
9

Jianchang Xiao, Cun Zhou, Xu Xindi, Hua Lei and Qiong Wu*

Crystal structure of bis((3-bromosalicylidene)-ethylenediaminato- $\kappa^4 N, N', O, O'$) nickel (II), $C_{16}H_{12}Br_2NiN_2O_2$

https://doi.org/10.1515/ncrs-2020-0154 Received March 23, 2020; accepted April 7, 2020; available online April 24, 2020

Abstract

C₁₆H₁₂Br₂NiN₂O₂, monoclinic, $P2_1/c$ (no. 14), a=11.7989(9) Å, b=11.9007(7) Å, c=12.7164(17) Å, $\beta=119.779(7)^\circ$, V=1549.8(3) ų, Z=4, $R_{\rm gt}(F)=0.0324$, $wR_{\rm ref}(F^2)=0.0687$, T=173(2) K.

CCDC no.: 1919057

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All commercially available reagents were used as supplied. The halogenated tetradentate Schiff base ligand (3Br-salen) was prepared by mixing 3-bromosalicylaldehyd (0.147 g, 1.0 mmol) and ethylenediamine (0.03 g, 0.5 mmol) in 30 mL of methanol. Then, NiCl₂·6H₂O (0.237 g, 1 mmol) was added to the aforementioned red solution. The resulting red

Table 1: Data collection and handling.

Crystal

Ciystat.	Neu block
Size:	$0.09 \times 0.09 \times 0.08~\text{mm}$
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ:	6.42 mm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, $oldsymbol{arphi}$ and $oldsymbol{\omega}$
θ_{max} , completeness:	25.0°, >99%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	5819, 2723, 0.027
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 2289
N(param) _{refined} :	208
Programs:	Bruker [1], SHELX [2, 3], Olex2 [4],
	Diamond [5]

Red block

suspension was heated for another 3 h. After cooling, the red filtrate was sealed in a beaker and kept undisturbed at room temperature. The red block crystals of the title compound were afforded after one week.

Experimental details

The structure was solved by direct methods. Hydrogen atoms were placed in calculated positions and included in the refinement in the riding model approximation, with $U_{\rm iso}({\rm H})$ set to $1.2U_{\rm eq}({\rm C})$.

Comment

The study on Schiff base complexes have attracted intense attention due to their preparative accessibility and structural diversity [6–9]. Nickel and its complexes widely exist in living organisms, having allergic and metastasis effects on tissue and hormone. In this field, a large number of salentype Schiff-base ligands have been used for the construction of Ni(II) complexes [10, 11]. However, related research about halogenated Schiff base ligands is still rare [12]. With the aim of exploring the relationship between the constitution of Schiff-base ligands and the complex structures, we have engaged in the research of isolating Ni complexes with different halogenated Schiff bases.

The title compound crystallizes in the space group $P2_1/c$, which is constructed by one crystallographically unique Ni(II) and one dibromo substituated schiff-base ligand 3Br-salen. As shown in the figure, the central Ni atom exhibits a

^{*}Corresponding author: Qiong Wu, Department of Chemical Science and Technology, Kunming University, Yunnan, Kunming 65200, P.R. China, e-mail: wuqiongkm@163.com. https://orcid.org/0000-0001-7931-6750

Jianchang Xiao, Xu Xindi and Hua Lei: Department of Chemical Science and Technology, Kunming University, Yunnan, Kunming 65200, P.R. China

Cun Zhou: The High School Affiliated to Minzu University of China Kunming Wuhua Experimental School, 6# Chenjiaying Road, Wuhua, District, Kunming, Yunnan 650102, P.R. China

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Br1	-0.15935(4)	0.06272(4)	-0.22080(4)	0.01653(12)
Br2	-0.48446(4)	-0.04963(4)	-0.63680(4)	0.01761(13)
Ni1	-0.03013(5)	-0.13163(4)	-0.47173(5)	0.00912(14)
01	-0.0440(3)	-0.0561(2)	-0.3518(2)	0.0114(6)
02	-0.2094(3)	-0.1326(2)	-0.5524(2)	0.0122(6)
N1	0.1493(3)	-0.1216(3)	-0.3927(3)	0.0101(7)
N2	-0.0174(3)	-0.2148(3)	-0.5884(3)	0.0099(7)
C1	0.0505(4)	-0.0219(3)	-0.2475(4)	0.0105(9)
C2	0.0197(4)	0.0360(3)	-0.1671(4)	0.0153(9)
С3	0.1148(4)	0.0700(3)	-0.0543(4)	0.0178(10)
Н3	0.0910	0.1060	-0.0033	0.021*
C4	0.2458(4)	0.0517(4)	-0.0152(4)	0.0186(10)
H4	0.3096	0.0748	0.0615	0.022*
C5	0.2801(4)	-0.0009(4)	-0.0910(4)	0.0154(9)
H5	0.3680	-0.0123	-0.0654	0.018*
C6	0.1852(4)	-0.0379(3)	-0.2066(4)	0.0109(9)
C7	0.2265(4)	-0.0850(3)	-0.2855(4)	0.0123(9)
H7	0.3158	-0.0894	-0.2571	0.015*
C8	0.2030(4)	-0.1515(3)	-0.4723(4)	0.0126(9)
H8A	0.2926	-0.1769	-0.4244	0.015*
H8B	0.2007	-0.0872	-0.5200	0.015*
C9	0.1177(4)	-0.2447(3)	-0.5535(4)	0.0146(9)
H9A	0.1273	-0.2510	-0.6247	0.018*
H9B	0.1415	-0.3159	-0.5108	0.018*
C10	-0.1121(4)	-0.2495(3)	-0.6915(4)	0.0098(9)
H10	-0.0904	-0.2910	-0.7409	0.012*
C11	-0.2470(4)	-0.2284(3)	-0.7343(4)	0.0124(9)
C12	-0.3377(4)	-0.2640(3)	-0.8521(4)	0.0150(10)
H12	-0.3089	-0.3056	-0.8963	0.018*
C13	-0.4673(4)	-0.2386(4)	-0.9029(4)	0.0172(10)
H13	-0.5266	-0.2640	-0.9802	0.021*
C14	-0.5100(4)	-0.1738(3)	-0.8373(4)	0.0162(10)
H14	-0.5973	-0.1530	-0.8724	0.019*
C15	-0.4227(4)	-0.1411(3)	-0.7210(4)	0.0139(9)
C16	-0.2880(4)	-0.1667(3)	-0.6632(4)	0.0099(9)

tetra-coordinated geometry, which is defined by N_2O_2 in the equatorial plane from 3Br-salen. The bond lengths of Ni(1)-O(1), Ni(1)-O(2), Ni(1)-N(1) and Ni(1)-N(2) are 1.839(5), 1.843(4), 1.837(5) and 1.850(6) Å, respectively. In the crystal structure, the neutral molecules are linked by weak intermolecular C—H···O hydrogen bonds and aromatic face-to-face interactions to form a three-dimensional supermolecular network. [C8—H8(B)···O1: 3.234(5) Å; interactions $Cg1 \cdots Cg2^i$ (symmetry code: 1 - X, 1 - Y, -Z) centroid-to-centroid

distance = 3.8392 Å, where *Cg1* is the centroid of the C1–C6 ring and *Cg2* is the centroid of the C11–C16 ring].

Acknowledgements: This work was supported by Fund for Less Developed Regions of the National Natural Science Foundation of China (no. 31760257); Joint Basic Research Program (partial) of Yunnan Local Undergraduate Universities (2017FH001-002); The reserve academic and technical leaders of Yunnan Province (2019HB098).

References

- Bruker. SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA (2009).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: SHELXT Integrated space-group and crystalstructure determination. Acta Crystallogr. A71 (2015) 3–8.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341.
- Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany (2012).
- Seifzadeh, D.; Basharnavaz, H.; Bezaatpour, A.: A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Mater. Chem. Phys. 138 (2013) 794–802.
- Baleizão, C.; Gigante, B.; Das, D.; Álvaro, M.; Garcia, H.; Corma, A.: Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. J. Catal. 223 (2004) 106–113.
- Lin, S.; Wu, Q.; Tan, H.; Wang, E.: A new organic-inorganic hybrid based on Mn-salen and decavanadate. J. Coord. Chem. 64 (2011) 3661–3669.
- Wu, Q.; Tang, Y.; Li, J.; Li, Y.; Fang, Y.: Crystal structure of ractrans-N,N'-bis(3,5-diiodosalicylidene)-1,2-cyclohexanediamine, C₂₀H₁₈I₄N₂O₂. Z. Kristallogr. NCS 234 (2019) 69–70.
- Andruh, M.: Compartmental Schiff-base ligands—a rich library of tectons in designing magnetic and luminescent materials. Chem. Commun. 47 (2011) 3025—3042.
- 11. Banerjee, S.; Drew, M. G. B.; Lu, C. Z.; Tercero, J.; Diaz, C.; Ghosh, A.: Dinuclear complexes of M^{II} thiocyanate (M = Ni and Cu) containing a tridentate Schiff-base ligand: synthesis, structural diversity and magnetic properties. Eur. J. Inorg. Chem. 2005 (2005) 2376-2383.
- Wu, Q.; Tang, Y.; Zi, Q.: Synthesis, crystallographic structure, Hirshfeld surface analysis and DFT calculations of two salentype halogenated Schiff-base Ni(II) complexes. Polyhedron 166 (2019) 123–129.