
indentation in the floor near the end of the target arm. One day after the animals have reached at least 80% arm-choice accuracy, extinction
learning is examined either in the presence (D) or absence (E) of a context change. Here, the floor pattern, odor cues, and distal visuospatial
cues are changed. During extinction learning trials, no food reward is present. Renewal is assessed in the ABA paradigm (D) by returning the
animals to the original context. In the AAA paradigm (E), animals are simply reexposed to the same context (André et al., 2015b; Mendez-Couz
et al., 2019; Wiescholleck et al. 2014).
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In line with this, individuals with, and without, a
propensity for renewal differ in context-related hippo-
campal activation not only during extinction but also
during initial acquisition, where context is irrelevant (Lis-
sek et al., 2016). All individuals – regardless of their pro-
pensity for renewal – showed increased activation of the
posterior hippocampus in a novelty response to the pre-
sentation of only the context. However, only those partic-
ipants with a propensity for renewal maintained this
hippocampal activation when a cue was added to the
context, indicating processing of the context/cue
compound.

While the amygdala is consistently active during
extinction of fear responses (Hermann et al., 2020;Merz et al.,
2013), it is also active in extinction related to nonaversive
experience (Lissek et al., 2013). The finding supports a pro-
posedbroader role of the amygdala in aversive andappetitive
learning (Everitt et al., 2003; Knapska et al., 2006). Other
regions previously shown to be involved in fear extinction
(Sehlmeyer et al., 2009) that are regularly found to be active
during nonaversive extinction learning comprise the anterior
cingulate cortex (ACC) and insula, which exhibited higher
activity in participants with a propensity for renewal (Lissek
et al., 2013). This increased activity indicates that attentional
processing mediated by the ACC and processing of salient
events by the insula (Menon and Uddin, 2010) are more
pronounced in these participants.

Neurotransmitter systems involved
in extinction and renewal of
nonaversive experience

The creation of associative memories depends on cortical
and hippocampal plasticity processes that in turn critically
depend on the activation and regulation of neurotrans-
mitter receptor systems including glutamatergic N-methyl-

D-aspartate (NMDA) receptors (Hansen et al., 2017), gamma
aminobutyric acid (GABA) receptors (Swanson and Maffei,
2019), and catecholaminergic receptors (Hagena et al., 2016;
Hansen and Manahan-Vaughan, 2014). Although studies of
nonaversive extinction learning are less numerous than the
wealth of data availablewith regard to extinction of aversive
learning, it is apparent that neurotransmitter receptors that
are essential for cortical and synaptic plasticity serve to
modulate the efficacy of extinction of nonaversive learning
(Table 1).

Pharmacological manipulation of NMDA receptors
modulated extinction related to nonaversive learning in
human subjects when conducted within the same context
as for initial acquisition: strikingly both the NMDA receptor
agonist, D-cycloserine, DCS, (Klass et al., 2017) and the
NMDA receptor antagonist, memantine (Golisch et al.,
2017), enhanced extinction learning. This latter finding,
which was associated with dose-related effects of mem-
antine modulated by body mass index, suggests that fine-
tuning of the degree of activation of NMDA receptors is a
key facet of effective extinction learning. This may relate to
a possible differential regulation, by the ligands used in
these studies, of GluN2A- or GluN2B-containing NMDA re-
ceptors, which determine, in turn, the amplitude and
persistency of synaptic plasticity (Ballesteros et al., 2016).

Research on extinction and renewal related to non-
aversive learning in humans demonstrated a specific role
for dopamine (DA) receptors for extinction learning in a
novel context, whereas the DA antagonist, tiapride, when
administered as a single dose before the extinction phase,
impaired performance (Lissek et al., 2015b), and the DA
agonist, bromocriptine, enhanced extinction learning,
particularly in those individuals with a propensity for
renewal (Lissek et al., 2018). The role of specific DA re-
ceptors was scrutinized in rodent experiments: Studies of
extinction learning using a spatial appetitive task in rats
demonstrated that dopamine acting on the D1/D5 receptor
modulates both the acquisition and the consolidation of

Table : Overview of the effect of treatment with neurotransmitter receptor ligands on nonaversive extinction learning.

Ligand Human Rodent Reference

NMDAR agonist enhances n.t. Golisch et al., ; Klass et al., 
NMDAR antagonist enhances impairs Goodmann et al., 
DA agonist enhances no effect Andr�e and Manahan-Vaughan, ; Lissek et al., 
DA antagonist impairs D/D enhances Andr�e and Manahan-Vaughan, ; Lissek et al., b

D/D no effect
NA agonist enhances enhances Janak and Corbit, ; Lissek et al., a
NA antagonist n.t. no effect Andr�e et al., 
GABA agonist impairs impairs Corcoran, ; Corcoran and Maren, ; Lissek et al., a, 

Note: DA: dopamine, GABA: gamma amino-butyric acid, NA: noradrenaline, NMDAR: N-methyl-D-aspartate receptor, n.t.: not tested.
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extinction learning. D2 receptors modulated context-
independent aspects of extinction learning (André and
Manahan-Vaughan, 2016).

The noradrenergic system also contributes to extinc-
tion learning. Administration of the noradrenaline reup-
take inhibitor, atomoxetine, to human subjects (Lissek
et al., 2015a) or to rats (Janak and Corbit, 2011) enhanced
extinction in nonaversive or appetitive tasks. In rats,
extinction learning within a spatial appetitive task was
unaffected by antagonism of beta-adrenergic receptors
(André et al., 2015), however, suggesting that either this
process is supported by alpha-adrenergic receptors or
attentional demand is a determinant of the involvement of
the noradrenergic system in extinction learning. Consistent
with the latter possibility, activation of beta-adrenergic
receptors is required for extinction learning in the absence
of a context change (André et al., 2015a). This latter process
is also supported by metabotropic glutamate receptors
(mGluR; André et al., 2015b).

Extinction related to nonaversive learning in human
subjects was impaired by pharmacological activation of
GABA receptors with the agonist lorazepam, irrespective of
the context in which extinction occurred (Lissek et al.,
2015a, 2017). These results correspond to animal studies
reporting impairments of extinction learning by local hip-
pocampal GABA receptor agonism (Corcoran, 2005; Cor-
coran and Maren, 2001).

Consistent with the likelihood that extinction learning
involves de novo encoding of associative experience
(Mendez-Couz et al., 2019), enhanced hippocampal acti-
vation during extinction learning and renewal testing was
observed after stimulation of noradrenergic, dopami-
nergic, or glutamatergic NMDA receptors in human sub-
jects before extinction training. In contrast, hippocampal
activity was reduced by dopaminergic antagonism and
GABA agonism (Lissek et al., 2015a, 2015b, 2017). Activa-
tion of the vmPFC was enhanced by noradrenergic stimu-
lation during extinction learning and by GABA agonism
during renewal testing and reduced by DA antagonism
during extinction in the acquisition context, but not in a
novel one. NMDA or noradrenergic receptor activation
increased activation of the dorsolateral prefrontal cortex
and inferior frontal gyrus, whereas the DA receptor
antagonism, GABA receptor activation, and NMDA recep-
tor antagonism reduced activation. In addition, both
noradrenergic and NMDA receptor stimulation increased
ACC and insula activation in extinction and renewal
testing, while GABA receptor agonism and the DA receptor

antagonism reduced activation in these regions (Lissek
et al., 2015a, 2015b; Klass et al., 2017).

Taken together, results obtained in pharmacological
studies on humans and rodents indicate that during extinc-
tion learning, dopamine, acting in the prefrontal cortex and
hippocampus, is involved in readjusting the cue-outcome
relationship in the presence of a novel context. Hippocampal
dopamine is important for the encoding and provision of
context information and is, thus, essentially involved in the
renewal effect. In contrast, prefrontal and hippocampal
NMDA receptors appear to be specifically involved in the
modification of established stimulus-outcome associations
in the context of initial acquisition. Moreover, the norad-
renergic system is involved in themodificationof established
associations during extinction learning, regardless of
context, underlining the supposed importance of attentional
processes in extinction learning.

Catecholaminergic, GABAergic, and glutamatergic
regulation of extinction learning is not restricted to non-
aversive experience. Noradrenaline acting on beta-
adrenergic receptors in the amygdala impairs extinction of
fear, whereas noradrenaline acting on alpha-adrenergic re-
ceptors in the prefrontal cortex enhances it (Likhtik and
Johansen, 2019). Furthermore, the robustness of fear mem-
ory and consequently the effectiveness of extinction
learning is regulated by dopamine release from the central
tegmental area acting on key brain circuitry such as the
hippocampus, prefrontal cortex, and amygdala (Likhtik and
Johansen, 2019). GABAergic transmission and mGluR and
NMDA receptor activity in these structures also modulate
fearmemory and fear extinction (Courtin et al., 2014; Kaplan
andMoore, 2011;Myers et al., 2001;Walker andDavis, 2002).

In conclusion, despite their clear differences in terms
of behavior and cognition, extinction learning of aversive
and nonaversive experience shares many functional
similarities in terms of the brain regions that are engaged
by these processes and the neurotransmitter receptors
that mediate the behavioral outcome. This suggests that
knowledge gained through studies of processes that
optimize extinction learning in an experimental setting
harbors significant potential in translation into thera-
peutic strategies for maladaptive behavior.
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