Startseite N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
Artikel Open Access

N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O

  • Lamya H. Al-Wahaibi ORCID logo , Mohammed S. M. Abdelbaky , Santiago Garcia-Granda , Guido J. Reiss ORCID logo , Edward R. T. Tiekink ORCID logo und Ali A. El-Emam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Juli 2023

Abstract

C18H21FN2O, triclinic, P 1 (no. 2), a = 10.6377(5) Å, b = 14.4869(7) Å, c = 21.0557(13) Å, α = 98.583(5)°, β = 91.979(4)°, γ = 90.101(4)°, V = 3206.5(3) Å3, Z = 8, Rgt(F) = 0.0815, wRref(F2) = 0.1930, T = 172 K.

CCDC no.: 2269765

The crystallographic images is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Prism, colourless
Size: 0.34 × 0.10 × 0.08 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.69 mm−1
Diffractometer, scan mode: Xcalibur, ω-scans
θmax, completeness: 67.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 30,239, 11417, 0.110
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 4950
N(param)refined: 794
Programs: CrysAlisPRO [1], SHELX [2, 3], WinGX and ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
F1 −0.1538 (3) 0.4631 (2) 0.55040 (16) 0.0597 (9)
O1 0.5599 (3) 0.6578 (2) 0.71639 (17) 0.0415 (8)
N1 0.3204 (4) 0.6887 (3) 0.68507 (18) 0.0338 (9)
N2 0.3985 (3) 0.7607 (3) 0.71546 (18) 0.0336 (9)
H2N 0.369822 0.817346 0.727422 0.040*
C1 0.1120 (4) 0.6462 (3) 0.6448 (2) 0.0350 (11)
C2 0.1443 (5) 0.5555 (4) 0.6194 (3) 0.0444 (13)
H2 0.228494 0.535208 0.624113 0.053*
C3 0.0548 (5) 0.4944 (4) 0.5871 (3) 0.0443 (13)
H3 0.076772 0.432475 0.569632 0.053*
C4 −0.0653 (5) 0.5250 (4) 0.5812 (3) 0.0456 (14)
C5 −0.1020 (5) 0.6127 (4) 0.6045 (3) 0.0575 (16)
H5 −0.186767 0.631560 0.599507 0.069*
C6 −0.0118 (5) 0.6740 (4) 0.6358 (3) 0.0548 (15)
H6 −0.035062 0.736249 0.651573 0.066*
C7 0.2038 (4) 0.7130 (4) 0.6777 (2) 0.0384 (12)
H7 0.178392 0.774609 0.693797 0.046*
C8 0.5212 (4) 0.7388 (4) 0.7256 (2) 0.0361 (11)
C9 0.6111 (4) 0.8197 (3) 0.7512 (2) 0.0314 (10)
C10 0.6512 (5) 0.8112 (4) 0.8213 (2) 0.0453 (14)
H10A 0.576701 0.819112 0.848521 0.054*
H10B 0.685875 0.748318 0.823221 0.054*
C11 0.7307 (5) 0.8067 (4) 0.7115 (2) 0.0458 (14)
H11A 0.766350 0.744110 0.713743 0.055*
H11B 0.708961 0.810751 0.665882 0.055*
C12 0.5585 (5) 0.9170 (3) 0.7501 (3) 0.0466 (14)
H12A 0.483706 0.925778 0.777056 0.056*
H12B 0.532086 0.924228 0.705622 0.056*
C13 0.7508 (5) 0.8857 (4) 0.8474 (3) 0.0525 (16)
H13 0.775708 0.878971 0.892762 0.063*
C14 0.8651 (5) 0.8715 (4) 0.8059 (3) 0.0545 (15)
H14A 0.930832 0.918032 0.822764 0.065*
H14B 0.899862 0.808439 0.807347 0.065*
C15 0.8286 (5) 0.8819 (4) 0.7374 (3) 0.0523 (16)
H15 0.904661 0.873521 0.710560 0.063*
C16 0.7749 (5) 0.9777 (4) 0.7351 (3) 0.0521 (15)
H16A 0.751900 0.984757 0.690169 0.063*
H16B 0.838849 1.025882 0.751673 0.063*
C17 0.6590 (5) 0.9911 (4) 0.7758 (3) 0.0526 (15)
H17 0.623854 1.054664 0.774022 0.063*
C18 0.6963 (6) 0.9824 (4) 0.8455 (3) 0.0577 (17)
H18A 0.759537 1.030861 0.862512 0.069*
H18B 0.621631 0.991431 0.872523 0.069*
F2 0.4861 (3) 0.2190 (2) 0.40972 (13) 0.0562 (9)
O2 0.2780 (3) 0.4090 (2) 0.79129 (16) 0.0453 (9)
N3 0.3941 (4) 0.4404 (3) 0.68572 (18) 0.0363 (10)
N4 0.3993 (4) 0.5034 (3) 0.74254 (18) 0.0352 (9)
H4N 0.443069 0.555589 0.745206 0.042*
C19 0.4600 (4) 0.4001 (3) 0.5785 (2) 0.0327 (10)
C20 0.3698 (5) 0.3302 (3) 0.5614 (2) 0.0394 (12)
H20 0.301924 0.324673 0.588767 0.047*
C21 0.3786 (5) 0.2684 (4) 0.5043 (2) 0.0451 (13)
H21 0.319606 0.218929 0.492938 0.054*
C22 0.4750 (5) 0.2815 (4) 0.4654 (2) 0.0442 (13)
C23 0.5626 (5) 0.3507 (4) 0.4782 (2) 0.0413 (12)
H23 0.626912 0.357340 0.448995 0.050*
C24 0.5550 (4) 0.4112 (4) 0.5356 (2) 0.0395 (12)
H24 0.614572 0.460531 0.545947 0.047*
C25 0.4598 (4) 0.4620 (3) 0.6406 (2) 0.0314 (10)
H25 0.508376 0.517895 0.646951 0.038*
C26 0.3365 (4) 0.4835 (3) 0.7935 (2) 0.0344 (11)
C27 0.3371 (4) 0.5577 (3) 0.8539 (2) 0.0288 (10)
C28 0.3065 (5) 0.5090 (3) 0.9113 (2) 0.0427 (13)
H28A 0.371876 0.462166 0.917227 0.051*
H28B 0.224562 0.476048 0.903018 0.051*
C29 0.4640 (4) 0.6093 (3) 0.8669 (2) 0.0377 (12)
H29A 0.483979 0.640871 0.829884 0.045*
H29B 0.531617 0.564059 0.872605 0.045*
C30 0.2350 (5) 0.6292 (4) 0.8445 (2) 0.0420 (12)
H30A 0.152904 0.597040 0.834757 0.050*
H30B 0.255068 0.661473 0.807772 0.050*
C31 0.3009 (5) 0.5813 (4) 0.9722 (2) 0.0453 (13)
H31 0.282260 0.548928 1.009629 0.054*
C32 0.4269 (5) 0.6327 (4) 0.9849 (2) 0.0464 (14)
H32A 0.423166 0.678900 1.024537 0.056*
H32B 0.494267 0.587651 0.991403 0.056*
C33 0.4569 (5) 0.6824 (3) 0.9284 (2) 0.0381 (12)
H33 0.539374 0.715926 0.937068 0.046*
C34 0.3535 (5) 0.7519 (3) 0.9191 (2) 0.0417 (12)
H34A 0.372730 0.784598 0.882437 0.050*
H34B 0.349223 0.799138 0.958085 0.050*
C35 0.2271 (5) 0.7011 (4) 0.9060 (2) 0.0445 (13)
H35 0.159639 0.747312 0.899909 0.053*
C36 0.1964 (5) 0.6510 (4) 0.9632 (3) 0.0509 (15)
H36A 0.190143 0.697098 1.002666 0.061*
H36B 0.114669 0.617823 0.954745 0.061*
F3 0.6689 (3) −0.0236 (2) 0.55387 (16) 0.0611 (9)
O3 −0.0344 (3) 0.1633 (2) 0.71402 (16) 0.0394 (8)
N5 0.2065 (4) 0.1920 (3) 0.68900 (18) 0.0347 (9)
N6 0.1310 (3) 0.2625 (3) 0.71977 (18) 0.0346 (9)
H6N 0.162725 0.318169 0.734047 0.041*
C37 0.4112 (4) 0.1494 (3) 0.6539 (2) 0.0357 (11)
C38 0.3746 (4) 0.0629 (3) 0.6197 (2) 0.0375 (12)
H38 0.289247 0.043395 0.619680 0.045*
C39 0.4607 (5) 0.0049 (4) 0.5858 (3) 0.0439 (13)
H39 0.435489 −0.054108 0.562931 0.053*
C40 0.5817 (5) 0.0345 (4) 0.5862 (2) 0.0422 (12)
C41 0.6240 (5) 0.1189 (4) 0.6192 (3) 0.0545 (16)
H41 0.709782 0.137259 0.618955 0.065*
C42 0.5366 (5) 0.1759 (4) 0.6525 (3) 0.0464 (13)
H42 0.563029 0.234767 0.675167 0.056*
C43 0.3224 (4) 0.2131 (3) 0.6878 (2) 0.0340 (11)
H43 0.351481 0.271870 0.709599 0.041*
C44 0.0088 (4) 0.2439 (3) 0.7272 (2) 0.0313 (10)
C45 −0.0728 (4) 0.3251 (3) 0.7566 (2) 0.0353 (11)
C46 −0.2089 (5) 0.3056 (4) 0.7343 (3) 0.0538 (15)
H46A −0.234899 0.243994 0.744633 0.065*
H46B −0.216850 0.303299 0.687116 0.065*
C47 −0.0616 (6) 0.3288 (4) 0.8302 (3) 0.0538 (15)
H47A 0.026748 0.341641 0.845297 0.065*
H47B −0.086967 0.267935 0.841884 0.065*
C48 −0.0328 (5) 0.4207 (4) 0.7412 (3) 0.0464 (13)
H48A −0.035179 0.419665 0.694089 0.056*
H48B 0.054587 0.434740 0.757567 0.056*
C49 −0.2971 (5) 0.3826 (4) 0.7675 (3) 0.0556 (16)
H49 −0.386386 0.369073 0.752636 0.067*
C50 −0.2827 (6) 0.3834 (4) 0.8404 (3) 0.0632 (18)
H50A −0.340666 0.429812 0.862788 0.076*
H50B −0.304900 0.321250 0.851020 0.076*
C51 −0.1490 (5) 0.4079 (4) 0.8629 (3) 0.0566 (16)
H51 −0.141069 0.411402 0.910627 0.068*
C52 −0.1104 (6) 0.4999 (4) 0.8442 (3) 0.0612 (17)
H52A −0.022352 0.514413 0.859248 0.073*
H52B −0.164547 0.549990 0.865460 0.073*
C53 −0.1215 (5) 0.4973 (4) 0.7725 (3) 0.0542 (15)
H53 −0.095974 0.559159 0.761252 0.065*
C54 −0.2543 (5) 0.4752 (4) 0.7493 (3) 0.0545 (15)
H54A −0.260463 0.472072 0.702019 0.065*
H54B −0.310227 0.525645 0.768450 0.065*
F4 −0.0334 (3) 0.2765 (2) 0.59721 (14) 0.0620 (10)
O4 −0.2531 (3) 0.0961 (2) 0.21522 (16) 0.0445 (9)
N7 −0.1316 (4) 0.0564 (3) 0.31933 (17) 0.0338 (9)
N8 −0.1292 (4) −0.0034 (3) 0.26168 (17) 0.0353 (9)
H8N −0.086685 −0.055885 0.258265 0.042*
C55 −0.0573 (4) 0.0947 (3) 0.4269 (2) 0.0338 (11)
C56 −0.1545 (5) 0.1577 (4) 0.4445 (2) 0.0392 (12)
H56 −0.226360 0.158710 0.416539 0.047*
C57 −0.1471 (5) 0.2185 (4) 0.5020 (2) 0.0472 (14)
H57 −0.212765 0.261185 0.514017 0.057*
C58 −0.0425 (6) 0.2148 (4) 0.5406 (2) 0.0467 (14)
C59 0.0536 (5) 0.1543 (4) 0.5278 (2) 0.0438 (13)
H59 0.123491 0.153642 0.557042 0.053*
C60 0.0457 (5) 0.0926 (4) 0.4695 (2) 0.0418 (13)
H60 0.111185 0.048986 0.459014 0.050*
C61 −0.0590 (4) 0.0340 (3) 0.3650 (2) 0.0366 (11)
H61 −0.008234 −0.020246 0.358522 0.044*
C62 −0.1945 (4) 0.0213 (4) 0.2109 (2) 0.0365 (11)
C63 −0.2025 (5) −0.0462 (3) 0.1476 (2) 0.0350 (11)
C64 −0.3339 (5) −0.0928 (4) 0.1427 (3) 0.0501 (15)
H64A −0.399754 −0.044305 0.146757 0.060*
H64B −0.342415 −0.130242 0.178002 0.060*
C65 −0.1029 (5) −0.1222 (4) 0.1413 (2) 0.0470 (13)
H65A −0.110106 −0.159662 0.176705 0.056*
H65B −0.018200 −0.093131 0.144877 0.056*
C66 −0.1897 (5) 0.0107 (3) 0.0924 (2) 0.0418 (12)
H66A −0.105297 0.040275 0.095110 0.050*
H66B −0.253397 0.060732 0.095813 0.050*
C67 −0.1193 (5) −0.1866 (4) 0.0761 (2) 0.0478 (14)
H67 −0.053373 −0.236015 0.072460 0.057*
C68 −0.2499 (6) −0.2316 (4) 0.0720 (3) 0.0626 (18)
H68A −0.261531 −0.273771 0.030629 0.075*
H68B −0.257917 −0.269200 0.107228 0.075*
C69 −0.3506 (5) −0.1566 (4) 0.0770 (3) 0.0540 (16)
H69 −0.435700 −0.186759 0.073771 0.065*
C70 −0.3386 (5) −0.0978 (4) 0.0231 (3) 0.0545 (15)
H70A −0.351713 −0.137758 −0.019077 0.065*
H70B −0.403482 −0.048600 0.026890 0.065*
C71 −0.2081 (5) −0.0534 (4) 0.0276 (2) 0.0462 (13)
H71 −0.200366 −0.015371 −0.008019 0.055*
C72 −0.1084 (5) −0.1282 (4) 0.0213 (2) 0.0502 (14)
H72A −0.023922 −0.098968 0.023304 0.060*
H72B −0.119693 −0.168947 −0.020677 0.060*
  1. aOccupancy: 0.854 (7).

1 Source of material

To a solution of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), in ethanol (10 mL), 4-fluorobenzaldehyde (1.24 g, 0.01 mol) was added, after which the mixture was heated under reflux for 1 h. On cooling, the separated crude product was filtered, washed with cold ethanol, dried and recrystallised from ethanol to yield 2.76 g (92 %) of the title compound as colourless prisms [5]. M.pt 476–478 K. 1 H NMR (DMSO-d6, 500.13 MHz): δ 1.66–1.69 (m, 6H, adamantane–H), 1.88 (s, 6H, adamantane–H), 2.01 (s, 3H, adamantane–H), 5.67 (s, 1H, NH), 7.27–7.29 (m, 2H, Ar–H), 7.85–7.87 (m, 2H, Ar–H), 8.25 (s, 1H, CH=N). 13 C NMR (DMSO-d6, 125.76 MHz): δ 27.45, 34.57, 36.01, 39.95 (adamantane–C), 114.25, 128.85, 131.0, 166.53 (Ar–C), 144.67 (CH=N), 177.06 (C=O).

2 Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C). The N-bound H atoms were located in a difference map and refined with N–H = 0.88 Å and with Uiso(H) = 1.2 Ueq(N). Owing to poor agreement, one reflection, i.e. (2 13 5), was omitted from the final cycles of refinement.

Due to the weak diffracting crystals only about 43 % of the measured reflections are observed (see Table 2). This fact is expressed by an enlarged R factor for all reflections (0.1715). Nevertheless the refinement was convergent and all geometric parameters as well as displacement ellipsoids are all in the plausible ranges. Also the completeness in the choosen 2θ range is near 99 %. Thus we don’t have any doubts concerning the chemical and crystallographic plausability of the title structure.

3 Discussion

Hydrazide and hydrazone derivatives have proved to possess desirable chemotherapeutic activities [6, 7]. In the same way, the adamantane cage was identified some time ago as being an essential building block in various chemotherapeutic agents [8, 9]. In the present study, details of the X-ray structure of the title adamantane-1-carohydrazide-hydrazone analogue, hereafter (I), which was originally prepared as a crucial intermediate [5] for the synthesis of potential chemotherapeutic agents, are described.

There are four independent molecules comprising the asymmetric-unit of (I) and the molecular structures of these are shown in the upper four images of the figure (50 % probability ellipsoids). The molecules comprise an amide residue, with an anti-conformation, connected, via the carbon atom to an adamantanyl residue and via an imine bond to a 4-fluorophenyl ring. The overlay diagram shown in the figure indicates two distinct conformations; the molecules were overlaid so the CNO atoms of the amide residue are coincident; the red, green, blue and pink images represent the O1- to O4-containing molecules, respectively. With respect to the overlay of the fluorophenyl rings, it is evident the O1- and O3-containing molecules adopt similar conformations but distinct to those for the inverted–O2- and O4-molecules. However, there other twists in the molecule indicating there is no clear correlation between the dihedral angles between the least-squares planes through the CNO and C6 atoms, i.e. 12.4(4), 19.8(6), 16.6(5) and 27.0(5)° for the O1- to O4-molecules, respectively. While the C7–N1–N2–C8 torsion angle of 178.8(4)° [the equivalent angles for the O2-, O3- and O4-molecules are −175.3(4), −175.3(4) and −174.1(4)°, respectively] and N2–N1–C7–C1 torsion angle of 177.9(4)° [−179.7(4), −175.9(4) and 179.9(3)°, respectively] are consistent with more or less planar, all-trans conformations, significant conformational differences arise from twists about the imine–C–C(fluorophenyl) bonds, in the O2- and O4-molecules [15.4(8) and 19.3(7)°] compared with effectively co-planar arrangements for the O1- and O3-molecules [−1.0(7) and 1.4(8)°]. The solution NMR results (see Experimental) confirm these differences are due to solid-state effects and are not chemically significant.

There are two closely related derivatives in the literature which differ in their substitution patterns in the phenyl ring, namely, the 2–PPh2 [10] and 2,6-dichloro [11] derivatives, hereafter (II) and (III), respectively. These present the same anti-conformation for the amide residue. The dihedral angles between the least-squares planes through the CNO and C6 atoms of 17.20(13) and 48.97(15)° for (II) and (III), respectively, highlight the rather different conformation adopted in the solid-state by (III) compared with (I) and (II).

The anti-conformation adopted by each of the four independent molecules of (I) facilitates the formation of conventional amide–N–H⋯O(amide) hydrogen bonds [N2–H2n⋯O4 i : H2N⋯O4 i  = 2.06 Å, N2⋯O4 i  = 2.844(5) Å with angle at H2n = 148°; N4–H4n⋯O1: H4n⋯O1 = 2.10 Å, N4⋯O1 = 2.940(5) Å with angle at H4n = 159°; N6–H6n⋯O2: H6n⋯O2 = 2.03 Å, N6⋯O2 = 2.844(5) Å with angle at H6n = 154°; N8–H8n⋯O3 ii : H8n⋯O3 ii  = 2.16 Å, N8⋯O3 ii  = 2.994(5) Å with angle at H8n = 159° for symmetry operations (i): −x, 1 − y, 1 − z and (ii): −x, −y, 1 − z] between all four independent molecules leading to a twisted supramolecular chain along the b-axis as illustrated in the lower image of the figure (hydrogen bonds are represented by orange dashed lines). A myriad of other directional contacts are evident, e.g. fluorophenyl–C–H⋯F, imine- and methylene–C–H⋯O(amide) and imine–C–H⋯N(imine). These serve to connect the supramolecular chains into double-layers with the adamantanyl residues projecting to either side. The layers stack along the c-axis with the adamantanyl residues inter-digitating along this axis.

Previous work has proven systematic analyses of the calculated Hirshfeld surfaces for the individual molecules of crystals with multiple molecules in the asymmetric-unit can provide further evidence for the assigned crystallographic symmetry [12]. Thus, the calculation of the Hirshfeld surfaces and fingerprint plots was undertaken by employing established procedures [13] and CrystalExplorer [14]. Clear distinctions are noted in the percentage contributions to the calculated Hirshfeld surfaces, commencing with H⋯H surface contacts which are computed to be 54.5, 61.6, 55.1 and 61.9 % for the O1–O4-molecules, respectively, compared to 64.7 % calculated for the entire asymmetric-unit. The overall contacts involving H atoms are 94.9, 97.2, 96.2 and 96.7 %, respectively, with the major differences involving C⋯H/H⋯C [15.3, 12.9, 14.8 and 12.7 %], F⋯H/H⋯F [9.9, 7.7, 10.7 and 7.8 %] and O⋯H/H⋯O [8.7, 8.3, 9.1 and 7.9 %] contacts. Differences are also noted in F⋯C/C⋯F surface contacts, i.e. 2.4, 0.4, 1.5 and 0.7 %, respectively. All other contacts, i.e. F⋯N/N⋯F, F⋯O/O⋯F, F⋯F and N⋯N, contribute less than 1.0 % to the individual surfaces.


Corresponding author: Ali A. El-Emam, Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt, E-mail:

Acknowledgments

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CRYSALISPRO; Rigaku Corporation: Oxford, UK, 2015.Suche in Google Scholar

2. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854. https://doi.org/10.1107/S0021889812029111.Suche in Google Scholar

5. Hassan, G. S., El–Emam, A. A., Gad, L. M., Barghash, A. E. M. Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues. Saudi Pharm. J. 2010, 18, 123–128. https://doi.org/10.1016/j.jsps.2010.05.004.Suche in Google Scholar PubMed PubMed Central

6. Manvar, A., Bavishi, A., Radadiya, A., Patel, J., Vora, V., Dodia, N., Rawal, K., Shah, A. Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains. Bioorg. Med. Chem. Lett. 2011, 21, 4728–4731. https://doi.org/10.1016/j.bmcl.2011.06.074.Suche in Google Scholar PubMed

7. Onyeyilim, E. L., Ezeokonkwo, M. A., Ugwu, D. I., Uzoewulu, C. P., Eze, F. U., Okonkwo, V. I., Eze, C. C., Ezugwu, J. A. Carbohydrazide analogues: a review of synthesis and biological activities. Mini Rev. Med. Chem. 2022, 22, 661–682. https://doi.org/10.2174/1389557521666210831154935.Suche in Google Scholar PubMed

8. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., Kuca, K. Adamantane – a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016, 23, 3245–3266. https://doi.org/10.2174/0929867323666160525114026.Suche in Google Scholar PubMed

9. Wanka, L., Iqbal, K., Schreiner, P. R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem. Rev. 2013, 113, 3516–3604. https://doi.org/10.1021/cr100264t.Suche in Google Scholar PubMed PubMed Central

10. Đorđević, M., Jeremić, D., Rodić, M. V., Simić, V., Brčeski, I., Leovac, V. M. Synthesis, structure and biological activities of Pd(II) and Pt(II) complexes with 2-(diphenylphosphino)benzaldehyde 1-adamantoylhydrazone. Polyhedron 2014, 68, 234–240. https://doi.org/10.1016/j.poly.2013.10.029.Suche in Google Scholar

11. Aljohar, H. I., Ghabbour, H. A., Abdelbaky, M. S. M., Garcia–Granda, S., El–Emam, A. A. Crystal structure of N’-[(1E)-(2,6-dichlorophenyl)-methylidene]adamantane-1-carbohydrazide, C18H20Cl2N2O. Z. Kristallogr. – New Cryst. Struct. 2016, 231, 1037–1039. https://doi.org/10.1515/ncrs-2016–0038.10.1515/ncrs-2016-0038Suche in Google Scholar

12. Jotani, M. M., Wardell, J. L., Tiekink, E. R. T. Supramolecular association in the triclinic (Z′ = 1) and monoclinic (Z′ = 4) polymorphs of 4-(4-acetylphenyl)piperazin-1-ium 2-amino-4-nitrobenzoate. Z. Kristallogr. – Cryst. Mater. 2019, 234, 43–57. https://doi.org/10.1515/zkri-2018–2101.10.1515/zkri-2018-2101Suche in Google Scholar

13. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318. https://doi.org/10.1107/S2056989019001129.Suche in Google Scholar PubMed PubMed Central

14. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. https://doi.org/10.1107/S1600576721002910.Suche in Google Scholar PubMed PubMed Central

Received: 2023-04-23
Accepted: 2023-06-14
Published Online: 2023-07-05
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0195/html
Button zum nach oben scrollen