

Yee Seng Tan and Edward R.T. Tiekink*

A redetermination of the crystal structure of *catena*-poly[(bis(*O,O'*-isopropyl dithiophosphato- κ^2 S,S')-(μ_2 -1,2-bis(3-pyridylmethylene)hydrazine- κ^2 N,N')cadmium(II)], $\{C_{24}H_{38}CdN_4O_4P_2S_4\}_n$

<https://doi.org/10.1515/ncrs-2019-0641>

Received August 30, 2019; accepted October 3, 2019; available online October 17, 2019

*Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. <https://orcid.org/0000-0003-1401-1520>

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Abstract

$C_{24}H_{38}CdN_4O_4P_2S_4$, monoclinic, $P2_1/n$ (no. 14), $a = 12.2264(1)$ Å, $b = 10.8805(1)$ Å, $c = 12.9590(1)$ Å, $\beta = 108.172(1)^\circ$, $V = 1637.95(3)$ Å³, $Z = 2$, $R_{\text{gt}}(F) = 0.0183$, $wR_{\text{ref}}(F^2) = 0.0468$, $T = 100(2)$ K.

CCDC no.: 1957391

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Yellow plate
Size:	0.13 × 0.08 × 0.03 mm
Wavelength:	Cu $K\alpha$ radiation (1.54184 Å)
μ :	8.94 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{max} , completeness:	67.1°, >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	20310, 2925, 0.027
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 2812
$N(\text{param})_{\text{refined}}$:	182
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

The $Cd[S_2P(OiPr)_2]_2$ precursor was prepared in high yield from the *in situ* reaction of $Cd(NO_3)_2 \cdot 4 H_2O$ (Acros Organic; 15.42 g, 0.05 mol), iPrOH (Merck; 16.05 mL, 0.21 mol), P_2S_5 (Sigma-Aldrich; 11.11 g, 0.05 mol) and 50% w/w NaOH solution (Merck; 8.80 mL, 0.11 mol). 1,2-Bis(3-pyridylmethylene)hydrazine was prepared in high yield from the reaction (reflux) of 3-picollylamine (Aldrich; 2.03 mL, 0.02 mol) and hydrazinium hydroxide (Merck; 0.49 mL, 0.01 mol) in ethanol solution (Merck; 5 mL). The title compound was obtained by mixing a suspension of $Cd[S_2P(OiPr)_2]_2$ (0.50 g, 0.93 mmol) and 1,2-bis(3-pyridylmethylene)hydrazine (0.20 g, 0.95 mmol) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 min at 373 K. The solution was filtered and the filtrate transferred to a vial containing acetonitrile (Merck; 1 mL). Yellow crystals formed after one day. Yield: 0.50 g, (71.8%, based

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2).

Atom	x	y	z	$U_{\text{iso}}^*/U_{\text{eq}}$
Cd	0.500000	0.500000	0.500000	0.01180(6)
S1	0.69732(3)	0.43408(4)	0.46778(3)	0.01209(9)
S2	0.56960(3)	0.71056(4)	0.42854(3)	0.01499(10)
P1	0.69306(3)	0.60475(4)	0.40785(3)	0.01118(10)
O1	0.67671(10)	0.60406(11)	0.28177(9)	0.0159(3)
O2	0.81785(9)	0.66439(11)	0.45351(9)	0.0149(2)
N1	0.39584(11)	0.43433(14)	0.31914(10)	0.0127(3)
N2	0.05064(12)	0.46461(14)	0.01847(11)	0.0141(3)
C1	0.74818(17)	0.5275(2)	0.23550(15)	0.0238(4)
H1	0.785854	0.461264	0.288120	0.029*
C2	0.6692(2)	0.4708(2)	0.13343(18)	0.0369(5)
H2A	0.608986	0.423730	0.150917	0.055*
H2B	0.713476	0.416033	0.101442	0.055*
H2C	0.633747	0.535907	0.081476	0.055*
C3	0.8387(2)	0.6081(3)	0.2140(2)	0.0561(8)
H3A	0.801431	0.674617	0.164499	0.084*
H3B	0.886090	0.559034	0.180837	0.084*
H3C	0.887469	0.643109	0.282563	0.084*
C4	0.88713(14)	0.66523(18)	0.56840(13)	0.0194(4)
H4	0.879395	0.584297	0.602022	0.023*
C5	0.85025(17)	0.7655(2)	0.62818(15)	0.0284(5)
H5A	0.858669	0.844867	0.595719	0.043*
H5B	0.898277	0.764436	0.704478	0.043*
H5C	0.769497	0.753254	0.623740	0.043*
C6	1.01057(16)	0.6814(2)	0.56736(18)	0.0339(5)
H6A	1.031905	0.611637	0.529750	0.051*
H6B	1.062453	0.685079	0.642170	0.051*
H6C	1.016738	0.757740	0.529477	0.051*
C7	0.29587(15)	0.48664(16)	0.26350(13)	0.0137(4)
H7	0.270844	0.556636	0.293778	0.016*
C8	0.22667(13)	0.44330(16)	0.16321(12)	0.0123(3)
C9	0.26435(14)	0.34128(17)	0.11888(13)	0.0157(4)
H9	0.219390	0.309253	0.050633	0.019*
C10	0.36786(15)	0.28734(18)	0.17539(14)	0.0187(4)
H10	0.395498	0.217828	0.146720	0.022*
C11	0.43099(14)	0.33687(17)	0.27531(13)	0.0161(4)
H11	0.502267	0.299663	0.314042	0.019*
C12	0.11717(15)	0.50510(15)	0.10886(14)	0.0140(4)
H12	0.095577	0.575692	0.141063	0.017*

on $\text{Cd}[\text{S}_2\text{P}(\text{O}i\text{Pr})_2]_2$. **M. pt.** (Stuart SMP 30 Melting point apparatus): 453.5–454.9 K. **Elem. Anal.** [Leco TruSpec Micro CHN Elemental Analyser]: Calc. for $\text{C}_{24}\text{H}_{38}\text{CdN}_4\text{O}_4\text{P}_2\text{S}_4$: C, 38.47; H, 5.11; N, 7.48%. Found: C, 38.87; H, 5.47; N, 7.77%. **IR** (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm^{-1}): 1178(w) $\nu(\text{C}=\text{O})$; 968(s) $\nu(\text{P}=\text{O})$; 657(s) $\nu(\text{P}=\text{S})$; 384(w) $\nu(\text{Cd}=\text{N})$; 278(m) $\nu(\text{Cd}=\text{S})$.

Experimental details

The H atoms were geometrically placed ($\text{C}=\text{H}=0.95\text{--}1.00 \text{\AA}$) and refined as riding with $U_{\text{iso}}(\text{H})=1.2\text{--}1.5U_{\text{eq}}(\text{C})$.

Comment

A recent review describes the diverse structural chemistry of the zinc-triad 1,1-dithiolates with bipyridyl-type molecules [5]. Early systematic studies of the zinc(II) [6, 7] and cadmium(II) [8] dithiophosphates [$-\text{S}_2\text{P}(\text{OR})_2$] were motivated by evaluating the control of coordination polymer formation and, when one-dimensional coordination polymers did form, the topology of the resulting chain. This is nicely illustrated in the 1:1 adducts formed between $\text{Cd}[\text{S}_2\text{P}(\text{OR})_2]_2$ and *trans*-1,2-bis(4-pyridyl)propane (bpp). When $\text{R}=\text{iPr}$, a linear one-dimensional chain was characterized in the solid-state, i.e. $\{\text{Cd}[\text{S}_2\text{P}(\text{O}i\text{Pr})_2]_2(\text{bpp})\}_n$, but when the steric bulk of R is increased to cyclohexyl (Cy), only binuclear species could be isolated, i.e. $\{\text{Cd}[\text{S}_2\text{P}(\text{OCy})_2]_2(\text{bpp})\}_2$ with bpp coordinating in a bidentate, bridging mode [8]. It was in this context the title compound, $\{\text{Cd}[\text{S}_2\text{P}(\text{O}i\text{Pr})_2]_2(3\text{-PyAld})\}_n$ (I) was originally characterized by crystallographic methods [9]; 3-PyAld is 3-pyridylaldehyde, i.e. $3\text{-NC}_5\text{H}_4\text{C}(\text{H})=\text{N}-\text{N}=\text{C}(\text{H})\text{C}_5\text{H}_4\text{N}-3$. While the original connectivity was determined unambiguously as a one-dimensional coordination polymer with a step-ladder topology, disorder was noted in the structure. Herein, a low temperature (100 K) redetermination of (I) is described in which the disorder is no longer apparent and, with the aid of $\text{Cu K}\alpha$ radiation, a better resolution data set was achieved with the result that significantly improved standard uncertainty values are evident. The new data will enable a better comparison of geometric parameters with related structures in the literature.

The asymmetric unit of (I) comprises half a $\text{Cd}[\text{S}_2\text{P}(\text{O}i\text{Pr})_2]_2$ entity as, the cadmium atom lies on a centre of inversion, and half a 3-PyAld molecule, being disposed about a centre of inversion, as indicated in the figure (70% probability displacement ellipsoids; the unlabelled atoms of “ $\text{Cd}[\text{S}_2\text{P}(\text{O}i\text{Pr})_2]_2$ ” are related by the symmetry operation (i) $1-x, 1-y, 1-z$, and those for the 3-PyAld molecule are related by (ii) $-x, 1-y, -z$). The cadmium(II) atom is octahedrally coordinated within a *trans*- N_2S_4 donor set defined by two chelating dithiophosphate ligands and two nitrogen atoms derived from symmetry related pyridyl-nitrogen atoms. The $\text{Cd}-\text{S}1$ [2.6715(4) \AA] and $\text{Cd}-\text{S}2$ [2.7059(4) \AA] bond lengths differ by less than 0.04 \AA , a result consistent with a symmetric mode of coordination of the dithiophosphato ligand. The small disparity in the $\text{P}1-\text{S}1$ [2.0073(6) \AA] and $\text{P}1-\text{S}2$ [1.9820(6) \AA] bond lengths also reflects this observation. Nevertheless, the longer $\text{P}1-\text{S}1$ bond involves the more tightly bound S1 atom. The $\text{Cd}-\text{N}1$ bond length is 2.4008(13) \AA . The greatest distortion from the regular octahedral geometry is manifested in the acute $\text{S}1-\text{P}1-\text{S}2$ chelate angle of 77.18(1) $^\circ$.

The lower view of the figure highlights the resultant coordination polymer after the application of translational

symmetry. The topology of the linear chain is that of a step-ladder, as noted for the $\{Zn[S_2P(O-iPr)_2]_2(3\text{-PyAld})\}_n$ analogue [10], indeed, the structures are isostructural. A step-ladder topology was also found in $\{Cd[S_2P(OCy)_2]_2(3\text{-PyAld})\}_n$, isolated as a chloroform solvate [11], but in the recently determined $\{Zn[S_2P(OEt)_2]_2(3\text{-PyAld})\}_n$ derivative, a twisted topology was noted [12].

In the crystal, the chain is aligned along the $[1\ 0\ 1]$ direction. The only directional links between chains are of the type pyridyl-C—H \cdots S [C9—H9 \cdots S1ⁱⁱⁱ: H9 \cdots S1ⁱⁱⁱ = 2.84 Å, C9 \cdots S1ⁱⁱⁱ = 3.5329(18) Å with angle at H9 = 131° for (iii) $-1/2+x$, $1/2-y$, $-1/2+z$] and as these occur laterally, the result is a supramolecular layer. Layers stack without directional interactions between them.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

1. Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
2. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **71** (2015) 3–8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. *J. Appl. Crystallogr.* **45** (2012) 849–854.
5. Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. *Crystals* **8** (2018) 18.
6. Lai, C. S.; Liu, S.; Tiekink, E. R. T.: Steric control over polymer formation and topology in adducts of zinc dithiophosphates formed with bridging bipyridine ligands. *CrystEngComm* **6** (2004) 221–226.
7. Chen, D.; Lai, C. S.; Tiekink, E. R. T.: Supramolecular aggregation in diimine adducts of zinc(II) dithiophosphates: controlling the formation of monomeric, dimeric, polymeric (zig-zag and helical), and 2-D motifs. *CrystEngComm* **8** (2006) 51–58.
8. Lai, C. S.; Tiekink, E. R. T.: Engineering polymers with variable topology – bipyridine adducts of cadmium dithiophosphates. *CrystEngComm* **6** (2004) 593–605.
9. Lai, C. S.; Tiekink, E. R. T.: Polymeric topologies in cadmium(II) dithiophosphate adducts of the isomeric *n*-pyridinealdazines, *n* = 2, 3 and 4. *Z. Kristallogr. CM* **221** (2006) 288–293.
10. Avila, V.; Tiekink, E. R. T.: catena-Poly[[bis(*O,O'*-diisopropyl dithiophosphato- κ^2S,S')zinc(II)]- μ -1,2-bis(3-pyridylmethylene)hydrazine- $\kappa^2N:N'$]. *Acta Crystallogr. E* **62** (2006) m3530–m3531.
11. Lai, C. S.; Tiekink, E. R. T.: Delineating the principles controlling polymer formation and topology in zinc(II)- and cadmium(II)-dithiophosphate adducts of diimine-type ligands. *J. Mol. Struct.* **796** (2006) 114–118.
12. Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of catena-[(bis(*O,O'*-diethyl dithiophosphato-*S,S'*)- μ_2 -1,2-bis(3-pyridylmethylene)hydrazine-*N,N'*)zinc(II)], $\{C_{20}H_{30}N_4O_4P_2S_4Zn\}_n$. *Z. Kristallogr. NCS* **234** (2019) doi.org/10.1515/ncrs-2019-0621.