Zum hundertsten Geburtstag von Richard Jung (27. Juni 1911 – 25. Juli 1986)

Johannes Dichgans und Hans-Joachim Freund

Richard Jung war der Lehrer und Förderer einer großen pathophysiologisch orientierten Neurologenschule, deren Denken die anthologisch syndromatische Betrachtungsweise überwunden hat, ein guter, breit gebildeter Physiologe und Neurologe und ein Vorkämpfer der die Grenzen von Fachdisziplinen überwindenden Hirnforschung, der Gründer der klinischen Neurophysiologie in diesem Lande.

Die Freiburger Schule hat ihre Anfänge von einem EEG-Labor genommen, das Richard Jung bei Beringer an der Psychiatrischen und Nervenklinik seit 1938 aufgebaut hat. Mit der Entwicklung weiterer neurophysiologischer Methoden ist daraus im Laufe der Jahre die Abteilung für Klinische Neurophysiologie entstanden. Sie wurde später in Neurologische Klinik mit Abteilung für Neurophysiologie umbenannt.

Der Werdegang von Richard Jung

Mit der Neurophysiologie kam Jung 1929 erstmals durch Paul Hoffmanns Physiologievorlesung in Berührung. Schon als Student war Jung von Bergers Entdeckung des EEG angezogen, da sich so eine erste Möglichkeit bot, den psychophysischen Phänomenen menschlicher Natur biophysikalische Ereignisse gegenüberzustellen und durch deren vergleichende Analyse Wahrnehmung und Verhalten beim Menschen zu erforschen. Das EEG lernte er dann eingehender während seiner Volontärzeit in Berlin kennen, wo der Neurochirurg Heymann mit einem von Jan Friedrich Tönnies 1933 am Vogt'schen Hirnforschungsinstitut in Berlin-Buch entwickeltem EEG Differenzialverstärker intraoperative Ableitungen am offenen Hirn durchführte.

Bevor sich Jung wissenschaftlich ganz der Neurophysiologie zuwandte, begann er 1934 bei Hugo Spatz eine neuropathologische Doktorarbeit über cerebelläre Angioblastome. Sie wurde von Harvey Cushing als beste Arbeit zum Thema gepriesen. 1936 ging er mit einem Stipendium der Rockefeller Foundation zu Carmichael an das National Hospital Queen Square London und nachfolgend zu Hess nach Zürich, wo er mit Weisschedel tierexperimentell arbeitete.

Seine klinische Ausbildung erfuhr Richard Jung überwiegend bei Beringer in Freiburg, ergänzt durch die Londoner Zeit und einen Aufenthalt 1943 bei Kleist in Frankfurt/ Main, wo er Erfahrungen mit der topologischen Diagnostik bei Hirnverletzten sammelte.

Die Freiburger Zeit

1938 begann Jung in Freiburg mit dem Aufbau eines EEG- und Polygraphielabors. Hier entstand eine enge Zusammenarbeit

mit Jan Friedrich Toennies, der in Freiburg eine Firma für elektrophysiologische Messgeräte gründete und zusammen mit Hermann Kapp die Elektromyographie, Elektronystagmographie und Polygraphie zur Aufzeichnung autonomer Messgrößen etablierte. Wie oft in der Frühphase neuer methodischer Entwicklungen waren diese frühen Jahre der klinischen Neurophysiologie wissenschaftlich und klinisch besonders ergiebig. Eine Zusammenfassung der eigenen Ergebnisse und des Standes der klinischen Neurophysiologie dieser Zeit findet sich in Jungs umfassenden Beitrag zum Handbuch der Inneren Medizin von 1953.

Zudem konnte er in Freiburg in der stereotaktischen Neurochirurgie bei Riechert und Mundinger an seine Interessen an der subkortikalen Elektrophysiologie aus der Zeit bei Hess anknüpfen. Zusammen mit Hassler, einem Schüler von Oskar Vogt, der als Nervenarzt und Anatom damals ebenfalls an der Freiburger Psychiatrie arbeitete, entstand das bekannte Kapitel über das extrapyramidale System.

Die Ära der Mikrophysiologie

Aufbauend auf seinen Erfahrungen aus der Londoner Zeit mit Lord Adrian und bei Hess in Zürich begann ab 1950 die Ära der Mikrophysiologie und die Einrichtung tierexperimenteller Labore in Freiburg. Toennies hatte bereits 1938 mit dem Bau des ersten Kathodenfolgers für Hodgkin in New York die Voraussetzung für die Mikroelektrodentechnik geschaffen. Thematisch stand zunächst die Physiologie des Sehens im Vordergrund. Konzeptuell suchte Jung nach Parallelen zwischen Wahrnehmungsphänomenen beim Menschen und neuronaler Aktivität beim Tier, also der Brücke zwischen subjektiver und objektiver Sinnesphysiologie. Für das visuelle System fand er zusammen mit Baumgartner und Grüsser solche psycho-neuralen Korrelationen, von der Codierung der Helligkeit durch neuronale Entladungsraten bis hin zu komplexen Wahrnehmungsphänomenen bei den vielfachen optischen Täuschungen. Später hat die Einführung neuronaler Ableitungen beim wachen Affen durch seinen Mitarbeiter Fischer und die Verwendung multipler Mikroelektroden durch Krüger die Beziehung zwischen neuronalen Einzelzellaktivitäten und Verhalten experimentell direkt zugänglich gemacht.

Okulomotorik

Als weitere Brücke zum besseren Verständnis der neuronalen Codierung von Verhalten entwickelte sich die Okulomotorik bald zu einem zweiten Forschungsschwerpunkt. Die klinische Elektronystagmographie als quantitatives Verfahren zur Diagnostik vestibulärer und okulomotorischer Störungen objektivierte die klinische Differenzierung pathologischer Nystagmen und ergab neue Einblicke in die Pathophysiologie des Gleichgewichtssystems. Hans H. Kornhuber, Johannes Dichgans und Thomas Brandt haben dieses Gebiet sowohl experimentell als auch klinisch weiterentwickelt und die topische Hirnstammdiagnostik vestibulärer Störungen auf eine neue Grundlage gestellt. Experimentell haben zunächst Fedrickson und Kornhuber und später Otto-Joachim Grüsser und Mitarbeiter den vestibulären Kortex identifiziert und damit auch für dieses Sinnessystem die lange gesuchte kortikale Repräsentation gefunden.

Die Beziehung zwischen einzelneuronaler Aktivität und Feldpotenzialen

Die EEG-Forschung hatte durch die Mikrophysiologie ebenfalls wichtige Impulse

Neuro *forum* 1/11 33

erhalten. Die Arbeitsgruppe von Otto Creutzfeldt ist den Zusammenhängen zwischen der Aktivität einzelner Neurone und den von neuronalen Ensembles generierten EEG-Potenzialen nachgegangen. Dabei zeigte sich, dass die Bildung regionaler kortikaler Rhythmen maßgeblich von kortiko-subkortikalen Rückkopplungsschleifen beeinflusst wird. Experimente an der isolierten Kortexinsel haben nachgewiesen, dass hochfrequente Gruppenentladungen und pathologische Synchronisationsprozesse bei der Epilepsie zwar rein fokal entstehen können, die Generalisierung des Anfalls aber durch abnorme Synchronisation zwischen Hirnregionen zustande kommt. Die Untersuchung des physiologischen Zusammenspiels kortikaler Areale wurde später von Wolf Singer, einem Schüler von O. Creutzfeld in München und Frankfurt/Main mit verbesserten Techniken, weiterentwickelt. Damit ergab sich ein Zugang zur Erforschung des Bindungsproblems, also der Frage, wie merkmalsbezogene Aktivität in einem distributiven Netzwerk zeitlich organisiert und damit interaktiv wird.

Das Bereitschaftspotenzial

Ein Durchbruch für die Erfassung der Summenaktivität kortikaler Neuronenverbände durch die intakte Kopfhaut des Menschen war die Entdeckung des Bereitschaftspotenzials durch Hans H. Kornhuber und Lueder Deecke. Damit erschloss sich ein neues Forschungsfeld für die Handlungsmotorik und für die Vorbereitung von Willkürbewegungen bis hin zu dem berühmt gewordenen Experiment von Benjamin Libet zur Frage der Willensfreiheit.

Bereitschaftspotenziale spielten eine Schlüsselrolle für den Wechsel der Forschungsrichtung von Richard Jung, der sich in seinen späten Jahren der Motorik zuwandte. Jung, Dietz und Berger haben den im Hinblick auf die Libet-Debatte interessanten Befund erhoben, dass die von Dietz und Noth beschriebene posturale Vorinnervation des Armes maßgeblich zur Entstehung der viel diskutierten frühen Potenzialkomponenten des Bereitschaftspotenzials bei Handbewegungen beiträgt. Zusammen mit Altenmüller gefundene Potenzialasymmetrien bei der Schreibmotorik von Rechts- und Linkshändern erbrachten Hinweise auf lateralisierte Hirnfunktionen als zerebrale Korrelate der Händigkeit.

Die Untersuchung der Beziehung zwischen dem Entladungsverhalten einzelner motorischer Einheiten und dem Populationsverhalten des Muskels durch Büdingen, Dietz und Freund ergab Anknüpfungspunkte

zu Befunden, die Jung in den dreißiger Jahren im Rahmen seiner Habilitationsarbeit zum Tremor erhoben hatte. Jung war durch die Arbeiten von Erich von Holst zur Koordination der Flossenbewegungen bei Fischen auf die Phasenbeziehung des Tremors in den verschiedenen Extremitäten aufmerksam geworden. Die Synchronisationsphänomene des pathologischen Tremors ließen sich damals nicht, wie erwartet, auf einen zentralen Schrittmacher zurückführen. Die vermuteten Zusammenhänge ließen sich mit der damaligen Methodik noch nicht erfassen und wurden erst in letzter Zeit durch Modelle gekoppelter Oszillatoren verständlicher.

Die Freiburger Schule

Das Konzept der Freiburger Schule beruhte auf der Überzeugung, dass sich Klinik und wissenschaftliche Arbeit wechselseitig anregen und dass die Analyse der gestörten Funktion dem klinischen Verständnis ebenso zugute kommt wie klinische Beobachtungen den wissenschaftlichen Fragestellungen. Methodisch stand die Neurophysiologie ganz im Vordergrund. Pathogeneseforschung war darüber nur indirekt zugänglich. Bildgebende Verfahren des Gehirns und molekulare Neurobiologie gab es noch nicht. Die klinische Neurophysiologie war deshalb das damals innovativste neurowissenschaftliche Gebiet und eröffnete neue Zugänge zur Untersuchung der Pathophysiologie neurologischer, aber auch psychiatrischer Störungen. Die Neurophysiologie war essenzieller Bestandteil der Klinik. Offensichtlich war diese Kombination so attraktiv, dass Jung über vier Jahrzehnte ausgezeichneten Nachwuchs für seine Abteilung gewinnen konnte.

Die Entwicklung der klinischen und experimentellen Neurowissenschaften in Freiburg durch Richard Jung zwischen 1940 und 1980 ist dadurch charakterisiert, dass er eine klinische Neurologenschule begründete und gleichzeitig auch eine Reihe von Theoretikern auf den Weg brachte, welche die Entwicklung der systemischen Neurowissenschaften in Deutschland nachhaltig geprägt haben. Eine weitere Besonderheit ist die Weitergabe dieser Dynamik an die nächste Generation, die sein wissenschaftliches Erbe weitergeführt und an ihre zahlreichen Schüler, die "Enkelgeneration" weitergegeben hat.

Einige der Mitarbeiter wie von Baumgarten, Creutzfeldt und Grüsser, die ursprünglich Kliniker werden wollten, sind experimentelle Neurophysiologen geworden, ebenso wie die Physiker Fischer, Krüger, oder Psychophysiker, wie der Psychologe Spillmann. Andererseits sind auch eine ganze Reihe reiner Kliniker aus der "Neurophys" hervorgegangen, die meist zugleich erfahrene klinische Neurophysiologen waren. Hierzu gehörten Kendel, Kuhlo, Meier-Mickeleit, Rau, Schulz und Sindermann.

Viele der Mitarbeiter folgten aber dem dominierenden Muster einer Kombination von Klinik und neurophysiologischer Grundlagenforschung. Hierzu gehörten Baumgartner, Kornhuber, Conrad, Deecke, Dichgans, Brandt, Diener, Spehlmann, Freund, Dietz, Büdingen, Hennerici, Noth, Thoden, Berger und Altenmüller. Man arbeitete tags mit den Kranken und abends und nachts experimentell mit den Tieren, natürlich auch an Wochenenden. Wissenschaft und Privatleben wurden nicht so deutlich getrennt wie heute. Den diffamierenden Begriff Feierabendwissenschaft gab es noch nicht.

Aber auch andere, nicht main stream Projekte hat Jung nachhaltig gefördert. Jerusalem hat mit Noetzel, der die für die Ausbildung wichtigen klinisch-neuropathologischen Konferenzen organisierte, neuropathologisch gearbeitet. Cramer hat nach seiner Zeit bei Axelrod ein neurochemisches Labor aufgebaut und mit Clarenbach ein Schlaflabor gegründet. Hacker und nachfolgend Voigt übernahmen den Aufbau der Neuroradiologie, damals in einem einzigen Raum. Freund, Kendel, Voigt, Hennerici, Büdingen und von Reuttern etablierten eine Ultraschallgruppe mit elektronischem Sektor-Scan und Dopplersonographie, die damals von Freiburg aus ihren Ausgangspunkt in Deutschland nahm. Der elektronische Sektor-Scan, von Somer in Utrecht konstruiert und von Einighammer weiterentwickelt, ergab vor der Ära der Bildgebung mittels CT und MRT erste Vorahnungen der kommenden Schnittbildverfahren des Gehirns.

Neuroforum 1/11

Jung hatte durch seine Ausbildung ein ungewöhnlich breites Spektrum der Neurowissenschaften kennengelernt. Diese Vielseitigkeit verbunden mit wissenschaftlicher und philosophischer Neugier waren Merkmale seiner ungemein anregenden Persönlichkeit. Nicolai Hartmann war sein Lieblingsphilosoph. Dessen Schichtenmodell der Wirklichkeit, nach dem jeder Realitätsschicht eine eigene Gesetzmäßigkeit zukommt, half ihm, biologische Vorgänge zu verstehen und zu interpretieren, so zum Beispiel die Kluft zwischen der Welt der Wahrnehmung und der der Neurophysiologie.

Darüber hinaus war Jung seit seinen frühen Jahren ein passionierter Sammler von Handzeichnungen und druckgrafischen Blättern des 16.-18. Jahrhunderts – eine optimale Ergänzung zu seinem wissenschaftlichen Leitthema, der Psychophysik des visuellen Systems. Grundfragen der Wahr-

nehmungspsychologie und der klassischen Psychophysik des 19. Jahrhunderts nach der Objektivität von Sinnesinformationen bildeten eine Brücke zur Philosophie. Die Störung bildnerischer Gestaltungsprozesse bei Malern fand ihren Niederschlag in Expertisen, z.B. über die Rückbildung des visuellen Neglekts nach Schlaganfall. Seine beachtliche Sammlung hat er später der Staatlichen Kunsthalle Karlsruhe und der Staatsgalerie Stuttgart gestiftet.

R. Jung gewährte seinen Schülern große thematische Freiheit. So erklären sich Vielfalt und Originalität der Themen an seinem Hause. Er achtete ihre Eigenständigkeit und begleitete sie mit Interesse, manchmal auch Bewunderung. Er förderte sie durch Bekanntmachung ihrer Ergebnisse in seinen zahlreichen synoptischen Schriften. Jung war ein strenger Klinikchef. Er liebte die Visite und die Diskussion in kleinen Gruppen und persönlichen Seminaren weit mehr als große Kongresse. Die Profilierung

in Fachgesellschaften und die große Bühne entsprachen nicht seiner Neigung. Ehrenvolle Rufe nach Zürich, wo ihm später die Ehrendoktorwürde verliehen wurde, und an das Max-Planck-Institut in München hatte er abgelehnt. Er war ein Denker und ein ungemein anregender Gesprächspartner. Die Diskussionen in den Seminaren mit den vielen illustren Gästen - insbesondere den Freunden Donnald Mackay, J.C. Eccles und J. Szentàgothai – sind für viele seiner Schüler prägend gewesen. Es muss wohl an diesen Eigenschaften gelegen haben, dass Jung eine solch maßgebliche Rolle für die Entwicklung der klinischen und systemischen Neurowissenschaften in Deutschland spielen konnte.

Korrespondenzadresse

Prof. Dr. em. Johannes Dichgans Bei der Ochsenweide 6 72076 Tübingen E-Mail: johannes.dichgans@uni-tuebingen.de

Zukunftsthemen der Neurowissenschaften – Ergebnisse eines Foresight-Prozesses

Bernd Beckert

Welche Themen werden in den Neurowissenschaften in Zukunft besonders relevant? Von welchen Forschungsbereichen versprechen sich Wissenschaftlerinnen und Wissenschaftler die größten Erkentnissgewinne bei der Erforschung des menschlichen Gehirns? Und: Welche Themen sollten aus innovationspolitischer Sicht von der Forschungsförderung künftig besonders berücksichtigt werden? Diese Fragen standen im Mittelpunkt eines umfangreichen, vom BMBF geförderten Foresight-Prozesses, der von Fraunhofer ISI und Fraunhofer IAO durchgeführt wurde. In diesem Beitrag werden die zentralen Ergebnisse des Foresights für den Forschungsbereich der Neurowissenschaften dargestellt sowie das neu entwickelte Themenfeld der "Mensch-Technik-Kooperationen" vorgestellt.

1 Der Foresight-Prozess: Hintergrund und Methode

Im November 2007 wurden die Fraunhofer-Institute ISI und IAO von der Strategieabteilung des Bundesministerium für Bildung und Forschung (BMBF) mit der Durchführung eines umfangreichen Foresight-Prozesses zur Identifizierung zukunftsweisender Forschungsthemen beauftragt. Der Prozess wurde im Sommer 2009 abgeschlossen, die Ergebnisse wurden im Mai 2010 der Öffentlichkeit zugänglich gemacht (Cuhls et al. 2009a und 2009b).

Der Foresight-Prozess bestand aus einer Analyse von Zukunftstrends in 14 etablierten, technisch orientierten Forschungsbereichen, wie z.B. der Materialforschung, der Informations- und Kommunikationstechnologie, der Nanotechnologie, der Neurowissenschaften oder der Biotechnologie (Phase 1) und einer Zusammenschau von Entwicklungen und Trends über diese Bereiche hinweg (Phase 2). Ziel des Foresight-Prozesses war es, die HighTech-Strategie der Bundesregierung um eine längerfristige Perspektive zu ergänzen.

Den Startpunkt der "Suchphase" von Zukunftsthemen in den jeweiligen Ausgangsfeldern bildeten neben der Literaturanalyse mehrere Workshops mit internen und externen Expertinnen und Experten aus den jeweiligen Forschungsfeldern. Die Befunde wurden anschließend in zahlreichen Einzelgesprächen mit nationalen und internationalen Experten diskutiert und ergänzt. Eine bibliometrische Analyse diente zur Bestätigung und Anreicherung der bis dahin erzielten Ergebnisse. Außerdem wurde eine Online-Befragung durchgeführt, in der die erarbeiteten Zukunftsthemen von einer größeren Zahl von Experten bewertet wurden. Damit lag nach Abschluss von Phase 1 für jedes der vierzehn Felder eine Zusammenstellung von relevanten Zukunftsthemen vor. In diesem Aufsatz werden die Ergebnisse für den Bereich der Neurowissenschaften vorgestellt.

Parallel zur Suche innerhalb der definierten Felder wurde von Beginn an eine kontinuierliche Zusammenschau betrieben. So hatten schon in den Auftaktworkshops jeweils zwei Fachgruppen gemeinsam getagt und jede Fachgruppe eine Matrix mit Querbezügen zu allen anderen Feldern erarbeitet. Nachdem die ersten Befunde vorlagen, wurde der gesamte Pool aus Schnittstellen und Einzelthemen, denen herausragende Zukunftsrelevanz attestiert worden war, in den Blick genommen. Dabei wurden "Zukunftsfelder neuen Zuschnitts" identifiziert. In Zusammenhang mit der Neurowissenschaft ist insbesondere das so entstandene neue Thema "Mensch-Technik-Kooperationen" von Bedeutung, das im zweiten Teil dieses Aufsatzes vorgestellt wird.

Neuro*forum* 1/11 35