

Xiao-Ying Huang, Shu-Xiang Sun, Chuan-Qi Wang and Pei Yao*

Crystal structure of *catena*-poly[diaqua(μ_2 -2-(hydroxymethyl)-1*H*-imidazole-4,5-dicarboxylato)cadmium(II)], $C_6H_8CdN_2O_7$

<https://doi.org/10.1515/ncrs-2020-0366>

Received July 18, 2020; accepted August 21, 2020; available online September 2, 2020

Abstract

$C_6H_8CdN_2O_7$, monoclinic, $P2_1/c$ (no. 14), $a = 7.3428(15)$ Å, $b = 11.272(2)$ Å, $c = 12.764(4)$ Å, $\beta = 118.73(2)^\circ$, $V = 926.4(4)$ Å 3 , $Z = 4$, $R_{gt}(F) = 0.0261$, $wR_{ref}(F^2) = 0.0609$, $T = 293(2)$ K.

CCDC no.: 2024364

A part of the molecular structure is shown in the figure (#1 = x, 1.5 – y, 0.5 + z). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All chemical reagents were of analytical purity grade and used without further purification. A mixture of $Cd(NO_3)_2 \cdot 4H_2O$ (0.1 mmol), H_4hmIDC (0.1 mmol), methanol (2 mL) and distilled water (2 mL) was sealed in a 25 mL stainless steel container and heated at 393 K for 72 h. After the mixture had been

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	0.21 × 0.20 × 0.18 mm
Wavelength:	$Mo K\alpha$ radiation (0.71073 Å)
μ :	2.38 mm $^{-1}$
Diffractometer, scan mode:	Rigaku Saturn, ω
θ_{\max} , completeness:	28.0°, >99%
$N(hk\ell)_{\text{measured}}$, $N(hk\ell)_{\text{unique}}$, R_{int} :	11145, 2218, 0.023
Criterion for I_{obs} , $N(hk\ell)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 2179
$N(\text{param})_{\text{refined}}$:	146
Programs:	Rigaku [1], SHELX [2, 3]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^* / U_{\text{eq}}$
Cd1	0.76875(3)	0.68699(2)	0.60990(2)	0.02556(8)
N1	0.7686(4)	0.7849(2)	0.46006(19)	0.0229(4)
N2	0.7648(4)	0.80884(18)	0.28531(19)	0.0219(4)
O1	0.7577(3)	0.9575(2)	0.61427(17)	0.0374(5)
O2	0.7387(4)	1.10193(18)	0.49297(19)	0.0351(5)
H2	0.7307	1.1083	0.4269	0.042*
O3	0.7292(4)	1.12567(17)	0.29964(19)	0.0335(5)
O4	0.7522(3)	1.01189(17)	0.16483(17)	0.0294(4)
O5	0.7598(4)	0.54989(19)	0.4501(2)	0.0448(6)
H5A	0.7379	0.4788	0.4359	0.054*
O6	1.1297(3)	0.6522(2)	0.7099(2)	0.0383(5)
H1W	1.1674	0.7167	0.7491	0.046*
H2W	1.1516	0.6036	0.7657	0.046*
O7	0.4021(3)	0.67143(17)	0.51172(19)	0.0321(5)
H3W	0.3730	0.7423	0.4861	0.039*
H4W	0.3657	0.6347	0.4465	0.039*
C1	0.7494(4)	0.9896(3)	0.5212(2)	0.0263(5)
C2	0.7543(4)	0.9035(2)	0.4361(2)	0.0218(5)
C3	0.7518(4)	0.9184(2)	0.3279(2)	0.0210(5)
C4	0.7445(4)	1.0247(2)	0.2591(2)	0.0239(5)
C5	0.7736(4)	0.7328(2)	0.3676(2)	0.0225(5)
C6	0.7877(5)	0.6018(2)	0.3587(3)	0.0281(6)
H6A	0.6813	0.5742	0.2813	0.034*
H6B	0.9224	0.5802	0.3677	0.034*

*Corresponding author: Pei Yao, School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, 213164, Changzhou, Jiangsu, P.R. China, e-mail: yaopeitel@126.com. <https://doi.org/10.1515/ncrs-2020-0366-9492>

Xiao-Ying Huang, Shu-Xiang Sun and Chuan-Qi Wang: School of Chemical Engineering, Henan Technical Institute, 450042, Zhengzhou, Henan, P.R. China

allowed to cool to room temperature at a rate of 5 K h $^{-1}$, light yellow crystals of $Cd(H_2hmIDC)(H_2O)_2$ were obtained (yield 49%, based on Cd).

Experimental details

Hydrogen atoms on carbon atoms were positioned geometrically and refined as riding atoms, with $C-H = 0.97 \text{ \AA}$. Hydrogen atoms of the nondeprotonated carboxylic acid groups of $H_2\text{hmIDC}^{2-}$ and hydroxyl groups ($-OH$) were refined as riding atoms, with $O-H = 0.82 \text{ \AA}$. Hydrogen atoms of the water molecules were located in a difference Fourier map and the $O-H$ distance constrained to 0.85 \AA .

Comment

N-heterocyclic carboxylic acids have been widely used as ligands since they can offer different donors and diverse coordination modes due to the existence of carboxylate groups as well as potential *N*-donors. So far, complexes with various topologies and potential applications have been synthesized [4–9]. *N*-heterocyclic carboxylic acid, 2-(hydroxymethyl)-1*H*-imidazole-4,5-dicarboxylic acid ($H_4\text{hmIDC}$) is a good linker since it has two potential *N*-donors and five potential *O*-donors and can coordinate to almost all soft and hard metal ions with various coordination modes. Up to now, several complexes based on $H_x\text{hmIDC}$ ligand have been reported [6, 7, 10–12].

The asymmetric unit of the title structure consists of one $Cd(\text{II})$ cation, one dianionic $H_2\text{hmIDC}^{2-}$ ligand and two coordinating water molecules. Each $Cd1$ ion is six-coordinated and located in a distorted octahedral CdN_2O_4 coordination environment formed by two *N* atoms ($N1$ and $N2\#1$) and two *O* atoms ($O4\#1$ and $O5$) from two $H_2\text{hmIDC}^{2-}$ anions and by two water molecules ($O6$ and $O7$). The $Cd-O$ bond lengths range from $2.357(2)$ to $2.535(2) \text{ \AA}$ and the $Cd-N$ bond lengths are $2.207(2)$ and $2.254(2) \text{ \AA}$, respectively; these values are within the normal ranges and close to those reported in other $Cd(\text{II})$ complexes [13–15]. $Cd(\text{II})$ ions are linked by $H_2\text{hmIDC}^{2-}$ ligand into one-dimensional chains that run along the c axis. The intra-chain $Cd(\text{II})-Cd(\text{II})$ distance is $6.538(2) \text{ \AA}$. In addition, there are $O-H \cdots O$ intramolecular hydrogen bonds between carboxyl and carboxylate groups, and five $O-H \cdots O$ intermolecular hydrogen bonds involving hydroxyl groups, carboxyl groups, carboxylate groups and water molecules. Adjacent chains are linked by the hydrogen bonds mentioned above, leading to a three-dimensional network.

Acknowledgements: This study was supported by Qinglan Project of Jiangsu Province (2020), Science and Technology Innovation Team of Changzhou Vocational Institute of

Engineering (2020); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1876); Changzhou science and technology support plan (CE20195007).

References

1. Rigaku/MSC. CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA (2006).
2. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **71** (2015) 3–8.
4. Azouzi, K.; Hamdi, B.; Zouari, R.; Salah, A. B.: Synthesis, structure and Hirshfeld surface analysis, vibrational and DFT investigation of (4-pyridine carboxylic acid) tetrachlorocuprate (II) monohydrate. *Bull. Mater. Sci.* **40** (2017) 289–299.
5. Liu, Y. J.; Cheng, D.; Li, Y. X.; Meng, X. R.; Yang, H. X.: A new two-dimensional manganese(II) coordination polymer constructed by 2,2'-(1,2-phenylene)bis(1*H*-imidazole-4,5-dicarboxylate). *Acta Crystallogr. C* **74** (2018) 599–603.
6. Cheng, D.; Liu, Y. J.; Cheng, F. R.; Yang, H. X.; Meng, X. R.: Synthesis, structure and fluorescence properties of a $Zn(\text{II})$ coordination polymer based on 2-(hydroxymethyl)-1*H*-imidazole-4,5-dicarboxylate. *J. Chem. Res.* **490** (2018) 490–493.
7. Yang, H. X.; Jian, S. J.; Liang, Z.; Zhang, J. D.; Meng, X. R.: The first 3D $Zn(\text{II})$ complex involving chiral chains constructed by achiral ligand 2-(hydroxymethyl)-1*H*-imidazole-4,5-dicarboxylate. *Inorg. Chem. Commun.* **61** (2015) 57–59.
8. Shao, Z. C.; Meng, X. R.; Hou, H. W.: Effect of pH on the construction of $Cd(\text{II})$ coordination polymers involving the 1,1'-(1,4-phenylene)bis(methylene)bis-(3,5-dicarboxylatopyridinium) ligand. *Acta Crystallogr. C* **75** (2019) 1142–1149.
9. Li, T.; Xiu, Y.; Su, X.; Meng, X. R.: Syntheses, crystal structures, and fluorescent properties of two $Cd(\text{II})$ complexes based on 2,2'-(ethane-1,2-diyl)bis(1*H*-imidazole-4,5-dicarboxylic acid). *J. Coord. Chem.* **65** (2012) 3111–3121.
10. Cai, S.-L.; Zheng, S.-R.; Wen, Z.-Z.; Fan, J.; Zhang, W.-G.: Construction of $Ba(\text{II})$ coordination polymers based on imidazole-based dicarboxylate ligands: structural diversity tuned by alcohol solvents. *Cryst. Growth Des.* **12** (2012) 3575–3582.
11. Zheng, S.-R.; Cai, S.-L.; Pan, M.; Fan, J.; Xiao, T.-T.; Zhang, W.-G.: The construction of coordination networks based on imidazole-based dicarboxylate ligand containing hydroxymethyl group. *CrystEngComm* **13** (2011) 883–888.
12. Li, T.-T.; Cai, S.-L.; Zeng, R.-H.; Zheng, S.-R.: Structures and luminescent properties of two new main group coordination polymers based on 2-(hydroxymethyl)-1*H*-imidazole-4,5-dicarboxylic acid. *Inorg. Chem. Commun.* **48** (2014) 40–43.
13. Huang, Q.-Y.; Lin, X.-Y.; Meng, X.-R.: A new one-dimensional $Cd(\text{II})$ coordination polymer with a two-dimensional layered structure incorporating 2-[(1*H*-imidazol-1-yl)methyl]-1*H*-benzimidazole and benzene-1,2-dicarboxylate ligands. *Acta Crystallogr. C* **72** (2016) 480–484.

14. Yang, Y. Q.; Su, C. F.; Zhang, J. D.; Yang, H. X.; Zhang, G. Y.; Meng, X. R.: Construction of Cd(II) complexes based on 2-(1*H*-imidazol-1-methyl)-1*H*-benzimidazole and 1,4-benzenedicarboxylate. *J. Coord. Chem.* **69** (2016) 3762–3775.
15. Li, X.-F.; Ma, L.-G.; Yang, Y.-Q.; Liu, Y.-J.; Meng, X.-R.; Yang, H.-X.: Synthesis, crystal structure and bovine serum albumin-binding studies of a new Cd(II) complex incorporating 2,2'-(propane-1,3-diyl) bis(1*H*-imidazole-4,5-dicarboxylate). *J. Chem. Res.* **44** (2020) 198–205.