

Kong Mun Lo, See Mun Lee and Edward R.T. Tiekkink*

Crystal structure of (dimethyl sulfoxide)-dioxydo-[2-hydroxy-*N'*-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ^3N,O,O']molybdenum(VI), $C_{19}H_{20}MoN_2O_6S$

<https://doi.org/10.1515/ncks-2019-0576>

Received August 11, 2019; accepted September 17, 2019; available online October 9, 2019

Abstract

$C_{19}H_{20}MoN_2O_6S$, orthorhombic, $Pbca$ (no. 61), $a = 13.4060(1)$ Å, $b = 16.5112(1)$ Å, $c = 17.6357(1)$ Å, $V = 3903.65(4)$ Å³, $Z = 8$, $R_{\text{gt}}(F) = 0.0217$, $wR_{\text{ref}}(F^2) = 0.0602$, $T = 100(2)$ K.

CCDC no.: 1954149

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All chemicals and solvents were used as purchased without further purification. The melting point was determined using a Mel-temp II digital melting point apparatus and was uncorrected. The IR spectrum was obtained on a Bruker Vertex 70v FTIR Spectrometer in the scan range 4000–400 cm⁻¹. The ¹H NMR spectrum was recorded at room temperature in CDCl₃

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	0.12 × 0.09 × 0.08 mm
Wavelength:	Cu $K\alpha$ radiation (1.54184 Å)
μ :	6.86 mm ⁻¹
Diffractometer, scan mode:	Bruker SMART APEX, ω
θ_{max} , completeness:	67.1°, >99%
$N(hk\ell)$ measured, $N(hk\ell)$ unique, R_{int} :	87956, 3477, 0.037
Criterion for I_{obs} , $N(hk\ell)$ gt:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 3445
$N(\text{param})$ refined:	268
Programs:	Bruker [1], SHELX [2, 3], WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	U_{iso}^* / U_{eq}
Mo	0.70272(2)	0.64889(2)	0.40616(2)	0.01495(7)
S1	0.49306(4)	0.75913(3)	0.37860(3)	0.01992(12)
O1	0.67746(11)	0.64719(8)	0.29435(8)	0.0207(3)
O2	0.59180(12)	0.43933(9)	0.17240(8)	0.0257(3)
H2O	0.595(2)	0.4485(17)	0.2200(6)	0.039*
O3	0.66410(11)	0.61787(8)	0.50864(8)	0.0232(3)
O4	0.71491(11)	0.75179(9)	0.41181(8)	0.0224(3)
O5	0.82090(12)	0.61232(10)	0.40666(7)	0.0238(3)
O6	0.53144(11)	0.67586(9)	0.40306(8)	0.0216(3)
N1	0.61907(12)	0.51610(10)	0.30067(9)	0.0187(3)
N2	0.63576(12)	0.52886(10)	0.37796(9)	0.0186(3)
C1	0.64235(14)	0.58034(12)	0.26234(11)	0.0177(4)
C2	0.62973(14)	0.58199(12)	0.17992(11)	0.0180(4)
C3	0.60663(14)	0.51170(12)	0.13812(11)	0.0197(4)
C4	0.60024(15)	0.51606(13)	0.05935(12)	0.0245(4)
H4	0.5869	0.4685	0.0308	0.029*
C5	0.61325(16)	0.58913(15)	0.02273(12)	0.0281(5)
H5	0.6089	0.5913	-0.0310	0.034*
C6	0.63257(18)	0.65948(14)	0.06317(13)	0.0300(5)
H6	0.6395	0.7099	0.0377	0.036*
C7	0.64158(17)	0.65506(13)	0.14116(12)	0.0253(5)
H7	0.6562	0.7029	0.1690	0.030*
C8	0.61799(15)	0.46797(12)	0.42312(12)	0.0191(4)
C9	0.58919(16)	0.38593(12)	0.39468(12)	0.0219(4)
H9A	0.5511	0.3916	0.3476	0.033*
H9B	0.5482	0.3585	0.4328	0.033*
H9C	0.6495	0.3540	0.3850	0.033*
C10	0.62743(15)	0.47795(12)	0.50377(11)	0.0216(4)
H10	0.6185	0.4305	0.5335	0.026*

*Corresponding author: Edward R.T. Tiekkink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. <https://orcid.org/0000-0003-1401-1520>

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 2 (continued)

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^*/U_{\text{eq}}$
C11	0.64755(14)	0.54709(12)	0.54262(11)	0.0189(4)
C12	0.64907(14)	0.55244(12)	0.62672(11)	0.0183(4)
C13	0.62411(15)	0.48592(12)	0.67207(12)	0.0224(4)
H13	0.6060	0.4360	0.6492	0.027*
C14	0.62576(16)	0.49289(13)	0.75058(12)	0.0256(4)
H14	0.6096	0.4473	0.7811	0.031*
C15	0.65078(16)	0.56556(14)	0.78473(11)	0.0256(5)
H15	0.6520	0.5697	0.8385	0.031*
C16	0.67404(17)	0.63220(14)	0.74047(12)	0.0252(4)
H16	0.6905	0.6824	0.7636	0.030*
C17	0.67317(16)	0.62514(13)	0.66205(12)	0.0227(4)
H17	0.6894	0.6709	0.6319	0.027*
C18	0.42329(19)	0.74120(14)	0.29391(12)	0.0318(5)
H18A	0.4684	0.7230	0.2536	0.048*
H18B	0.3902	0.7914	0.2782	0.048*
H18C	0.3730	0.6994	0.3035	0.048*
C19	0.39214(16)	0.77829(13)	0.44150(12)	0.0260(4)
H19A	0.3472	0.7315	0.4420	0.039*
H19B	0.3556	0.8264	0.4245	0.039*
H19C	0.4180	0.7876	0.4927	0.039*

solution on a Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane.

The Schiff base ligand was synthesised from the reaction of benzoylacetone (Sigma Aldrich) and 2-hydroxybenzhydrazide (Fluka) in a 1:1 molar ratio. Bis(acetylacetone)dioxomolybdenum(VI) (Sigma Aldrich, 0.33 g, 1 mmol) and the prepared Schiff base were dissolved in methanol (30 mL) and the mixture was refluxed for 2 h. After filtration, the filtrate was evaporated slowly until yellow crystals were formed. The crystals were filtered, washed with a minimum amount of methanol and air-dried *in vacuo* over P_4O_{10} . **Yield:** 0.20 g (40%). **M.pt:** 469–471 K. **IR** (cm^{-1}): 1612 (m) $\nu(\text{C}=\text{N})$, 1599 (s) $\nu(\text{C}=\text{N})$, 1548 (s) $\nu(\text{C}=\text{O})$, 1368 (m) $\nu(\text{C}=\text{O})$, 1260 (m) $\nu(\text{C}=\text{O})$, 1085 (m) $\nu(\text{C}=\text{O})$, 1034 (m) $\nu(\text{S}=\text{O})$, 931 (m) $\nu(\text{Mo}=\text{O})$, 900 (m) $\nu(\text{Mo}=\text{O})$. **$^1\text{H NMR}$** (CDCl_3 , ppm): δ 2.46 (s, 3H, CH_3), 2.67 (s, 6H, CH_3), 6.12 (s, 1H, CH), 6.88 (d, 1H, $J = 7.10$ Hz, $\text{Ph}-\text{H}$), 6.91 (d, 1H, $J = 8.10$ Hz, $\text{Ph}-\text{H}$), 7.35–7.44 (m, 5H, $\text{Ph}-\text{H}$), 7.83 (d, 1H, $J = 7.85$ Hz, $\text{Ph}-\text{H}$), 7.84 (d, 1H, $J = 7.90$ Hz, $\text{Ph}-\text{H}$), 11.48 (s, 1H, OH).

Experimental details

The C-bound H atoms were geometrically placed ($\text{C}-\text{H} = 0.95$ –0.98 Å) and refined as riding with $U_{\text{iso}}(\text{H}) = 1.2$ – $1.5U_{\text{eq}}(\text{C})$. The O-bound H-atom was also geometrically placed ($\text{O}-\text{H} = 0.84$ Å) and refined as riding with $U_{\text{iso}}(\text{H}) = 1.5U_{\text{eq}}(\text{O})$.

Comment

The study of di-oxido-molybdenum complexes with di-anionic tridentate ligands is particularly significant as the coordination environment of the $[\text{MoO}_2]^{2+}$ core is known

to be crucial as an open active site for catalytic oxidation processes [5, 6]. In this work, the synthesis and crystal structure analysis of the title complex, $\text{Mo}(\text{=O})_2(\text{L})(\text{O}=\text{SMe}_2)$, (I), where H_2L is 2-hydroxy-*N*-(2Z)-4-hydroxy-4-phenylbut-2-en-2-yl] benzenecarbohydrazonic acid, with a slight modification of the Schiff base ligand employed in earlier reported work [7], is described in continuation of on-going studies in this area [7–9].

The mononuclear title complex in (I) is shown in the figure (70% probability displacement ellipsoids). The Mo(VI) centre is complexed by O1, O3 and imine-N2 atoms, derived from the tridentate Schiff base di-anion, the oxido-O4 and O5 atoms as well as the O6 atom of the dimethylsulphoxide ligand [10]. This results in a N_2O_4 donor set that defines an approximate octahedral geometry in which the oxido groups are *cis* to each other, and where the three donor atoms of the L^{2-} anion occupy meridional positions. The O1–Mo–O3 angle [149.93(6)°] deviates significantly from linearity, which is due mainly to the acute angles subtended by the five-[O1–Mo–N2 = 72.54(6)°] and six-membered [O3–Mo–N2 = 82.32(6)°] chelate rings owing to the tridentate mode of coordination of the Schiff base di-anion. Each of the five- and six-membered chelate rings adopts an envelope configuration with the Mo atoms being the flap atom. In the smaller chelate ring, the Mo flap atom lies 0.106(3) Å out of the plane defined by the four remaining atoms (r.m.s. deviation = 0.0014 Å). In the larger chelate ring, the envelope configuration is significantly more pronounced with the Mo atom lying 0.446(3) Å out of the least-squares plane defined by the five remaining atoms of the chelate ring (r.m.s. deviation = 0.0158 Å). The dihedral angle formed between the least-squares planes through the chelate rings is 9.37(5)°. The dihedral angles between the five-membered chelate ring and the pendent hydroxyphenyl ring is 10.94(6)°, between the six-membered ring and adjacent phenyl ring is 2.45(6)°, and between the hydroxyphenyl and phenyl rings is 7.58(6)°. Thus, to a first approximation, the Schiff base ligand is planar. An intramolecular loop – S(6) graph set – is evident owing to the formation of a hydroxy-O–H \cdots N(imine) hydrogen bond [O2–H2O \cdots N1: H2O \cdots N1 = 1.837(19) Å, O2 \cdots N1 = 2.619(2) Å with angle at H2O = 151(3)°].

In the crystal of (I), C–H \cdots O interactions connect complexes into a three-dimensional architecture. Thus, hydroxy-phenyl, phenyl- and imine-methyl-C–H \cdots O(oxo) [C6–H6 \cdots O4ⁱ: H6 \cdots O4ⁱ = 2.52 Å, C6 \cdots O4ⁱ = 3.239(3) Å with angle at H6 = 132°; C14–H14 \cdots O5ⁱⁱ: H14 \cdots O5ⁱⁱ = 2.60 Å, C14 \cdots O5ⁱⁱ = 3.333(3) Å with angle at H14 = 135° and C9–H9c \cdots O4ⁱⁱⁱ: H9c \cdots O4ⁱⁱⁱ = 2.53 Å, C9 \cdots O4ⁱⁱⁱ = 3.449(3) Å with angle at H9c = 157° for symmetry operations (i) x , $2/3 - y$, $-1/2 + z$, (ii) $3/2 - x$, $1 - y$, $1/2 + z$ and (iii)

$3/2 - x, -1/2 + y, z]$ interactions lead to the formation of a supramolecular layer in the bc -plane. The coordinated dimethylsulphoxide groups protrude to either side of the layer and inter-digitate with neighbouring layers with the connections between them being of the type dimethylsulphoxide–C–H \cdots O(oxide) [$C18-H18b\cdots O1^{iv}$: $H18b\cdots O1^{iv} = 2.60 \text{ \AA}$, $C18\cdots O1^{iv} = 3.331(3) \text{ \AA}$ with angle at $H18b = 131^\circ$ for (iv) $1 - x, 1/2 + z, 1/2 - z$].

Further analysis of the molecular packing was conducted with Crystal Explorer 17 [11] to calculate the Hirshfeld surfaces of (I) along with the full and delineated two-dimensional fingerprint plots following literature precedents [12]. This analysis showed, reflecting the formation of many C–H \cdots O contacts in the crystal, that O \cdots H/H \cdots O contacts amounted to 30.7% of all contacts on the calculated Hirshfeld surface, approaching the 41.3% contributed by H \cdots H contacts. The C \cdots H/H \cdots C contacts to the surface, at 15.7%, were also prominent with smaller but, notable C \cdots C [4.8%], N \cdots H/H \cdots N [2.1%], O \cdots C/C \cdots O [1.6%] and N \cdots C/N \cdots C [1.4%] contacts. However, these occur at separations greater than the sum of the respective van der Waals radii.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

1. Bruker. SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA (2008).
2. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr. A* **64** (2008) 112–122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **71** (2015) 3–8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. *J. Appl. Crystallogr.* **45** (2012) 849–854.
5. Holm, R. H.; Kennepohl, P.; Solomon, E. I.: Structural and functional aspects of metal sites in biology. *Chem. Rev.* **96** (1996) 2239–2314.
6. Brito, J. A.; Gómez, M.; Muller, G.; Teruel, H.; Clinet, J.-C.; Duñach, E.; Maestro, M. A.: Structural studies of mono- and dimetallic Mo^{VI} complexes – a new mechanistic contribution in catalytic olefin epoxidation provided by oxazoline ligands. *Eur. J. Inorg. Chem.* **2004** (2004) 4278–4285.
7. Ngan, N. K.; Lo, K. M.; Wong, R. C. S.: Synthesis, structure studies and electrochemistry of molybdenum(VI) Schiff base complexes in the presence of different donor solvent molecules. *Polyhedron* **30** (2011) 2922–2932.
8. Ngan, N. K.; Lo, K. M.; Wong, R. C. S.: Dinuclear and polynuclear dioxomolybdenum(VI) Schiff base complexes: synthesis, structural elucidation, spectroscopic characterization, electrochemistry and catalytic property. *Polyhedron* **33** (2012) 235–251.
9. Lo, K. M.; Lee, S. M.; Tiekkink, E. R. T.: Crystal structure of bis(*N*-(5-chloro-2-oxidophenyl)methylidene)-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI) (μ_2 -4,4'-bipyridine), $C_{38}H_{26}Cl_2Mo_2N_6O_{10}$. *Z. Kristallogr. NCS* **235** (2019) 189–191.
10. Biswal, D.; Pramanik, N. R.; Chakrabarti, S.; Drew, M. G. B.; Sarkar, B.; Maurya, M. R.; Mukherjee, S. K.; Chowdhury, P.: New polymeric, dimeric and mononuclear dioxidomolybdenum(VI) complexes with an ONO donor ligand: crystal structures, DFT calculations, catalytic performance and protein binding study of the ligand. *New J. Chem.* **41** (2017) 4116–4137.
11. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
12. Tan, S. L.; Jotani, M. M.; Tiekkink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. *Acta Crystallogr. E* **75** (2019) 308–318.