Startseite The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]−} n
Artikel Open Access

The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n

  • Airong Wang , Hangyi An , Xiaoli Wang , Zhongfeng Shi EMAIL logo und Jiaming Li ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2024

Abstract

[CuC12H10N4]⋅[CuCl2], triclinic, P1̄ (no. 2), a = 4.2957(9) Å, b = 8.718(2) Å, c = 9.878(3) Å, α = 67.58(2)°, β = 78.97(2)°, γ = 80.043(19)°, V = 333.63(15) Å3, Z = 1, Rgt (F) = 0.0360, wRref (F 2) = 0.0998, T = 296 K.

CCDC no.: 2359241

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Green block
Size: 0.25 × 0.18 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.58 mm−1
Diffractometer, scan mode: XtaLAB Mini (ROW), ω
θ max, completeness: 25.1°, >99 %
N(hkl)measured, N(hkl)unique, R int: 1789, 1187, 0.019
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 990
N(param)refined: 94
Programs: CrysAlisPRO, 1 Olex2, 2 SHELX, 3 , 4 PLATON 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.9474 (7) 0.7094 (4) 0.2918 (4) 0.0343 (8)
H1 1.004994 0.637199 0.239844 0.041*
C2 0.7274 (8) 0.8165 (5) 0.4541 (4) 0.0453 (9)
H2 0.601788 0.830286 0.537368 0.054*
C3 0.9196 (9) 0.9248 (5) 0.3568 (4) 0.0424 (9)
H3 0.950204 1.026654 0.359280 0.051*
C4 1.2854 (6) 0.9292 (4) 0.1247 (3) 0.0261 (7)
C5 1.3823 (8) 1.0835 (4) 0.0960 (4) 0.0346 (8)
H5 1.303161 1.140303 0.160434 0.042*
C6 1.4055 (7) 0.8475 (4) 0.0270 (4) 0.0355 (8)
H6 1.341240 0.744084 0.045038 0.043*
Cl1 0.2927 (3) 0.60226 (12) 0.79794 (12) 0.0598 (4)
Cu1 0.500000 0.500000 0.500000 0.0462 (3)
Cu2 0.000000 0.500000 1.000000 0.0629 (3)
N1 0.7424 (6) 0.6806 (3) 0.4130 (3) 0.0358 (7)
N2 1.0652 (5) 0.8573 (3) 0.2514 (3) 0.0273 (6)

1 Source of materials

All chemicals were purchased from commercial sources and used as received. A mixture of CuCl2·6H2O (2.0 mL 0.10 mol/L CuCl2, 0.20 mmol), 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (0.0489 g, 0.10 mmol), 1,4-bis-(1H-imidazol-1-yl)benzene (1,4-bis-(1H-imidazol-1-yl)benzene is abbreviated as bib, 0.0211 g, 0.10 mmol), NaOH (2.0 mL 0.10 mol L−1 NaOH, 0.20 mmol), and H2O/ethanol (4.0 mL/3.0 mL) was added to a 25 mL Teflon-lined stainless steel reactor and heated at 413 K for 4 days. After cooling to room temperature at a rate of 283 K h−1, light-yellow block-shaped crystals of I were collected by filtration, washed with anhydrous ethanol and dried in air. Phase pure crystals were obtained by manual separation (Yield: 16.3 mg ca. 40 % based on 1,4-bis-(1H-imidazol-1-yl)benzene). Anal. Calc. for I: C12H10Cl2Cu2N4 (%) (Mr = 408.22): C, 35.28; H, 2.45; N, 13.72. Found: C, 35.30; H, 2.43; N, 13.71. (CCDC number 2359241).

2 Experimental details

CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) empirical absorption correction was done using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 1 Using Olex2, 2 the structure was solved with the ShelXT 3 structure solution program and refined with the ShelXL 4 refinement package. Carbon-bound hydrogen atoms were placed in calculated positions (d = 0.93 Å) for CH and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2U eq(C) for –CH. The structure was examined using the ADDSYM subroutine of PLATON 5 to ensure that no additional symmetry could be applied to the models.

3 Comment

Coordination with nitrogen-containing heterocyclic ligands, represent a type of metal-ligand coordination compounds in which the metal centers are interconnected by organic linkers to display a variety of infinite supramolecular networks. 6 The rational assembly of coordination polymers from organic ligands and metal ions is currently of significant interest due to their interesting topologies and applications. 7 11 One of the most fruitful choices consists in making good use of imidazole and its derivatives, which have attracted great attentions due to their abilities to construct the structures with special topologies, and significant progress has been achieved in the aspect of coordination assemblies based on bis(imidazole) derivatives with different metal centers other than Cu element. The reactions of Cu salts with diversified imidazole-containing flexible ligand have afforded various coordination networks. 12 16 Cu(I) coordination compounds comprised of imidazole-containing ligands have been reported scarcely. 17 , 18

In this study, we seek to use 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine and 1,4-bis-(1H-imidazol-1-yl)benzene, as organic ligands for Cu centers. Unfortunately, these combinations led unexpectedly to a Cu(I) coordination polymer, {[Cubib][CuCl2]} n (I), which has been synthesized by hydrothermal methods and characterized by single-crystal X-ray diffraction and elemental analysis. The single-crystal X-ray diffraction analysis reveals that I is an one-dimensional polymer. The asymmetric unit of I consists of a half-molecule of the formula [Cu(bib)][CuCl2] with two half Cu(I) cations, a Cl anion, and half of a neutral auxiliary bib ligand (Figure 1a). Notably, the entire structure exhibits electrical neutrality, contains a crystallographically independent [Cu(bib)]+ cation and a crystallographically individual [CuCl2] anion, respectively. The Cu1 site is included in the centrosymmetrical [Cu(bib)]+ moiety, and the Cu2 position involved in the centrosymmetric [Cu(bib)]+ unit. Both of them have an identical two-coordinated linear geometry and are coordinated to two symmetry related Cl for Cu1 and two N-donors from two symmetry operation bib ligands for Cu2, and were located at the centre of symmetry. The bond lengths of Cu2–Cl1 [Cu2–Cl ii  = 2.1046(12) Å, symmetry code: ii −x, 1 − y, 2 − z] and Cu1–N1 [Cu1–N1 iii  = 1.869(3) Å, symmetry code: iii 1 − x, 1 − y, 1 − z] are 2.1046(12) and 1.869(3) Å, and the both bond angles of Cl1–Cu2–Cl1 ii and N1–Cu1–N1 iii are 180°, which are in agreement with those in reported Cu(I) complexes. 8 The above mentioned bond lengths, bond angles, and coordination numbers reflect the essential characteristics of monovalent copper(I), rather than divalent copper(II) in I. The symmetry-related bib ligands bond to two Cu+ cations with a normal μ 2-bridge coordination fashion by the upside-down fashion through their N-atoms, resulting in a substructural block [Cu(bib)]+. These neighboring [Cu(bib)]+ are further interconnected through the μ 2-bib bridge to form an one-dimensional infinite framework with a Cu⋯Cu separation of 13.23(4) Å.

Figure 1: 
The cation [Cu(bib)]+ and the anion [CuCl2]− interaction in I, and further assembled to a two-dimensional layer structure with the symmetry-related hydrogen bond C–H⋯Cl. (a) The structure of I, showing the atom numbering scheme l (symmetry codes: i 3 − x, 2 − y, −z; ii −x, 1 − y, 2 − z); (b) view of the 2D C–H⋯Cl hydrogen bonded framework in I. The dashed line shows the inter-molecular C–H⋯Cl hydrogen bond.
Figure 1:

The cation [Cu(bib)]+ and the anion [CuCl2] interaction in I, and further assembled to a two-dimensional layer structure with the symmetry-related hydrogen bond C–H⋯Cl. (a) The structure of I, showing the atom numbering scheme l (symmetry codes: i 3 − x, 2 − y, −z; ii −x, 1 − y, 2 − z); (b) view of the 2D C–H⋯Cl hydrogen bonded framework in I. The dashed line shows the inter-molecular C–H⋯Cl hydrogen bond.

In the crystal of (I), all potential hydrogen bond acceptors and donors participate in charge-assisted hydrogen bonding interactions. The cations [Cu(bib)]+ and anions [CuCl2] associate about a 2-fold axis via phenyl–C–H⋯Cl hydrogen bonds [C1–H1⋯Cl1 iii : H1⋯Cl1 iii  = 2.79(9) Å, C1⋯Cl1 iii  = 3.52(4) Å with angle at H1 = 135(2)° and C2–H2⋯Cl1: H1⋯Cl1 = 2.83(6) Å, C2⋯Cl1 = 3.52(9) Å with angle at H2 = 132(3)° for symmetry operation (iii): 1 − x, 1 − y, 1 − z] leading to two edge-sharing (–N1–Cu–N1 iii ) eight-membered {Cl1⋯H2–C2–N1–Cu1–N1 iii –C1 iii –H1 iii ⋯Cl1} and {Cl1 iii ⋯H1–C1–N1–Cu1–N1 iii –C2 iii –H2 iii ⋯Cl1 iii } synthons. The bond angle of C1–H1⋯Cl1 iii and C2–H2⋯Cl1 are 135(2)° and 132(3)°, which exceed the preferred minimum hydrogen bond angle of 110°; and the distances C1⋯Cl1 iii and C2⋯Cl1 are 3.52(4) Å and 3.52(9) Å, which are almost equal to the sum of the van der Waals radii of C and Cl (3.52 Å). 19 Therefore, it belongs to a strong C–H⋯Cl hydrogen bond, compared with the reported literature. 20 , 21 Two [CuCl2] anions and two bib ligands are connected with four C–H⋯Cl hydrogen bonds, resulting in a edge-sharing (Cl–Cu–Cl) 28-membered oversize ring (Figure 1b). These 8- and 28-membered hydrogen bonded rings comprise alternating reversed linkers among the cations [Cu(bib)]+ and the cations stacked along the b-axis, constructing a two-dimensional framework. Each [Cu(bib)]+ cation links four [CuCl2] anions with two pairs of inverse centrosymmetric C–H⋯Cl as a hydrogen-bonded substructural unit [H1/H2⋯Cl–Cu–Cl⋯H1/H2] (Figure 1b), which is further extended by bib ligands. From the topological point of view, each [Cu(bib)]+ cation can be considered to act as a 4-connected node, and each [CuCl2] anion links 4 [Cu(bib)]+ cations, which can be considered to a linker in I. Interestingly, the 2D Cu(I)-based hydrogen-bonded organic frameworks can be topologically simplified as a 4-connected unnodal sql net with a Schläfli symbol {44·62} as analyzed with the TOPOS 4.0 program. 22

In addition, the complex has ππ stacking interaction (Cg1/Cg2 iv , Cg1/Cg2 v , Cg2/Cg1 vi , Cg2/Cg1 v , symmetry codes: iv −1 + x, y, z; v 2 − x, 2 − y, −z; vi 1 + x, y, z) between the imidazole ring (5-membered ring, Cg1: N1/C1/N2/C3/C2) and the phenyl ring (6-membered ring, Cg2: C4/C5/C6 i /C4 i /C5 i /C6) related to the bib ligands. The dihedral angles between the Cg1/Cg2 iv or Cg1/Cg2 v or Cg2/Cg1 vi or Cg2/Cg1 v is 1.38(18)°, with a centroid-to-centroid distance of 3.802(2) Å, and a perpendicular distance of 3.4207(15) or 3.4580(13) Å. Furthermore, a meat l − π interaction (Cu1⋯cg1 vi or Cu1⋯cg1 vii , symmetry code: vii 2 − x, 1 − y, 1 − z) exists between the Cu1 and the flanking imidazole ring of bib ligands. The dihedral angle (β) between the Cu1/Cg1 vi or Cu1/Cg1 vii is 20.45(18)°, with a centroid-to-centroid (Cu1⋯cg1 vi or Cu1⋯cg1 vii ) distance of 3.802(2) Å, and a perpendicular distance of 3.26(4) Å. Thus, through hydrogen bonds C–H⋯Cl, and ππ as well as with Cu⋯π interactions, the [Cu(bib)]+ and [CuCl2] in I, is expanded into a stable three-dimensional supramolecular architecture.


Corresponding authors: Zhongfeng Shi and Jiaming Li, Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, People’s Republic of Chin a, E-mail: (Z. Shi), (J. Li)

Funding source: Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University

Award Identifier / Grant number: (Grant No. 2023ZZKT01)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This research was funded by the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University (Grant No. 2023ZZKT01).

References

1. Oxford Diffraction Ltd, CrysAlisPRO . Rigaku Oxford Diffraction, Version 1.171.39.6a; England, 2018.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Shelxtl – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

6. Sun, H.-X.; Liu, D.-J.; Zhang, Y.; Wu, Y.; Fang, M.; Liu, H.-K. Syntheses, Structures and Properties of Two 1D Chain Coordination Polymers Based on Bis(imidazole) Ligand. Chin. J. Inorg. Chem. 2012, 28, 2205–2210.Suche in Google Scholar

7. Ge, Y.; Cui, X.-Y.; Tan, S. M.; Jiang, H.; Ren, Y.; Lee, N.; Lee, R.; Tan, C. Guanidine-Copper Complex Catalyzed Allylic Borylation for the Enantioconvergent Synthesis of Tertiary Cyclic Allylboronates. Angew. Chem., Int. Ed. 2019, 58, 2382–2386; https://doi.org/10.1002/anie.201813490.Suche in Google Scholar PubMed

8. Xiao, Z.-M.; Yang, J.-X.; Chen, X.; Tang, W.-J.; Peng, S.-K.; Hao, D.-B.; Zhao, Z.-P.; Zheng, J.; Li, D. A Fluorescence-Phosphorescence Dual-Emissive Cu3(pyrazolate)3 Complex with Highly Tunable Emission Colours for Anticounterfeiting and Temperature Sensing. Inorg. Chem. Front. 2024, 11, 1808–1818; https://doi.org/10.1039/d3qi02466k.Suche in Google Scholar

9. Lu, J.-N.; Liu, J.; Zhang, L.; Dong, L.-Z.; Li, S.-L.; Lan, Y.-Q. Crystalline Mixed-Valence Copper Supramolecular Isomers for Electroreduction of CO2 to Hydrocarbons. J. Mater. Chem. A 2021, 9, 23477–23484; https://doi.org/10.1039/d1ta07148c.Suche in Google Scholar

10. Li, J. X.; Lu, Y. J.; Quan, K. Y.; Wu, L. B.; Feng, X.; Wang, W. Z. One-pot Cocrystallization of Mononuclear and 1D Cobalt(II) Complexes Based on Flexible Triclopyr and 2,2′-Bipyridine Coligands: Structural Analyses, Conformation Comparison, Non-covalent Interactions and Magnetic Properties. J. Mol. Struct. 2024, 1297, 136830, https://doi.org/10.1016/j.molstruc.2023.136830.Suche in Google Scholar

11. Li, J. X.; Liu, M. Y.; You, X.; Wang, J. Q.; Feng, X. One-pot Cocrystallization of 1D Linear and Zigzag Cobalt(II) Polymers Assembled by Triclopyr and 4,4′-bipyridine: Structural Comparison, Conformational Analysis, Non-covalent Interactions as Well as the Magnetic Property of the Latter. Polyhedron 2024, 249, 116791, https://doi.org/10.1016/j.poly.2023.116791.Suche in Google Scholar

12. Zhang, H.-F.; Chen, Y.-M.; Qin, Y.-R.; Li, Y.-H.; Li, W. CuII and CuI Complexes of 1,1′-(pyridin-2-ylmethylene)-bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridine]: In Situ Generation of the Ligand via Acetic Acid-Controlled Metal-Ligand Reactions. Chinese J. Struct. Chem. 2015, 34, 1417–1427.Suche in Google Scholar

13. Qin, L.; Pan, Z.; Qian, L.; Li, Y.; Guo, Z.; Zheng, H. Anion-selectivity of Cationic Cluster-Organic Nanospheres Based on a Nest-Shaped [MS4Cu3X3] Cluster Monomer with a Ditopic Ligand. CrystEngComm 2013, 15, 5016–5019; https://doi.org/10.1039/c3ce40542g.Suche in Google Scholar

14. Chen, Y.; Li, L.; Chen, Z.; Liu, Y.; Hu, H.; Chen, W.; Liu, W.; Li, Y.; Lei, T.; Cao, Y.; Kang, Z.; Lin, M.; Li, W. Metal-mediated Controllable Creation of Secondary, Tertiary, and Quaternary Carbon Centers: A Powerful Strategy for the Synthesis of Iron, Cobalt, and Copper Complexes with In Situ Generated Substituted 1-Pyridineimidazo[1,5-A]pyridine Ligands. Inorg. Chem. 2012, 51, 9705–9713; https://doi.org/10.1021/ic300949y.Suche in Google Scholar PubMed

15. Li, S.; Li, G.; Wang, W.; Liu, Y.; Cao, Z.-M.; Cao, X.; Huang, Y.-G. A 2D Metal-organic Framework Interpenetrated by a 2D Supramolecular Framework Assembled by CH/π Interactions. Inorg. Chem. Commun. 2021, 130, 108705; https://doi.org/10.1016/j.inoche.2021.108705.Suche in Google Scholar

16. Chen, Y.; Li, L.; Cao, Y.; Wu, J.; Gao, Q.; Li, Y.; Hu, H.; Liu, W.; Liu, Y.; Kang, Z.; Li, J. CuII-mediated Controllable Creation of Tertiary and Quaternary Carbon Centers: Designed Assembly and Structures of a New Class of Copper Complexes Supported by In Situ Generated Substituted 1-Pyridineimidazo[1,5-A]pyridine Ligands. CrystEngComm 2013, 15, 2675–2681; https://doi.org/10.1039/c3ce00012e.Suche in Google Scholar

17. Li, T.; Hu, S.-M.; Du, S.-W. Catena-poly[[[μ-1,4-bis-(imidazol-1-ylmeth-yl)-benzene-κ2N3:N3′]bis-[di-chloro-Copper(II)]]-bis-[μ-1,4-bis-(imidazol-1-ylmeth-yl)benzene]-1:1′κ2N3:N3′; 2:2′κ2N3:N3′]. Acta Crystallogr. 2005, C61, m409–m411.10.1107/S0108270105019682Suche in Google Scholar PubMed

18. Dobrzanska, L.; Lloyd, G. O.; Barbour, L. J. Influence of the Metal-To-Ligand Ratio on the Formation of Metal Organic Complexes. New J. Chem. 2008, 32, 813–819; https://doi.org/10.1039/b800720a.Suche in Google Scholar

19. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Suche in Google Scholar

20. Liu, M.; Yin, C.; Chen, P.; Zhang, M.; Parkin, S.; Zhou, P.; Li, T.; Yu, F.; Long, S. sp2 C–H…Cl Hydrogen Bond in the Con-Formational Polymorphism of 4-Chloro-Phenylanthranilic Acid. CrystEngComm 2017, 19, 4345–4354.10.1039/C7CE00772HSuche in Google Scholar

21. Weng, Q.-Y.; Zhao, Y.-L.; Li, J.-M.; Ouyang, M. Construction of Two Stable Co(II)-based Hydrogen-Bonded Organic Frameworks as a Luminescent Probe for Recognition of Fe3+ and Cr2O72− in H2O. Molecules 2021, 26, 5955; https://doi.org/10.3390/molecules26195955.Suche in Google Scholar PubMed PubMed Central

22. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied Topological Analysis of Crystal Structures with the Program Package Topos. Cryst. Growth Des. 2014, 14, 3576–3586, https://doi.org/10.1021/cg500498k.Suche in Google Scholar

Received: 2024-04-18
Accepted: 2024-05-30
Published Online: 2024-06-19
Published in Print: 2024-08-27

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of hexaquazinc(II) poly[hexakis(μ2-4-methylbenzenesulfinato-κ2O:O′) dizinc(II)]
  4. The crystal structure of poly[((2-(4,5-dihydro-1H-pyrazol-4-yl)-1,3-dioxoisoindoline-5-carbonyl)oxy)(1-(dimethylamino)ethoxy)zinc[II]], C16H14ZnN4O5
  5. Crystal structure of bis[(triaqua-4-iodopyridine-2,6-dicarboxylato-κ 3 N,O,O )cobalt(II)] trihydrate, C14H22N2O17I2Co2
  6. Crystal structure of bis(methanol-κO)-bis(nitrato-kO)-bis(1-((2-(2-chloro-4-(4-chlorophenoxy)phenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole-κN)cadmium(II), C40H42O14N8Cl4Cd
  7. Crystal structure of poly[μ2-dichlorido-(μ2-1-[(2,4-dimethyl-1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2N:N′)cadmium(II)], C11H12CdN6Cl2
  8. The crystal structure of (3aS, 4R, 7S, 7aR)-hexahydro-4, 7-methano-1H-isoindole-1, 3-(2H)-dione, C9H11NO2
  9. The crystal structure of N-(acridin-9-yl)-4-chloro-N-(4-chloro-butanoyl) butanamide, C21H20Cl2N2O2
  10. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5
  11. The crystal structure of tetrakis(μ 2-2-amino-3,5-dibromobenzoate-κ 2 O:O′)-octakis(n-butyl-κ 1 C)-bis(μ 3-oxo)tetratin(II), C60H92Br8N4O10Sn4
  12. Crystal structure of methyl-1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H20N2O2
  13. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  14. Crystal structure of 6,6′-((1E,1′E)-((2-phenylpyrimidine-4,6-diyl)bis(hydrazin-2-yl-1-ylidene))bis(methaneylylidene))bis(2-methoxyphenol)monohydrate, C26H26N6O5
  15. Crystal structure of bis(N,N,N-trimethylbutanaminium) tetrathiotungstate(VI), (BuMe3N)2[WS4]
  16. The crystal structure of 2,3,9-triphenyl-9-(2-phenylbenzofuran-3-yl)-9H-9λ 5-benzo[4,5][1,2]oxaphospholo[2,3-b][1,2,5]oxadiphosphole 2-oxide, C40H28O4P2
  17. Crystal structure of 1–methyl-3-propyl-4-nitro-1H-pyrazole-5-carboxylic acid, C8H11N3O4
  18. Crystal structure of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide, C9H7ClN2OS
  19. The crystal structure of N-benzyl-2-chloro-N-(p-tolyl) acetamide, C16H16ClNO
  20. Crystal structure of 3,4-dimethoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O5
  21. Crystal structure of 2,5-bis(2,5-dimethoxybenzyl)-3,6-dimethyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, C26H28N2O6
  22. Crystal structure of poly[(μ3-5-bromoisophthalato-κ4 O,O′ :O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2 N:N′)cobalt(II)], C20H15BrCoN6O4
  23. The crystal structure of bis(2-(piperidin-1-ium-4-yl)-1Hbenzo[d]imidazol-3-ium) dihydrogen decavanadate, C24H36N6O28V10
  24. Crystal structure of diaqua-bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine3-carboxylato-O,O′)-cobalt(ii)dihydrate, C26H36N4O14Co
  25. Crystal structure of poly[(μ2-5-bromoisophthalato-κ4 O,O :O ,O )-(μ2-1,4-bis(2-methylimidazol-1-ylmethyl)benzene-N:N)cadmium(II)], C24H21BrCdN4O4
  26. The crystal structure of dimethyl 8-(3-methoxy-2-(methoxycarbonyl)-3-oxoprop-1-en-1-yl)-4-methyl-1-(p-tolyl)-1,3a,4,8b-tetrahydro-3H-furo[3,4-b]indole-3,3-dicarboxylate. C28H29NO9
  27. Crystal structure of (3R)-1-(3,5-dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate chloride, C21H23ClN2O4
  28. Synthesis and crystal structure of 3-(4,5-dihydroisoxazol-3-yl)-2-methyl-4-(methylsulfonyl)benzoic acid, C12H13NO5S
  29. The crystal structure of hexaaquamagnesium(II) bis-3-(1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-α]pyridin-1-yl)benzoate, C36H42N4O10Mg
  30. Crystal structure of 4-formyl-2-methoxyphenyl 2-acetoxybenzoate, C17H14O6
  31. Crystal structure of poly[octakis(μ-oxido)-tris(μ-1,1′-[[1,1′-biphenyl]-4,4′-diylbis(methylene)]bis(1H-imidazole))-tetrakis(oxido)-tetra-vanadium-dimanganese(II)dihydrate], C30H29MnN6O7V2
  32. Crystal structure of 4,8a-bis(4-chlorophenyl)-1,5,6-tris(4-fluorobenzyl)-1,4,4a,4b,5,6,8a,8b-octahydrocyclobuta[1,2-b:3,4-c′]dipyridine-3,8-dicarbonitrile, C45H33Cl2F3N4
  33. Crystal structure of benzo[d][1,3]dioxol-5-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H20O5
  34. Crystal structure of N-benzoyl-N-phenylhydroxylaminato-dicarbonylrhodium(I), [Rh(BNA)CO2]
  35. The crystal structure of N-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)-4-methylbenzenesulfonamide, C26H21NO3S
  36. The crystal structure of methyl ((4-aminobenzyl)sulfonyl)-d-prolinate, C13H18N2O4S
  37. The crystal structure of dichlorido-(N-isopropyl-N-(pyridin-2-ylmethyl)propan-2-amine-κ 2 N, N′)palladium(II), C12H20N2PdCl2
  38. Crystal structure of poly[(μ 2-5-hydroxyisophthalato-κ4 O,O′:O″,O‴)-(μ 2-1,4-bis(2-methylimidazolyl)-1-butene-N:N′)nickel(II)], C20H20NiN4O5
  39. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1 N)cobalt(II)}(μ 2-oxido)-hexaoxido-dimolybdenum(VI)— 1-methyl-1H-imidazole (1/2), C32H48CoMo2N16O7
  40. Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
  41. The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
  42. Crystal structure of 1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-hydroxypropan-1-one, C21H18BrO3P
  43. The crystal structure of fac-tricarbonyl(bis(3,5-dimethyl-4H-pyrazole)-κ1 N)-((nitrato)-κ1 O)-rhenium(I)— 3,5-dimethyl-4H-pyrazole(1/1), C18H23N7O6Re
  44. The crystal structure of 4′-chloro-griseofulvin: (2S,6′R)-4′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-3′-ene-2′,3-dione, C16H14Cl2O5
  45. Crystal structure of tetraethylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  46. Crystal structure of 1-cyclohexyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester, C22H27NO4
  47. The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n
  48. The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
  49. Crystal structure of 5,6,3′,4′,5′-pentamethoxy-flavone dihydrate, C20H24O9
  50. Crystal structure of (E)-N-(2-bromophenyl)-4-(4-(3,5-dimethoxystyryl)phenoxy)pyrimidin-2-amine, C26H22BrN3O3
  51. Crystal structure of methyl (3R)-1-(2-bromo-4-fluorophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate hydrochloride hydrate, C19H19BrClFN2O3
  52. The crystal structure of 1-(2-chlorophenyl)-3-(p-tolyl)urea, C14H13ClN2O
  53. The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
  54. Crystal structure of ((benzyl(hydroxy)-amino)(4-chlorophenyl)methyl)-diphenylphosphine oxide, C26H23ClNO2P
  55. The crystal structure of ethyl 3-(1-methyl-1H-indole-2-carbonyl)-2-phenylquinoline-4-carboxylate, C28H22N2O3
  56. The crystal structure of 1,4-bis(1H-imidazol-3-ium-1-yl)benzene dinitrate, C12H12N4 2+·2(NO3 )
  57. Crystal structure of tris(hexafluoroacetylacetonato-κ2O,O′) bis(triphenylphosphine oxide-κ1O)samarium(III), C51H33F18O8P2Sm
  58. Crystal structure of 1-(4-(dimethylamino)phenyl)-2,3-bis(diphenylphosphoryl)propan-1-one, C35H33NO3P2
  59. Crystal structure of diaqua[bis(μ 2-pyridine 2,6-dicarboxylato) bismuth(III) potassium(I)], C14H10BiKN2O10
  60. Crystal structure of (R)-N, N -dimethyl-[1, 1′-binaphthalene]-2, 2′-diamine, C22H20N2
  61. Crystal structure of 1-phenyl-4-(2-furoyl)-3-furyl-1H-pyrazol-5-ol, C18H12N2O4
  62. Crystal structure of bis(14,34-dimethyl[11,21:23,31-terphenyl]-22-yl)diselane, C40H34Se2
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0175/html
Button zum nach oben scrollen