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Summary: Seals and sea lions are well-oriented in their 
habitat, the coastal regions and oceans, and are, moreo-
ver, successful hunters. During their movements between 
haul-out places and foraging grounds as well as during 
foraging, the sensory systems of seals and sea lions 
provide useful information, although the animals, and 
thus their sensory systems, face considerable challenges 
in their habitat and due to their amphibious lifestyle. In 
this review, in the first chapter, we compiled and later 
(chapter 4) discuss the information on the senses of seals 
and sea lions in general and their specific adaptations to 
habitat and lifestyle in particular. We hereby focus on the 
senses of harbor seals. Harbor seals turned into a model 
organism regarding the sensory systems due to intensive 
sensory research of the last decades. In the second and 
third chapter, the sensory basics are put into the context of 
orientation, navigation, and foraging. This allows formu-
lating new research questions, such as where and how the 
information from different senses is integrated.

Keywords: Vision; audition; olfaction; gustation; haptics; 
hydrodynamics

Seals and sea lions inhabit the coasts and oceans almost 
world-wide. At the German coasts, we can find harbor seals 
and gray seals. By the attachment of tags on to the shoul-
der region of these animals, their movements between the 
coast and the open ocean can be inferred. The tagging data 
reveal that harbor seals cover up to 50 km when moving 
towards the open ocean, and sometimes they even spend 
several days offshore (Thompson and Miller, 1990). Sci-
entists also obtained interesting movement patterns from 
gray seals from the Channel; the seals crossed the Channel 
in slightly less than two days on a direct route (Chevaillier 
et al., 2014). Generally the tracks obtained from tagging 

studies clearly demonstrate that the animals are well ori-
entated in their habitat; they leave their haul-out places at 
or near the coast, swim towards the open ocean for forag-
ing, and return straight to their haul-out places. Although 
these tracks were recorded over years, we still lack a pro-
found understanding of the underlying mechanisms of 
orientation, and navigation as well as foraging. These be-
haviors require information from the environment that can 
be obtained from the sensory systems. Due to this reason, 
the sensory abilities of seals and sea lions were intensively 
investigated. In this review, the findings of these sensory 
experiments are summarized and discussed regarding 
orientation, navigation, and foraging. We will focus on 
harbor seals as they turned into model organisms regard-
ing the bespoken behaviors as a result from research from 
the last decades.

1 �The sensory systems of harbor 
seals

1.1 �The visual system

Harbor seals possess large eyes with a diameter of ~40 mm 
in adult animals (Jamieson and Fisher, 1972; Fig.1a-c). For 
comparison, the human eye has a diameter of ~24  mm 
(Augusteyn e al., 2012); however it is inserted into a 
skull that is slightly larger in length, width, and height 
in comparison to the seal skull. The seal eyes show spe-
cific adaptations to the amphibious lifestyle, the contin-
uous transition between water and air, as well as to the 
change between high and low ambient luminance (Hanke 
et al., 2009a). The cornea of the harbor seal eye displays 
a high degree of astigmatism (Hanke et al., 2006a; Jamie-
son, 1971; Fig.1c), the refractive powers of the vertical and 
horizontal meridian are different. This astigmatism has its 
origin in a corneal flattening in the vertical meridian. It 
is suggested that the combination of the slit-pupil (Fig.1a) 
with the corneal flattening solves the main problem of the 
amphibious lifestyle, the loss of the refractive power of 
the cornea underwater. If ambient luminance is high and 
the slit-pupil is closed to a vertical slit (Fig.1a), only light 
passing the corneal flattening is entering the eye. Due to 
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the corneal flattening, this light is only weakly refracted 
at the cornea, thus the optical situation in air resembles 
the optical situation underwater. Measurements of visual 
acuity support the fact that the aerial visual acuity in 
bright light amounting to 5.6 cycles/deg is comparable 
to the underwater visual acuity (Hanke and Dehnhardt, 
2009; Jamieson and Fisher, 1970; Schusterman and Balliet, 
1970; Weiffen et al., 2006). In air, the visual acuity seems 
to be mainly affected by ambient luminance. Underwater 
the visual acuity is also affected by turbidity; if turbidity is 
increasing, visual acuity is drastically decreasing (Weiffen 
et al., 2006).

The retina of harbor seals is dominated by rods (Jamie-
son and Fisher, 1971; Landau and Dawson, 1970; Peichl et 
al., 2001; Peichl and Moutairou, 1998). The less light-sen-
sitive photoreceptors, the cones, can only be found in low 
numbers; in ringed seals (Phoca hispida), a seal species 
closely related to harbor seals, 1.5 % of the photore-
ceptors were found to be cones (Peichl and Moutairou, 
1998). Interestingly all marine mammals, excluding man-
atees (Cohen et al., 1982; Newman and Robinson, 2006), 
possess only one cone type. This cone absorbs maximally 
in green light (Crognale et al., 1998; Fasick and Robinson, 
2000; Lavigne and Ronald, 1975; Levenson et al., 2006; 
Newman and Robinson, 2005). Therefore harbor seals do 
not have cone-based color vision present in humans and 
many mammals. Even color vision on the basis of rods and 
cones under mesopic light conditions, under which rods 
and cones are active, could not be shown experimentally 

(Scholtyssek et al,. 2015). Thus the multifocal, spherical 
lens (Hanke et al., 2008b), meaning that the lens pos-
sesses distinct areas that refract light of different wave-
length differently, cannot be considered an adaptation 
for color vision. Instead the multifocal lens could increase 
depth of focus in dim ambient light, when the pupil is cir-
cularly dilated (Fig.1b).

The advantage of a rod-dominated retina is that it 
renders the eye very light sensitive. High light sensitivity is 
important for harbor seals under low ambient luminance; 
a condition that they experience if they are active at night 
or when they are diving to deep waters. Parameters that 
additionally increase the sensitivity of the eye are: (a) The 
tapetum lucidum (Jamieson and Fisher, 1971; Johnson, 
1901; Walls, 1942), which reflects back photons, that were 
not absorbed during the first passage of the retina, allow-
ing absorbance during the second passage; (b) The pupil 
(Hanke et al., 2009a; Levenson and Schusterman, 1997), 
which can dilate from a vertical slit (Fig.1a) to a full circle 
(Fig.1b). Thereby a fast adaptation to the low light levels 
during descent can be achieved (Levenson and Schuster-
man, 1999).

On the level of the retinal ganglion cells, the neurons 
that are sending the optic information to higher brain 
centers, a visual streak (Fig.1d) can be found. This visual 
streak samples events occurring along the horizon, such 
as the water surface or the sea floor, with increased reso-
lution (Hanke et al., 2009b). Furthermore an area centralis 
is present that mediates a visual resolution in good agree-

Fig. 1: The visual system of harbor seals. a The seal’s pupil closes to a pinhole in bright light. Scale 10mm. b The seal eye 
with dilated pupil in darkness. c Visualisation of the astigmatism of the seal’s cornea with a Placido’s disc, the concen-
tric rings are distorted when reflected on the cornea due to the astigmatism. d The distribution of ganglion cells of the 
seal retina. In a central horizontal streak, an increased ganglion cell density can be found (visual streak; central in this 
figure). Dorsal to the right, ventral to the left, temporal at the top, nasal at the bottom. At the very left of the figure, three 
ganglion cells were marked with arrows. Scale 250µm
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ment with the values obtained in the behavioral experi-
ments (Hanke and Dehnhardt, 2009; Hanke et al., 2009b; 
Jamieson and Fisher, 1970; Schusterman and Balliet, 
1970; Weiffen et al., 2006). In the optic nerve formed by 
the axons of the ganglion cells, ~ 200,000 axons were 
counted in harbor seals (Pütter, 1903; Wohlert et al., 2016). 
A first examination of the decussation pattern present at 
the optic chiasm of harbor seals (Kröger, 2012) is indica-
tive of a partial decussation as was found in hooded seals 
(Cystophora cristata), another phocid species (Cystophora 
cristata; Dohmen et al., 2015).

The eyes are highly mobile; eye movements espe-
cially extend the dorsal visual field drastically (Hanke 
et al., 2006b). Moreover they stabilize external motion 
(Hanke et al., 2008a). Motion vision is well-developed in 
harbor seals. They are very sensitive to whole-field motion 
(Weiffen et al., 2014) occurring for example if a harbor seal 
is swimming through a cloud of particles generating optic 
flow. Optic flow perception was recently demonstrated in 
harbor seals (Gläser et al., 2014). Consequently the signif-
icance of particles dissolved in the water needs to be reas-
sessed. In former times, particles were only referred to as 
visual limitations. Contrary to this opinion, harbor seals 
can rely on a rich source of optic information, optic flow, 
when swimming through water with particle load. Optic 
flow can potentially be used for numerous behaviors such 
as collision avoidance documented for example for insects 
(Serres and Ruffier, 2017).

1.2 �Mechanoreception

1.2.1 �Haptics and hydrodynamics

Harbor seals possess vibrissae at the snout (mystacial vi-
brissae), on top of the nose (rhinal vibrissae) and above 
the eyes (supraorbital vibrissae; Fig.2a). The vibrissae of 
harbor seals and generally the vibrissae of most phocids 
are undulated, meaning that the hair is showing a wave-
like structure (Hanke et al., 2010; Miersch et al., 2011). Due 
to this undulation, vortices are shedding from the vibris-
sae if the vibrissae are moving through the water. However, 
these vortices are destroyed right after their generation, 
which allows the vibrissae to remain motionless (Hanke 
et al., 2010; Miersch et al., 2011). This fact is advantageous 
when external stimuli are to be detected. Then the move-
ment of the vibrissae itself does not need to be considered, 
instead the external event can directly be measured.

The vibrissa is inserted into a dermal follicle. The 
follicles of seals show some specific adaptations to the 
aquatic medium (Hyvärinen, 1989; Hyvärinen and Kata-

Fig. 2: The vibrissal system of harbor seals. a Harbor seals possess 
supraorbital vibrissae (SOV), a pair of rhinal vibrissae (RV) and 
mytacial vibrissae (MV). b Escape reaction of a fish. The water 
movements were visualized by recording and analyzing the move-
ment of particles added to the water and illuminated with a laser 
over time. The arrows indicate the movement direction, the velocity 
of the water movement in m/s is color-coded; these conventions 
also apply for section c of this figure. During this escape reaction, 
a C-start, during which the fish escapes by bending its body in 
a C-shape, jet 1 for example is a single vortex ring. Such a single 
cortex ring can be perceived and interpreted regarding its movement 
direction and size by a harbor seal. c Breathing current of a flounder 
(fish drawn in yellow). The water movements elicited during breath-
ing are within the detection threshold of harbor seals
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jisto, 1984; Hyvärinen et al., 2009): (a) In comparison to 
terrestrial mammals (Ebara et al., 2002), the follicle pos-
sesses an additional blood sinus. This sinus amounts to 
~ 60 % of the total length of the follicle and is surrounding 
the upper part of the follicle. Consequently, the region in 
which the mechanoreceptors can be found is inserted into 
the skin deeply. Additionally, the blood sinus is heating 
the sensory system (Mauck et al., 2000). Therefore the 
vibrissal system is less sensitive to temperature changes 
in the surrounding medium (Dehnhardt et al., 1998b); (b) 
The follicle of seals shows a dense innervation (see for 
example Hyvärinen, 1995; Marshall et al., 2006; McGov-
ern et al., 2015). It augments the innervation density of the 
follicle of terrestrial mammals (Rice et al., 1986) tenfold 
or more; in ringed seals, the vibrissae are innervated by 
160,000 nerves (Hyvärinen, 1995), whereas in bearded 
seals (Erignathus barbatus), 320,000 nerves innervating 
the vibrissae can be found (Marshall et al., 2006).

With the help of their vibrissae, harbor seals are able 
to actively touch upon objects (haptics; Dehnhardt and 
Kaminski, 1995; Dehnhardt et al., 1998b; Dehnhardt et al., 
1997; Dehnhardt et al., 2014). Moreover they can perceive 
and interpret water movements via the vibrissae (hydro-
dynamics; see for example Dehnhardt et al., 1998a; Dehn-
hardt et al., 2001; Dehnhardt and Mauck, 2008; Fig.2b,c). 
The function of the vibrissae regarding haptics and hydro-
dynamics will be extensively described in chapter 3 For-
aging.

1.2.2 �Audition

Probably the most prominent characteristic of phocids in 
respect to their ears, generally and in comparison to eared 
seals, is the lack of an external ear (Fig.3). The external ear 
was most likely reduced during evolution to increase the 
streamlined shape of the body. Consequently, the well-doc-
umented sound localization abilities in the median plane, 
judging if a sound is reaching the ear from below or above 
or from exactly from behind or exactly from in front, in air 
as well as underwater (Byl, 2017; Byl et al., 2016) cannot be 
explained by mechanism involving the external ear as in 
humans (Blauert, 1997; Muller and Bovet, 1999; Wightman 
and Kistler, 1997).

The ear of harbor seals shows some clear anatomical 
differences in comparison to terrestrial mammals (Hemilä 
et al., 2006; Nummela, 2008; Repenning, 1972; Wartzok 
and Ketten, 1999): (a) The bones of the middle ear of 
harbor seals are larger, ten times more heavy and also 
more dense than those of land mammals with comparable 
skull size (Nummela, 1995). (b) A cavernous tissue is lining 

the middle ear and the outer ear canal which most likely 
serves to equilibrate differences in pressure during diving 
(Mohl, 1967). (c) The tympanic membrane and the oval 
window with 82.5 mm2 and 4.94 mm2 are enlarged (Hemilä 
et al., 1995). (d) The outer ear canal is lying parallel to the 
skull which results in the ear canal being oriented back-
wards (Boenninghaus, 1903).

In general, the experimental evidence gathered in 
respect to hearing in harbor seals reflects the amphibious 
lifestyle, and demonstrates that harbor seals can hear well 
both in air and underwater (Reichmuth et al., 2013). In air, 
the ear canal is open, and sound is transmitted to the inner 
ear via the middle ear, which is the general sound trans-
mission pathway in mammals. This enables harbor seals 
to hear from 100 Hz to ~ 30 kHz with the highest sensitivity 
at 2–12 kHz (Kastak and Schusterman, 1998; Mohl, 1968; 
Reichmuth et al., 2013; Terhune, 1974). They are also able 
to localize sound with the lowest thresholds of 4.1 deg at 
1 kHz and of 3.8 deg at 16 kHz (Holt et al., 2005; Holt et al., 
2004). To obtain these thresholds, the animal was asked to 
indicate if a sound was coming from the right or from the 
left; the threshold can then be calculated as the azimuth 
value of the angle corresponding to 75 % correct choices 
averaged from right and left angles.

Underwater, the ear is closed by muscles. In this 
medium, the mechanism of sound transmission to the 
inner ear is unresolved. Mostly scientists propose bone 
conduction, however, this is contradicted by for example 
the good sound localization abilities of harbor seals 
(Bodson et al., 2007; Bodson et al., 2006; Byl et al., 2016). 
Generally, harbor seals hear better underwater than in air 
(Watkins and Wartzok, 1985). Hearing ranges up to ~ 100 
kHz with a range of best hearing between 4–16 kHz (Kastak 
and Schusterman, 1998; Kastelein et al., 2009; Mohl, 1968; 
Reichmuth et al., 2013; Southall et al., 2005; Terhune, 
1988; Wolski et al., 2003). The lowest hearing thresholds in 
sound localization of ~ 2.5 – 5.5 deg can be found between 
0.2–1 kHz (Bodson et al., 2007; Bodson et al., 2006; Byl et 
al., 2016).

1.3 �Chemoreception

Up to now, chemoreception in seals and sea lions has not 
attracted much attention. Generally the significance of 
olfaction and olfactory discrimination abilities have been 
examined better in eared seals (see for example Kim et 
al., 2013; Kishida et al., 2007; Laska et al., 2010; Laska et 
al., 2008; Pitcher et al., 2011). Phocids and harbor seals 
in particular can smell in air, whereas the nose is closed 
underwater. The olfactory bulbus being smaller relative to 
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the olfactory bulbus in terrestrial mammals suggests less 
developed olfaction (Reep et al., 2006; Spitzka, 1890). In 
contrast, the ethmoid bone resembles that of terrestrial 
mammals (Philström et al., 2005); this good agreement 
could result in a comparable olfactory sensitivity. Harbor 
seals are very sensitive to dimethylsulfide (DMS; Kow-
alewsky et al., 2006; Tab.1) which is a byproduct produced 
when zooplankton is grazing phytoplankton; the percep-
tion of DMS will be discussed in the context of detecting 
foraging areas (see chapter 2 Orientation and navigation). 
In phocids, olfaction also seems to play a role in moth-
er-pup-interaction (Burton et al., 1975; Kovacs, 1995) and 
in reproduction (Hardy et al., 1991).

Concerning gustation of seals, Sonntag (1923) de-
scribes, among others, the anatomy of the harbor seal’s 
tongue. He resumes that, among the pinnipeds, harbor 
seals possess the best-developed taste buds. With their 
help, harbor seals are able to perceive salinity differences; 
at a salinity of 30 promille, which naturally occurs in their 
environment, they can detect a salinity difference of ≥4 % 
(Sticken and Dehnhardt, 2000; Tab.1). We will focus on this 
ability in the context of orientation and the detection of 
frontal systems (see chapter 2 Orientation and navigation).

2 �Orientation and navigation
Orientation describes the ability of an individual to detect 
and keep a direction. Navigation implies that an animal 
is determining a direction relative to a goal and keeps or 
adjusts that direction during its movement towards the 
goal. For the latter, the animal needs information about 
its current position in relation to the goal.

The visual system could contribute to orientation and 
navigation manifold. Astronavigation seems plausible as 
studies could show that harbor seals can perceive artificial 
as well as natural stars down to 4.4 apparent stellar magni-
tude (Mauck et al., 2005) and that they can swim towards a 
single star comparable to a load star in the presence of the 
whole starry sky (Mauck et al., 2008; Fig.4). Harbor seals 
do not seem to have access to the polarization quality of 
light (Hanke et al., 2013). But it remains to be investigated 
if the sun or the moon itself can be used as orientation cue. 
Orientation based on landmarks as present close to the 
coast should also be investigated in future experiments.

A fascinating area of research in respect to visual nav-
igation is optic flow perception described in 2014 (Gläser 
et al., 2014; Fig.4). Using optic flow, harbor seals could for 
example determine how far they have swum. The estima-
tion of distances is an important element of path integra-
tion (Etienne and Jeffrey, 2004; Mittelstaedt and Mittels-
taedt, 1982) among others. This navigation mechanism 
would allow the animals to return to the starting point 
or to any point along their journey by integrating over all 
distances swum and directions covered up to the point of 
return. Path integration is promising in respect to marine 
mammals as it can be based on external information, but 
also solely on the basis of idiothetic information, informa-
tion derived from self-motion, which can be of significance 
in the seals’ seemingly structurless environment.

So far only the classic sensory systems were focused 
on regarding orientation and navigation in marine 
mammals. Besides these, the parameters time and space 
could play a role during the movements in their habitat. 
A first examination revealed that harbor seals possess a 
well-developed sense of time and are able to discriminate 
time intervals ranging from a few milliseconds up to half a 
minute (Heinrich et al., 2016; Heinrich et al., unpublished 

Fig.3: The ears of seals and sea lions. a The ear of the harbor seal, a phocid, lacks an external ear. b The ear of a fur 
seal, an otariid seal, possess a lappet-like external ear in contrast
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data). Assuming that their sense of time is also providing 
reliable information for longer time intervals, harbor seals 
could judge how long or, considering additionally their 
swimming velocity, how far they have travelled in one di-
rection.

So far scientists have only speculated about a hydro-
dynamic or acoustic orientation mechanisms. It is conceiv-
able that harbor seals sense currents underwater to deter-
mine or modify their movement direction. The prerequisite 
would be that the ocean currents show a temporal or per-
manent course or change systematically with for example 
external parameters. The inflow and outflow of water with 
the tide could provide important hydrodynamic cues for 
orientation. The underwater acoustic landscape could 
fulfill the same task as already suggested by Norris (1967) 
for whales.

Regarding chemosensoric orientation, plausible sce-
narios have already been developed. Even the sensory 
basis for these mechanisms was investigated. One scenario 
is based on the finding that foraging areas are character-

ized by high concentrations of DMS in the atmosphere 
(Andreae et al., 1994; Bürgermeister et al., 1990). Where 
there is a high DMS concentration, there are also many 
fishes according to the trophic pyramid. As fishes are the 
prey of harbor seals, these areas are in turn also interesting 
for harbor seals. To localize these areas rich in fish on the 
basis of their increased DMS concentration (Fig.4), DMS 
has to be perceived; a capability that has already been 
thoroughly investigated in sea birds (for review see Nevitt 
2008; Tab.1). Kowalewsky et al. (2006) demonstrated that 
harbor seals are indeed able to perceive this odor and, 
moreover, are sensitive for very small DMS concentrations. 
In a second step, it would need to be demonstrated that 
harbor seals are able to localize DMS and accordingly are 
attracted by DMS plumes.

Foraging areas are also characterized by salinity. High 
productivity areas were found at salinity fronts (Bowman 
and Esaias, 1978; Floodgate et al., 1981; Fig.4) character-
ized by steep salinity gradients. With the help of their 
high sensitivity for salinity (Sticken and Dehnhardt, 2000; 

Fig.4: Overview of the mechanisms of orientation, navigation, and foraging of harbor seals with an already investigated sensory basis. 
These mechanisms include (a) olfactory perception of dimethyl sulphide (DMS), which is a byproduct produced where zooplankton grazes 
phytoplankton, (b) visual perception of stars,  optic flow induced by swimming through particles or directly viewing of the prey, (c) auditory 
perception of prey, (d) the perception of hydrodynamic trails or breathing currents generated either during swimming or breathing of the 
prey as well as (e) gustatory perception of salinity with salinity varying in horizontal layers in this figure
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Tab.1), harbor seals possess the sensory basis to locate the 
foraging areas at salinity fronts. It was shown for fishes 
that they use specific layers of salinity for long-distance 
orientation (Atema, 1988; Westerberg, 1984). Therefore it 
would be interesting to correlate the movement pattern 
of wild harbor seals with the parameter salinity to reveal 
a possible influence of salinity on the behavior of harbor 
seals.

Many organisms such as turtles, mole rats, sharks, 
and birds use the earth magnetic field for orientation 
and navigation (see for example Kalmijn, 1982; Kimchi 
and Terkel, 2001; Kirschvink et al., 2001; Lohmann and 
Lohmann, 1996; Mouritsen and Ritz, 2005; Wiltschko and 
Wiltschko, 2006). Already in the 1990ties, Renouf (1991) 
examined if harbor seals were able to perceive magnetic 
fields, however, without success. Hanke et al. (unpub-
lished data) took on this topic. Although the topic was 
approached with a variety of experimental procedures 
including large and small coils as well as bar magnets, 
no learning effect could be documented regarding the 
perception of magnetic fields and magnetic anomalies by 
harbor seals in our research group. In conclusion, it has to 
be assumed at the moment that harbor seals are not able to 
orient or navigate with the help of the earth magnetic field.

3 �Foraging
In many instances, harbor seals are swimming towards the 
open ocean in search for their prey. When the seals will 
have reached a foraging ground, their task is to localize 
their prey. Under good light conditions, harbor seals can 
directly see and hunt its prey (Kilian et al., 2015). Hunting 
based on vision is also possible if the lighting conditions 
are not optimal but if the seals are close to the prey item, 
meaning shortly before prey capture. Evidence that the 
visual system is indeed adapted to see objects at close 
vicinity has been gathered in many studies on the visual 
system of harbor seals (Hanke et al., 2009a; Hanke et al., 
2011; Scholtyssek et al., 2008; Weiffen et al., 2006).

If, however, vision is limited due to turbidity or under 
low light conditions or if the seals are not close to the prey, 
other sensory systems have to fulfil the task of detecting 
prey. Many fish species emit sounds (Kasumyan, 2008; 
Wilson et al., 2004), thus a localization of fish could be 
possible via audition (Fig.4).

If a prey fish is swimming in the open water, it leaves a 
hydrodynamic trail, a trail of vortices, behind itself (Fig.4). 
When encountering such a hydrodynamic trail, harbor 
seals are able to not only detect this water disturbance 

but also to actively follow the trail (Dehnhardt et al., 2001; 
Dehnhardt and Mauck, 2008). This so-called hydrody-
namic trail-following was shown in experiments including 
remote-controlled submarines (Dehnhardt et al., 2001), a 
conspecific (Schulte-Pelkum et al., 2007), and artificial 
fish (Kilian, 2010) as trail-generators. The animals were 
able to follow the hydrodynamic trail right after genera-
tion. However, they also followed successfully, if the hy-
drodynamic trail was more than 30s old, which simulated 
a situation in which the fish has already passed the spe-
cific point in space, or if the trail included gliding phases 
(Wieskotten et al., 2010b). A hydrodynamic trail seems 
to convey additional information about the trail gener-
ator such as its size and form (Wieskotten et al., 2010a; 
Wieskotten et al., 2011). Even if single vortices, which 
every hydrodynamic trail contains or which are generated 
during escape reactions (Niesterok and Hanke, 2013; Tytell 
and Lauder, 2008; Fig.2b), are presented, a harbor seal 
can determine the movement direction and the size of the 
vortex ring (Krüger, 2017; Krüger et al., 2018). This ability 
would allow harbor seals to make decisions for example 
on its future swimming direction upon encountering a hy-
drodynamic trail. It remains to be investigated if harbor 
seals can follow the hydrodynamic trail of a real fish and 
under natural conditions, for example if natural currents 
are present.

Harbor seals, however, occasionally ingest only a 
very small percentage of pelagic fish. Examinations of 
the stomach content of dead harbor seals revealed that in 
some places they feed almost exclusively on flatfish (see 
for example Härkönen, 1987; Pierce et al., 1991; Tollit and 
Thompson, 1996). Flatfish mostly bury themselves in the 
sand to which they are perfectly camouflaged. Visual de-
tection is not plausible, even if it was possible to detect 
these fish on the coherent movement of the various body 
parts (Lui et al., 2012; Weiffen et al., 2014). An electrore-
ceptive detection of the fish was also excluded, as there is 
no evidence for electroreception in harbor seals up to date. 
So far it was assumed that harbor seals detect these flat-
fish when they are in direct contact with these with their 
vibrissae, meaning they detect the flatfish haptically. Via 
haptics, harbor seals could indeed infer the form, size or 
texture of a fish (Dehnhardt and Kaminski, 1995; Dehn-
hardt et al., 1998b; Dehnhardt et al., 1997). However, on 
videos recording the behavior of wild harbor seals during 
foraging, a direct contact of the vibrissae with the prey 
was not discernable. The seals are rather swimming at 
some distance to the sea floor. Taking this into account, 
Niesterok et al. (Niesterok et al., 2017a; Niesterok et al., 
2017b) hypothesized that harbor seals are able to detect 
flatfish on the basis of the water currents generated during 
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breathing (Bublitz, 2010; Fig.2c). This hypothesis was sup-
ported by: (a) a detailed analysis of these breathing cur-
rents, which elicit water movements with velocities well 
within the detection range of harbor seals; (b) behavioral 
experiments, in which harbor seals were able to localize 
an artificial breathing current with characteristics similar 
to natural breathing currents spaced out in a large area. 
Thus a hydrodynamic detection of benthic fish seems pos-
sible.

4 �Discussion and perspective
Research of the last decades has ameliorated our under-
standing of the sensory systems of harbor seals and of 
seals and sea lions in general. Nevertheless, as already in-
dicated in the previous chapters, many aspects still need 
to be investigated to close existing gaps in our understand-
ing of the sensory systems themselves and of the mecha-
nisms of orientation, navigation, and foraging.

This review has largely focused on experimental ev-
idence gathered in harbor seals. Before the harbor seal 
turned into a model organism concerning its sensory 
systems by systematic research in this field, only some 
information on the sensory systems of a multitude of 
pinniped species were available. Thus often researcher 
generalized across species. This generalization, however, 
carries risks as all pinnipeds show very specific adap-
tations to their habitat and lifestyle. However now that 
more detailed information on the sensory systems of one 
seal species is available, comparative studies regarding 
selected sensory aspects that include other pinnipeds 
would be interesting. To give an example, future studies 
could continue (Gläser et al., 2011, Miersch et al., 2011) to 
work on the structural difference of the vibrissae, undu-
lated versus smooth. Moreover the finding of completely 
and partially flattened corneae in pinnipeds (Dawson et 
al., 1987, Hanke et al., 2006a) leads to the question if even 
other corneal types are present or if there is a systematic 
difference between otarid and phocid seals.

Exciting research questions could also be derived by 
having a comparative look at species that for examples 
share the aquatic environment or live in a habitat with 
comparable characteristics. Concerning the latter, it is 
interesting to look at for example the desert ant that in-
habits a structurless environment comparable to the open 
ocean. The desert ant is a successful path integrator; in 
our opinion, path integration could be a navigational 
mechanism of marine mammals promising to investigate. 
In uneven terrain, the desert ant calculates its homing 

vector guiding the ant back to its nest after foraging not 
on the basis of the distance actually travelled. Instead the 
ants take the distance into account that corresponds to the 
horizontal projection of the path segments (Wohlgemuth 
et al., 2001). Marine mammals could show a comparable 
behavior as, due to diving, the distance actually travelled 
can deviate from the ground distance.

Previous studies on the sensory systems of pinni-
peds were conducted comparable to classical lab ex-
periments. Therefore the experimental conditions were 
well-controlled which is a prerequisite to obtain a funda-
mental understanding of for example the function of the 
sensory systems. These lab experiments, however, only 
partially mimic the situation encountered by the animals 
in their natural habitat. In the future, it would be desira-
ble to conduct experiments under natural conditions for 
example directly in the seals’ habitat. An essential char-
acteristic of these open-field experiments is that they are 
not space-limited; thus orientation and navigation exper-
iments could be run without spatial limitations that pro-
hibited the direct investigation of orientation and naviga-
tion in the past.

Although our knowledge of the pinnipeds’ sensory 
abilities has increased over time, it has so far been ne-
glected that the senses interact, they complement or sub-
stitute each other. Therefore we think that studies focusing 
on multimodality and sensory integration are promising. 
Sensory integration could be approached with functional 
magnetic resonance imaging. This technique can also 
close the gap between the sensory systems and the central 
nervous system, which has not been thoroughly worked 
on in our model animal. Generally, the examination of a 
complex central nervous system of a mammal that has 
adapted to the aquatic medium for ~ 30 Mio years, prom-
ises many new and interesting insights.

To obtain a fundamental understanding of the mech-
anisms of orientation and navigation of pinnipeds, it is es-
sential to close the gap between the sensory abilities that 
were examined in laboratory animals and the behavior of 
wild animals. Both disciplines can grow together: on the 
one hand, the documented sensory abilities can help to 
describe the behavior of wild animals. On the other hand, 
the behavior of wild animals can lead to hypotheses to be 
tested in controlled laboratory experiments.
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Appendix
Tab.1: Overview of the chemosensoric thresholds of harbor seals in 
comparison to other species

Species Threshold for DMS Reference

Harbor seal 13–20 pmol/m-3 Kowalewsky et al. 
2006

Blue petrel
(Halobaena  
caerulea)

<10 pmol/l Bonadonna et al. 
2006

Antarctic prion
(Pachyptila  
desolata)

~3–4nM Nevitt and Bona-
donna 2005

Human 0.0026–1 µg/l e.  g. Leonardos et al. 
1969
Belitz and Grosch 
1982

Species Threshold for sea- 
water/NaCl

Reference

Harbor seal <4 % bei 30 ppt
(best difference 
threshold)

Sticken and Dehn-
hardt 2000

California sea lion
(Zalophus californi-
anus)

3.6 ppt (absolute 
threshold)

Friedl et al. 1990

Pacific bottlenose 
dolphin
(Tursiops truncatus 
gilli)

1.6 ppt (absolute 
threshold)

Friedl et al. 1990

Black sea bottle-
nose dolphin
(Tursiops truncatus 
ponticus)

5.4 ppt (absolute 
threshold)

Kuznetsov 1978
(cited after Friedl et 
a. 1990)

Human 18 % bei 20 ppt
(best difference 
threshold

Sticken and Dehn-
hardt 2000

0.18 ppt (absolute 
threshold)

Pfaffmann et al. 
1971
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