
റി

Xiao-Wei Deng and Wei-Na Wu*

Crystal structure of bis(3-methoxy-N-(1-(pyridin-2yl)ethylidene)benzohydrazonato κ³O,N,N') zinc(II), $C_{30}H_{28}N_6O_4Zn$

https://doi.org/10.1515/ncrs-2019-0726 Received September 27, 2019; accepted November 11, 2019; available online December 7, 2019

Abstract

 $C_{30}H_{28}N_6O_4Zn$, orthorhombic, *Aba*2 (no. 41), a = 12.040(9) Å, $b = 22.596(18) \text{ Å}, c = 10.344(10) \text{ Å}, V = 2814(4) \text{ Å}^3, Z = 4,$ $R_{\rm gt}(F) = 0.0463$, $wR_{\rm ref}(F^2) = 0.1435$, T = 296(2) K.

CCDC no.: 1964867

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

3-Methoxybenzohydrazonic acid (0.166 g, 1 mmol) and 2aceto-pyridine systematic name: 1-(pyridin-2-yl)ethan-1-one; (0.121 g, 1 mmol) were dissolved in methanol (20 mL). The reaction mixture was refluxed for 1 h and cooled to room tem-

Table 1: Data collection and handling.

Crystal:	Yellow plate
Size:	$0.15\times0.12\times0.06~\text{mm}$
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ:	$0.92 \; \text{mm}^{-1}$
Diffractometer, scan mode:	Bruker APEX-II, $oldsymbol{arphi}$ and $oldsymbol{\omega}$
$\theta_{\sf max}$, completeness:	25.0°, >99%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	6692, 1968, 0.064
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1235
$N(param)_{refined}$:	188
Programs:	SHELX [1], Bruker [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	0.5000	0.23455(19)	0.0561(4)
N1	0.4286(6)	0.5587(4)	0.0735(7)	0.063(2)
N2	0.3306(5)	0.4821(3)	0.2291(9)	0.0525(17)
N3	0.2897(5)	0.4393(3)	0.3100(6)	0.0541(18)
01	0.4779(4)	0.4300(3)	0.3677(6)	0.0596(17)
02	0.4758(7)	0.2707(3)	0.7010(7)	0.103(3)
C1	0.4782(9)	0.5941(5)	-0.0097(12)	0.082(3)
H1	0.5552	0.5976	-0.0071	0.099*
C2	0.4189(11)	0.6263(5)	-0.1014(10)	0.089(4)
H2	0.4570	0.6515	-0.1568	0.106*
C3	0.3103(9)	0.6220(4)	-0.1117(8)	0.064(3)
Н3	0.2719	0.6431	-0.1745	0.077*
C4	0.2570(11)	0.5867(4)	-0.0303(10)	0.072(3)
H4	0.1801	0.5834	-0.0355	0.086*
C5	0.3151(6)	0.5537(4)	0.0648(8)	0.053(2)
C6	0.2623(7)	0.5121(4)	0.1541(8)	0.051(2)
C7	0.1383(7)	0.5031(4)	0.1578(9)	0.070(3)
H7A	0.1222	0.4621	0.1736	0.106*
H7B	0.1067	0.5147	0.0765	0.106*
H7C	0.1069	0.5268	0.2257	0.106*
C8	0.3757(6)	0.4136(4)	0.3750(7)	0.049(2)
C9	0.3439(6)	0.3628(4)	0.4576(7)	0.049(2)
C10	0.4191(7)	0.3407(4)	0.5452(8)	0.061(2)
H10	0.4874	0.3593	0.5560	0.074*
C11	0.3928(9)	0.2900(4)	0.6187(9)	0.071(3)
C12	0.2918(10)	0.2623(4)	0.6046(11)	0.078(3)
H12	0.2738	0.2293	0.6541	0.093*
C13	0.2170(9)	0.2849(5)	0.5142(11)	0.084(3)

^{*}Corresponding author: Wei-Na Wu, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China, e-mail: wuwnhpu@sina.com. https://orcid.org/0000-0002-0874-0703 Xiao-Wei Deng: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China. https://orcid.org/0000-0001-9144-7171

Table 2 (continued)

Atom	X	у	Z	$U_{\rm iso}*/U_{\rm eq}$
H13	0.1489	0.2661	0.5029	0.101*
C14	0.2415(8)	0.3346(4)	0.4407(8)	0.065(3)
H14	0.1905	0.3490	0.3810	0.078*
C15	0.4678(11)	0.2122(5)	0.7544(16)	0.127(5)
H15A	0.4447	0.1851	0.6883	0.190*
H15B	0.4143	0.2121	0.8233	0.190*
H15C	0.5389	0.2004	0.7874	0.190*

perature. Then zinc(II) acetate dihydrate (0.092 g, 0.5 mmol) was added. After stirring for 1 h, the mixture was filtered and set aside to crystallize for several days, giving yellow plate crystals.

Experimental details

The structure was solved by direct methods and refined with the SHELX crystallographic software package [1]. The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. The Flack parameter x = 0.02(3) [1] was determined using 274 quotients [(I+) - (I-)]/[(I+) + (I-)].

Comment

Hydrazones are an important class of ligands with interesting coordination properties due to the presence of several atoms which may coordinate, and are widely applied [3]. In particular, pyridine-containing hydrazones and their metal complexes have been widely investigated mainly due to their excellent biological activities [4–6]. As part of our continuous work, the title complex was synthesized and characterized by X-ray diffraction.

In the title structure, the asymmetric unit contains one half of the complex with Zn1 atom lying on the two fold rotational axis [see the figure, symmetry code: (i) -x + 1, -y + 1, z]. The C=O bonds of the hydrazone ligands are enolized,

which could be confirmed by the C-O (C8-O1) bond lengths of 1.287(9) Å [4, 5, 7]. The central Zn(II) ion with a distorted octahedral coordination geometry is surrounded by two anionic ligands with N₂O donor set. As expected, there exist no classical hydrogen bonds in the crystal.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 51904096) and the Science and Technology Department of Henan Province (No. 172102310641).

References

- 1. Sheldrick, G. M.: Crystal refinement with SHELX. Acta Crystallogr. C71 (2015) 3-8.
- 2. Bruker. SMART and SAINT. Bruker AXS Inc., Madison, WI, USA (2007)
- 3. Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J.: A new application of Salamo-type bisoximes: as a relay-sensor for Zn²⁺/Cu²⁺ and its novel complexes for successive sensing of H⁺/OH⁻. Sens. Actuators, B **229** (2016) 370-378.
- 4. Shaabani, B.: Khandar, A. A.: Kazemi, S. S.: Shaghaghi, Z.; Boudalis, A. K.; Psycharis, V.; Raptopoulou, A.: Crystal structure and topological ferrimagnetic behavior of a new 2D metal-organic hybrid manganese complex $[Mn_3(N_3)_4(L)_2(H_2O)_2]_n \cdot 0.6(C_2H_5OH) \cdot 1.4(H_2O)$ with the AF/AF/F alternating sequence (HL = N'-((pyridine-2-yl)methylene) isonicotinohydrazide). Polyhedron 63 (2013) 74-82.
- 5. Singh, P.; Singh, D. P.; Singh, V. P.: Synthesis, spectral and single crystal X-ray diffraction studies on Mn(II), Ni(II), Cu(II) and Zn(II) complexes with 2-hydroxy-benzoic acid (phenyl-pyridin-2yl-methylene)-hydrazide. Polyhedron 81 (2014) 56-65.
- 6. Recio Despaigne, A. A.; Da Costa, F. B.; Piro, O. E.; Castellano, E. E.; Louro, S. R. W.; Beraldo, H.: Complexation of 2acetylpyridine- and 2-benzoylpyridine-derived hydrazones to copper(II) as an effective strategy for antimicrobial activity improvement. Polyhedron 38 (2012) 289-290.
- 7. Wang, L.-H.; Qiu, X.-Y.; Liu, S.-J.: Synthesis, characterization and crystal structures of copper(II), zinc(II) and vanadium(V) complexes, derived from 3-methyl-N'-(1-(pyridin-2-yl)ethylidene) benzohydrazide, with antibacterial activity. J. Coord. Chem. 72 (2019)962-971.