Home Physical Sciences The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
Article Open Access

The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2

  • Rabia Usman ORCID logo EMAIL logo , May Nasser Bin-Jumah , Abeer A. Altamimi , Kholoud A. Baeshen , Chao Feng ORCID logo , Mohsen Mohammed Al-Qhatani and Hanan A. Henidi EMAIL logo
Published/Copyright: November 27, 2024

Abstract

C25H29BF2N2O2, triclinic, P 1 (no. 1), a = 7.5649(4) Å, b = 7.6172(5) Å, c = 10.4163(6) Å, α = 73.672(5)°, β = 78.776(5)°, γ = 82.641(5)°, V = 563.28(6) Å3, Z = 1, R gt (F) = 0.0390, wR ref (F 2) = 0.1081, T = 150 K.

CCDC no.: 2402089

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange irregular
Size: 0.17 × 0.12 × 0.08 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.76 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 66.9°, >99 %
N(hkl)measured, N(hkl)unique, R int: 6,506, 6,506
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 5,852
N(param)refined: 297
Programs: CrysAlis PRO, 1 Shelx, 2 , 3 Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
F1 0.5391 (3) 0.6594 (3) 0.9315 (2) 0.0399 (6)
F2 0.4016 (3) 0.8967 (3) 0.7903 (2) 0.0405 (6)
O1 0.5544 (5) −0.0501 (4) 0.2263 (3) 0.0438 (7)
O2 0.4647 (4) 0.2126 (4) 0.0854 (3) 0.0345 (6)
N1 0.3431 (4) 0.5901 (4) 0.7983 (3) 0.0292 (7)
N2 0.6427 (4) 0.7121 (4) 0.6897 (3) 0.0278 (7)
C1 0.1927 (5) 0.4140 (5) 0.7163 (4) 0.0319 (8)
C2 0.0923 (5) 0.4390 (6) 0.8379 (4) 0.0351 (9)
C3 0.1875 (5) 0.5475 (5) 0.8856 (4) 0.0324 (8)
C5 0.7966 (5) 0.7952 (5) 0.6660 (4) 0.0302 (8)
C6 0.9059 (5) 0.7688 (5) 0.5462 (4) 0.0316 (8)
C7 0.8142 (5) 0.6629 (5) 0.4948 (4) 0.0303 (8)
C8 0.5043 (5) 0.5251 (5) 0.5895 (4) 0.0270 (8)
C9 0.3535 (5) 0.5077 (5) 0.6926 (4) 0.0281 (8)
C10 0.6475 (5) 0.6268 (5) 0.5862 (4) 0.0276 (8)
C11 0.1342 (6) 0.3099 (6) 0.6326 (4) 0.0366 (9)
H11A 0.1876 0.1861 0.6543 0.055*
H11B 0.1723 0.3674 0.5382 0.055*
H11C 0.0049 0.3090 0.6512 0.055*
C12 −0.0797 (6) 0.3529 (6) 0.9117 (5) 0.0431 (10)
H12A −0.1553 0.3527 0.8465 0.052*
H12B −0.1451 0.4254 0.9715 0.052*
C13 −0.0418 (6) 0.1567 (7) 0.9948 (5) 0.0499 (12)
H13A 0.0301 0.0868 0.9369 0.075*
H13B −0.1540 0.1020 1.0343 0.075*
H13C 0.0224 0.1577 1.0655 0.075*
C14 0.1347 (6) 0.6081 (7) 1.0132 (4) 0.0413 (10)
H14A 0.1835 0.5190 1.0855 0.062*
H14B 0.0053 0.6200 1.0360 0.062*
H14C 0.1814 0.7245 1.0001 0.062*
C15 0.8397 (6) 0.8963 (6) 0.7588 (4) 0.0361 (9)
H15A 0.7799 1.0175 0.7399 0.054*
H15B 0.9679 0.9044 0.7447 0.054*
H15C 0.7988 0.8318 0.8513 0.054*
C16 1.0806 (5) 0.8544 (6) 0.4829 (4) 0.0389 (10)
H16A 1.1569 0.7774 0.4309 0.047*
H16B 1.1432 0.8623 0.5537 0.047*
C17 1.0483 (7) 1.0477 (8) 0.3892 (6) 0.0574 (13)
H17A 0.9845 1.0403 0.3199 0.086*
H17B 1.1624 1.0975 0.3478 0.086*
H17C 0.9778 1.1258 0.4414 0.086*
C18 0.8839 (5) 0.6043 (6) 0.3675 (4) 0.0360 (9)
H18A 0.8205 0.6770 0.2966 0.054*
H18B 0.8652 0.4772 0.3831 0.054*
H18C 1.0107 0.6211 0.3411 0.054*
C19 0.5140 (5) 0.4246 (5) 0.4844 (3) 0.0261 (8)
C20 0.5436 (5) 0.2340 (5) 0.5209 (4) 0.0301 (8)
H20 0.5614 0.1730 0.6088 0.036*
C21 0.5466 (6) 0.1342 (5) 0.4278 (4) 0.0303 (8)
H21 0.5671 0.0071 0.4528 0.036*
C22 0.5189 (5) 0.2260 (5) 0.2965 (4) 0.0254 (7)
C23 0.4937 (5) 0.4163 (5) 0.2583 (3) 0.0282 (8)
H23 0.4788 0.4774 0.1698 0.034*
C24 0.4907 (5) 0.5152 (5) 0.3523 (3) 0.0279 (8)
H24 0.4731 0.6426 0.3267 0.033*
C25 0.5156 (5) 0.1132 (5) 0.2014 (4) 0.0286 (8)
C26 0.4590 (6) 0.1106 (6) −0.0125 (4) 0.0413 (10)
H26A 0.4132 0.1912 −0.0898 0.062*
H26B 0.3814 0.0124 0.0287 0.062*
H26C 0.5787 0.0608 −0.0409 0.062*
B4 0.4806 (6) 0.7180 (6) 0.8069 (4) 0.0308 (9)

1 Source of materials

The target compound was synthesized according to the procedure reported in ref 5. Good quality orange single-crystals were obtained by the slow evaporation of the ethyl acetate solution.

2 Experimental details

The structure of the as title compound was solved using Shelxt 2 and refined by Shelxl program 3 through the Olex2 interface. 4 All hydrogen atoms were positioned at calculated coordinates and refined isotropically. The crystal was refined as a two-component twin. The diffraction intensities were integrated according to a non-merohedral twin law: component two is rotated by 179.9507° around [0.00 0.00 1.00] in reciprocal space or [−0.20 −0.33 0.92] in direct space with respect to component one.

3 Comment

Boron dipyrromethene (BODIPY) dyes are extensively employed as organic fluorophores, owing to their outstanding photochemical stability, tunable photophysical properties, and adaptability to structural modifications. 6 , 7 , 8 BODIPY derivatives have been applied in various fields, including optoelectronic materials, subcellular-targeting bioimaging, and as theranostic reagents. 9 , 10 , 11 , 12 , 13 , 14 A successful strategy to achieve a red-shifted spectrum for BODIPY dyes is the incorporation of aromatic moieties at the periphery of the BODIPY scaffold. 15 , 16 , 17 , 18

Single X-ray analysis indicate the expected tetrahedral geometry of the boron center with N,N-chelation and the two fluoro ligands [N–B–N angle (107.2°) F–B–F angle (109.5°)]. Formally, the boron center is coordinated to one of the N atoms via an ionic bond and to the other via a coordination covalent bond to form a slightly strained-six membered ring that is perpendicular to the plane of the F–B–F group. No C–H⋯π or π–π stacking connections were detected in the complex lattice. Bond lengths are in the expected ranges. 19


Corresponding authors: Rabia Usman and Hanan A. Henidi, Research Department, Natural and Health Science Research Center, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia, E-mail: (R. Usman), (H. A. Henidi)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R325), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, O. D. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2015.Search in Google Scholar

2. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Shipalova, M.; Bobrov, A.; Usoltsev, S.; Marfin, Y. S.; Rumyantsev, E. Influence of Structure and Solvatation on Photophysical Characteristics of Meso-Substituted Boron Dipyrrins in Solution and Bulk Hybrid Materials. J. Mol. Liq. 2019, 283, 688–694; https://doi.org/10.1016/j.molliq.2019.03.099.Search in Google Scholar

6. Loudet, A.; Burgess, K. BODIPY Dyes and their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932; https://doi.org/10.1021/cr078381n.Search in Google Scholar PubMed

7. Kolemen, S.; Akkaya, E. U. Reaction-Based BODIPY Probes for Selective Bio-Imaging. Coord. Chem. Rev. 2018, 354, 121–134; https://doi.org/10.1016/j.ccr.2017.06.021.Search in Google Scholar

8. Ulrich, G.; Ziessel, R.; Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. 2008, 47, 1184–1201; https://doi.org/10.1002/anie.200702070.Search in Google Scholar PubMed

9. Ziegler, C. J.; Chanawanno, K.; Hasheminsasab, A.; Zatsikha, Y. V.; Maligaspe, E.; Nemykin, V. N. Synthesis, Redox Properties, and Electronic Coupling in the Diferrocene Aza-Dipyrromethene and azaBODIPY Donor–Acceptor Dyad with Direct Ferrocene-α-Pyrrole Bond. Inorg. Chem. 2014, 53, 4751–4755; https://doi.org/10.1021/ic500526k.Search in Google Scholar PubMed

10. Zhang, G.; Wang, M.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. H. Lewis-Acid-Catalyzed BODIPY Boron Functionalization Using Trimethylsilyl Nucleophiles. Inorg. Chem. 2018, 57, 14493–14496; https://doi.org/10.1021/acs.inorgchem.8b02775.Search in Google Scholar PubMed

11. Wang, M.; Zhang, G.; Bobadova-Parvanova, P.; Merriweather, A. N.; Odom, L.; Barbosa, D.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. H. Synthesis and Investigation of Linker-Free BODIPY-Gly Conjugates Substituted at the Boron Atom. Inorg. Chem. 2019, 58, 11614–11621; https://doi.org/10.1021/acs.inorgchem.9b01474.Search in Google Scholar PubMed

12. Ziessel, R.; Ulrich, G.; Haefele, A.; Harriman, A. An Artificial Light-Harvesting Array Constructed from Multiple Bodipy Dyes. J. Am. Chem. Soc. 2013, 135, 11330–11344; https://doi.org/10.1021/ja4049306.Search in Google Scholar PubMed

13. Bernhard, C.; Goze, C.; Rousselin, Y.; Denat, F. First Bodipy-DOTA Derivatives as Probes for Bimodal Imaging. Chem. Commun. 2010, 46, 8267–8269; https://doi.org/10.1039/c0cc02749a.Search in Google Scholar PubMed

14. Brizet, B.; Goncalves, V.; Bernhard, C.; Harvey, P. D.; Denat, F.; Goze, C. DMAP-BODIPY Alkynes: A Convenient Tool for Labeling Biomolecules for Bimodal PET-Optical Imaging. Chem. Eur. J. 2014, 20, 12933–12944; https://doi.org/10.1002/chem.201402379.Search in Google Scholar PubMed

15. Xiao, X.; Tian, W.; Imran, M.; Cao, H.; Zhao, J. Controlling the Triplet States and their Application in External Stimuli-Responsive Triplet–Triplet-Annihilation Photon Upconversion: From the Perspective of Excited State Photochemistry. Chem. Soc. Rev. 2021, 50, 9686–9714; https://doi.org/10.1039/d1cs00162k.Search in Google Scholar PubMed

16. Ramu, V.; Gautam, S.; Kondaiah, P.; Chakravarty, A. R. Diplatinum(II) Catecholate of Photoactive Boron-Dipyrromethene for Lysosome-Targeted Photodynamic Therapy in Red Light. Inorg. Chem. 2019, 58, 9067–9075; https://doi.org/10.1021/acs.inorgchem.9b00567.Search in Google Scholar PubMed

17. Zatsikha, Y. V.; Maligaspe, E.; Purchel, A. A.; Didukh, N. O.; Wang, Y.; Kovtun, Y. P.; Blank, D. A.; Nemykin, V. N. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs. Inorg. Chem. 2015, 54, 7915–7928; https://doi.org/10.1021/acs.inorgchem.5b00992.Search in Google Scholar PubMed

18. Xu, H.; Yao, S.; Chen, Y.; Zhang, C.; Zhang, S.; Yuan, H.; Chen, Z.; Bai, Y.; Yang, T.; Guo, Z.; He, W. Tracking Labile Copper Fluctuation In Vivo/Ex Vivo: Design and Application of a Ratiometric Near-Infrared Fluorophore Derived from 4-Aminostyrene-Conjugated Boron Dipyrromethene. Inorg. Chem. 2021, 60, 18567–18574; https://doi.org/10.1021/acs.inorgchem.1c01779.Search in Google Scholar PubMed

19. Al-Hazmi, G. H.; Refat, M. S.; Usman, R.; Khan, A. A. The Crystal Structure of 2,8-diethyl-1,3,7,9-tetramethyl-4λ4,5λ4-spiro[dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine-5,2′-naphtho[1,8-de][1,3,2]dioxaborinine], C25H29BN2O2. Z. Kristallogr. - N. Cryst. Struct. 2024, 239, 477–479; https://doi.org/10.1515/ncrs-2024-0053.Search in Google Scholar

Received: 2024-09-26
Accepted: 2024-11-13
Published Online: 2024-11-27
Published in Print: 2025-02-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of the co-crystal 2,4,6-triamino-1,3,5-triazine-1,3-dioxide — acetic acid (1/2) C7H14N6O6
  4. Crystal structure of the dinuclear mercury(II) complex bis(μ2-bromido)-dibromido-bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-ethyl-5-methyl-imidazol)-κ1 N} dimercury(II), C26H30N10Hg2Br4
  5. Crystal structure of poly[hexaqua-pentakis(μ4-2,2′-bipyridine-4,4′-dicarboxylato-κ4 O:O′:O″:O‴)-(μ2-2,2′-bipyridine-4,4′-dicarboxylato-κ2 O:O)tetraytterbium(III)] hydrate, C36H26N6O16Yb2
  6. Hydrothermal synthesis and crystal structure of catena-poly[(1,10-phenanthroline-κ 2 N,N′)-bis(μ 2-nitroisophthalato-κ 3 O,O′:O″)nickel(II)], C20H13NiN3O7
  7. Crystal structure of 72,73,75,76-tetrafluoro-25,44-dimethyl-31,33,36,38-tetraoxo-31,32,33,36,37,38-hexahydro-3(2,7)-benzo[lmn][3,8]phenanthrolina-1,5(4,1)-dipyridin-1-iuma-2,4(1,2),7(1,4)-tribenzenacyclooctaphane-11,51-diium hexafluoridophosphate, [C46H28F4N4O4][PF6]2, a dicationic cyclophane
  8. Crystal structure of (E)-2-(4-(1H-imidazol-1-yl)benzylidene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C20H15FN2O
  9. The salt crystal structure of etoricoxib hydrochloride, C18H16Cl2N2O2S
  10. The structure of t-butyl 7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate, C37H43FN2O5
  11. The crystal structure of (μ4-oxo)-tri(μ4-2,2′-bipyridine-6,6′-bis(olato)-κ5 O,O′:N:N′:O″)tetrazinc(II) – methylformamide (1/1), C33H25N7O8Zn4
  12. The co-crystal structure of 4-chlorobenzophenone–salicylhydrazide(1/1), C20H17ClN2O3
  13. Crystal structure of 9-fluoro-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  14. The crystal structure of the co-crystal composed of benzhydrazide and 5-aminoisophthalic acid, C8H7NO4⋅C7H8N2O
  15. The cocrystal structure of praziquantel-hesperetin (1/1), C35H38N2O8
  16. Crystal structure of new barium manganese fluorides dihydrates, Ba10Mn2F25·2H2O
  17. The crystal structure of bis[μ2-(3-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)propanoate-κ2O:N)-bis(2,2′-bipyridine-κ2 N, N′)dicopper(II)]dinitrate, C42H36Cu2N12O10
  18. Crystal structure of (3,6-di(2-pyridyl)-4-phenylaminopyridazine-κ2N,N′)-bis(2-(p-toluene)pyridinyl-κ2C,N)-iridium(III) hexafluorophosphate –dichloromethane (1/1), C45H37Cl2F6IrN7P
  19. The crystal structure of 2-(2′-carboxybenzyl)benzoic acid, C15H12O5
  20. The crystal structure of dichlorido-[(E)-N′,N″-bis((2E,3E)-3-(hydroxyimino)butan-2-ylidene)-2-((E)-3-(hydroxyimino)butan-2-ylidene)hydrazine-1-carbohydrazonhydrazide-κ 4 N 4]cobalt(II), C13H22N9O3Cl2Co
  21. Crystal structure of (−)-flavesine H, C15H22N2O2
  22. Crystal structure of 3-methoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H22O4
  23. Crystal structure of dicarbonyl(2-oxopyridin-1(2H)-olato-κ 2 O,O)iridium(I), C7H4IrNO4
  24. The crystal structure of 4-(3-(triphenylphosphonio)propyl)piperazin-1-ium dibromide trihydrate, C25H37Br2N2O3P
  25. The crystal structure of ethyl 5,6-dihydroxybenzofuran-3-carboxylate, C11H10O5
  26. Crystal structure of 14-(R)-(2′-cyano-phenoxy)-3,19-diacetyl andrographolide, C31H37NO7
  27. The twinned crystal structure of 10-(4-methyl benzoate)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-di-pyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinin-4-ium-5-uide, C25H29BF2N2O2
  28. The crystal structure of (9H-thioxanthen-9- ylidene)hydrazine monohydrate, C13H11N2SO0.5
  29. The crystal structure of pyridinium diaqua-{1,2-phenylenebis((carboxylatocarbonyl)amido-κ4 N,N′,O,O′)manganese(III), C15H14MnN3O8
  30. Crystal structure of the hydrogen storage active high entropy phase Tb0.82Sm0.18Ni0.83Co0.17Mg
  31. Crystal structure of diaqua-bis[5-methyl-1-(1H-pyrazol-3-yl)-1H-1,2,3-triazole-4-carboxylato-κ 2 N,O)]manganese(II), C14H16MnN10O6
  32. Crystal structures of diiodido-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one-cadmium(II)
  33. Synthesis and crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3,5-dimethoxybenzoate, C14H18O7
  34. Crystal structure of isoxazolo[4,5-b]pyridin-3-amine, C6H5N3O
  35. Crystal structure of 4-chloro-1-isobutyl-1H-imidazo, C14H14ClN3
  36. The crystal structure of 1,1,1,2,2,2-hexakis(2-methyl-2-phenylpropyl)distannane,C60H78Sn2
  37. The crystal structure of (2,7-dimethoxynaphthalene-1,8-diyl)bis((3-nitrophenyl)methanone), C26H18N2O8
  38. Crystal structure of diaqua-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II) dinitrate dihydrate, C60H76Cl8N14O14Zn
  39. The crystal structure of diphenyl bis(2-((diphenoxyphosphoryl)amino)ethyl)phosphoramidate monohydrate C40H42N3O10P3
  40. Crystal structure of 4,4′-bis(dibromomethyl)-1,1′-biphenyl, C14H10Br4
  41. Crystal structure of CaPtZn
  42. Crystal structure of 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid, C7H3ClF3NO2
  43. The crystal structure of (3′-(2-bromophenyl)-2-phenyl-[2,2′-bioxiran]-3-yl)(phenyl)methanone, C92H68O12Br4
  44. Crystal structure of ethyl 4-(4-benzylpiperazin-1-yl)benzoate, C20H24N2O2
  45. The crystal structure of bis(selenocyanato-κ1 N)-bis(methanol)-bis((1E,2E)-1,2-bis (1-(pyridin-4-yl)ethylidene)-hydrazine)iron(II) methanol solvate, C34H44FeN10O4Se2
  46. Crystal structure of (E)-1-(5-bromo-2-hydroxyphenyl)-3-(5-(4-methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one, C26H21BrN2O4
  47. The crystal structure of methyl 4-(4-(methylsulfonyl)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO5S
  48. Crystal structure of 1′,3′-dihydro-2,2′-spirobi[indene]-1,3-dione, C17H12O2
  49. Crystal structure of (E)-2,2′,3,3′-tetrahydro-[1,1′-biindenylidene]-4,4′-diol, C18H16O2
  50. Crystal structure of di-glycylglycinium squarate dihydrate, C12H22N4O12, at 105 K
  51. Crystal structure of {[(4-fluorophenyl)methyl]triphenylphosphonium}dibromocopper(I), [C25H21FP]+[CuBr2]
  52. Crystal structure of poly[diaqua-bis(μ2-5-((pyridin-4-yl-methyl)amino)benzene-1,3-dicarboxylato-κ 2 N:O)cadmium(II)], C28H26CdN4O10
Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0375/html?lang=en
Scroll to top button