
റി

Zhen-Li Hao and Cun-Han Huang*

Crystal structure of bis(3-chloro-N-(1-(pyrazin-2yl)ethylidene)benzohydrazonato-k³N,N',O) nickel(II), C26H20N8O2Cl2Ni

https://doi.org/10.1515/ncrs-2019-0778 Received October 18, 2019; accepted November 22, 2019; available online December 7, 2019

Abstract

C₂₆H₂₀N₈O₂Cl₂Ni, orthorhombic. Pbcn (no. 60), a = 11.737(10) Å,b = 9.309(8) Åc = 23.72(2) Å $wR_{\rm ref}(F^2) = 0.0934$ $2592(4) \text{ Å}^3$, Z = 4, $R_{gt}(F) = 0.0361$, T = 296 K.

CCDC no.: 1967452

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

3-Chloro-benzo hydrazide (0.171 g, 1 mmol) and 2-acetopyrazine (0.124 g, 1 mmol) were dissolved in methanol (20 mL). The reaction mixture was refluxed for 1 h and cooled to room temperature. Then nickel(II) acetate tetrahydrate

Zhen-Li Hao: Department of Foudamental Science, Yellow River Conservancy Technical Institute, Kaifeng 475001, P.R. China

Table 1: Data collection and handling.

Crystal:	Black block
Size:	$0.20\times0.12\times0.10~\text{mm}$
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ:	1.00 mm ⁻¹
Diffractometer, scan mode:	Bruker SMART, $oldsymbol{arphi}$ and $oldsymbol{\omega}$ -scans
θ_{max} , completeness:	25°, >99%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	11769, 2281, 0.069
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1534
N(param) _{refined} :	178
Programs:	Bruker programs [1], SHELX [2, 3]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	х	у	Z	U _{iso} */U _{eq}
Ni1	0.5000	0.19669(6)	0.2500	0.02913(18)
Cl1	0.48210(8)	-0.25552(11)	0.50479(4)	0.0566(3)
01	0.51411(16)	0.0532(2)	0.31779(8)	0.0337(5)
N1	0.5600(2)	0.3494(3)	0.19229(10)	0.0345(6)
N2	0.6715(3)	0.5390(3)	0.12105(12)	0.0556(9)
N3	0.6643(2)	0.1996(3)	0.26672(10)	0.0307(6)
N4	0.7039(2)	0.1241(3)	0.31253(10)	0.0345(6)
C1	0.5031(3)	0.4290(4)	0.15527(14)	0.0457(9)
H1	0.4242	0.4213	0.1531	0.055*
C2	0.5594(3)	0.5228(4)	0.12002(14)	0.0559(11)
H2	0.5171	0.5769	0.0945	0.067*
C3	0.7285(3)	0.4582(4)	0.15771(14)	0.0458(9)
Н3	0.8074	0.4665	0.1593	0.055*
C4	0.6746(2)	0.3617(3)	0.19372(12)	0.0316(7)
C5	0.7334(3)	0.2742(3)	0.23623(12)	0.0334(8)
C6	0.8595(3)	0.2754(4)	0.24378(14)	0.0461(9)
H6A	0.8781	0.2408	0.2808	0.069*
H6B	0.8874	0.3717	0.2394	0.069*
H6C	0.8941	0.2145	0.2160	0.069*
C7	0.6146(2)	0.0602(3)	0.33724(12)	0.0310(7)
C8	0.6396(3)	-0.0035(3)	0.39356(13)	0.0324(7)
C9	0.5617(3)	-0.0939(3)	0.41903(13)	0.0365(8)
H9	0.4957	-0.1204	0.4000	0.044*
C10	0.5819(3)	-0.1446(4)	0.47267(14)	0.0396(8)
C11	0.6793(3)	-0.1075(4)	0.50163(14)	0.0492(10)
H11	0.6926	-0.1433	0.5376	0.059*
C12	0.7564(3)	-0.0169(4)	0.47649(15)	0.0516(10)
H12	0.8219	0.0100	0.4959	0.062*
C13	0.7374(3)	0.0347(4)	0.42264(13)	0.0422(9)
H13	0.7906	0.0952	0.4059	0.051*

Open Access. © 2019 Zhen-Li Hao et al., published by De Gruyter. 🕲 🖭 This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Cun-Han Huang, School of Resources and Environmental Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China, e-mail: huangcunhan@sina.com. https://orcid.org/0000-0003-4885-6054

(0.125 g, 0.5 mmol) was added. After stirring for 1 h, the mixture was filtered and set aside to crystallize for several days, giving black block crystals.

Experimental details

The structure was solved by direct methods and refined with the SHELX crystallographic software package [3]. The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. Because of technical problems the accuracy of the lattice parameters is reduced.

Discussion

Hydrazones are a class of ligands with interesting ligation properties, and are widely applied for example as analytical reagents [4]. In particular, pyrazine-contained hydrazone and their metal complexes have been widely investigated mainly due to their excellent biological activities [5-8].

In the title structure, the asymmetric unit contains a half of the complex with Ni1 atom lying on the two fold rotational axis [symmetry code: (i) -x + 1, y, -z + 1/2]. The C=O bond of the hydrazone ligand is enolized, which could be confirmed by the bond length of C-O being 1.268(3) Å [5-7]. All bond distances and angles are in their normal ranges, and can be compared with those in previously reported Co(II) or Ni(II) complexes with pyrazine hydrazones [6-8] and especially with a related Cu(II) complex [9]. The central Ni(II) ion with a distorted octahedral coordination geometry is surrounded by two anionic ligands with ON₂ donor set, which is the most common coordination mode in pyrazine hydrazone-metal

complexes [6-9]. As expected, there exist no classical hydrogen bonds in the crystal.

References

- 1. Bruker. SMART and SAINT. Bruker AXS Inc., Madison, WI, USA
- 2. Sheldrick, G. M.: SHELXT-Integrated space-group and crystalstructure determination. Acta Crystallogr. A71 (2015) 3-8.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELX. Acta Crystallogr. C71 (2015) 3-8.
- 4. Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J.: A new application of Salamo-type bisoximes: As a relay-sensor for Zn²⁺/Cu²⁺ and its novel complexes for successive sensing of H⁺/OH⁻, Sens. Actuators B **229** (2016) 370-378.
- 5. Xu, J.; Zhou, T.; Xu, Z.-Q.; Gu, X.-N.; Wu, W.-N.; Chen, H.; Wang, Y.; Jia, L.; Zhu, T.-F.; Chen, R.-H.: Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2acetylpyrazine isonicotinoyl hydrazone ligand. J Mol. Struct. **1128** (2017) 448-454.
- 6. Wang, W.-W.; Wang, Y.; Zhang, L.; Song, Y.-F.; Wu, W.-N.; Chen, Z.: Syntheses, crystal structures and DNA-binding properties of Cu(II)/Ni(II) complexes with acvlhydrazone ligand bearing pyrazine unit. Chin. J. Inorg. Chem. 35 (2019) 563-568.
- 7. Hou, X.-F.; Zhao, X.-L.; Zhang, L.; Wu, W.-N.; Wang, Y.: Co(II)/Zn(II)/Cu(II) complexes containing hydrazone ligand bearing pyrazine unit: syntheses, crystal structures and fluorescence properties. Chin. J. Inorg. Chem. 34 (2018) 201-205.
- 8. Huang, W.; Li, Y.; Yong, J.; Liu, Y.; Wu, D.: Hydrazone-based cobalt complexes toward multielectron redox and spin crossover. RSC Adv. 8 (2018) 17159-17167.
- 9. Xue, W.-Z.; Hu, Q.; Song, Y.-F.; Wu, W.-N.: Crystal structure of ethanol-bis(N-((5-(ethoxycarbonyl)-3,4-dimethyl-1H-pyrrol-2-yl) methylene)benzohydrazonato- $\kappa^2 N$, O) copper(II), $C_{36}H_{42}N_6O_7Cu$. Z. Kristallogr. NCS 234 (2019) 239-241.