
9

Baogang Wang and Xiaxia Man\*

# Crystal structure of 2-(bis(2-hydroxyethyl) ammonio)ethane-1-sulfonate, C<sub>6</sub>H<sub>15</sub>NO<sub>5</sub>S



https://doi.org/10.1515/ncrs-2019-0554 Received August 2, 2019; accepted September 11, 2019; available online October 2, 2019

# Abstract

C<sub>6</sub>H<sub>15</sub>NO<sub>5</sub>S, monoclinic, *Cc* (no. 9), a = 15.167(5) Å, b = 6.422(5) Å, c = 10.969(5) Å,  $\beta = 117.407(5)^{\circ}$ , V = 948.5(9) Å<sup>3</sup>, Z = 4,  $R_{\rm gt}(F) = 0.0278$ ,  $wR_{\rm ref}(F^2) = 0.0755$ , T = 293(2) K.

# CCDC no.: 1952899

A part of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

# Source of material

An ethanolic solution of 2-oxoethanesulfonic acid (10 mmol) was added to a solution of bis(2-hydroxyethyl)ammonium (10 mmol) in ethanol and the solution was refluxed for 6 hours. The reaction mixture was then cooled to room

Oncological Gynecology, The First Hospital of Jilin University, Changchun 130021, PR China, e-mail: drmanxx@protonmail.com. https://orcid.org/0000-0001-7221-7119

Baogang Wang: The Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China

Table 1: Data collection and handling.

| Crystal:                                                             | Yellow block                                  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------|--|--|
| Size:                                                                | $0.26\times0.23\times0.20~\text{mm}$          |  |  |
| Wavelength:                                                          | Mo $K\alpha$ radiation (0.71073 Å)            |  |  |
| μ:                                                                   | $0.33 \ \text{mm}^{-1}$                       |  |  |
| Diffractometer, scan mode:                                           | CCD, $\varphi$ and $\omega$                   |  |  |
| $\theta_{\sf max}$ , completeness:                                   | 27.5°, >99%                                   |  |  |
| $N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$ : | 3658, 1757, 0.016                             |  |  |
| Criterion for $I_{obs}$ , $N(hkl)_{gt}$ :                            | $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 1667$ |  |  |
| N(param) <sub>refined</sub> :                                        | 124                                           |  |  |
| Programs:                                                            | Bruker [1], SHELX [2, 3]                      |  |  |

**Table 2:** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\mathring{A}^2$ ).

| Atom | х           | у           | z          | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|------------|------------------------------------|
| C1   | 0.9420(2)   | 0.5922(4)   | 0.7514(3)  | 0.0362(6)                          |
| H1A  | 0.8701      | 0.5826      | 0.7037     | 0.043*                             |
| H1B  | 0.9663      | 0.4877      | 0.8233     | 0.043*                             |
| C2   | 0.9824(3)   | 0.5475(5)   | 0.6518(3)  | 0.0421(7)                          |
| H2A  | 1.0538      | 0.5675      | 0.6976     | 0.051*                             |
| H2B  | 0.9692      | 0.4033      | 0.6228     | 0.051*                             |
| C3   | 0.8951(2)   | 0.8925(5)   | 0.8525(3)  | 0.0365(6)                          |
| H3A  | 0.9252      | 1.0009      | 0.9209     | 0.044*                             |
| H3B  | 0.8718      | 0.7837      | 0.8920     | 0.044*                             |
| C4   | 0.8084(2)   | 0.9816(6)   | 0.7277(4)  | 0.0481(8)                          |
| H4A  | 0.7719      | 0.8708      | 0.6643     | 0.058*                             |
| H4B  | 0.7636      | 1.0530      | 0.7545     | 0.058*                             |
| C5   | 1.0731(2)   | 0.7966(4)   | 0.9378(3)  | 0.0313(6)                          |
| H5A  | 1.1160      | 0.7076      | 0.9168     | 0.038*                             |
| H5B  | 1.0675      | 0.7356      | 1.0149     | 0.038*                             |
| C6   | 1.1202(2)   | 1.0105(4)   | 0.9786(3)  | 0.0334(6)                          |
| H6A  | 1.1752      | 1.0040      | 1.0706     | 0.040*                             |
| H6B  | 1.0717      | 1.1079      | 0.9797     | 0.040*                             |
| N1   | 0.97143(16) | 0.8041(3)   | 0.8150(2)  | 0.0270(5)                          |
| H1   | 0.9754      | 0.8967      | 0.7467     | 0.032*                             |
| 01   | 0.84571(19) | 1.1214(4)   | 0.6648(3)  | 0.0604(7)                          |
| 02   | 0.93950(19) | 0.6780(4)   | 0.5350(2)  | 0.0493(6)                          |
| 03   | 1.08107(16) | 1.0798(4)   | 0.7281(2)  | 0.0436(5)                          |
| 04   | 1.19202(19) | 1.3188(4)   | 0.9014(2)  | 0.0511(6)                          |
| 05   | 1.24777(17) | 0.9726(4)   | 0.8840(3)  | 0.0603(7)                          |
| S1   | 1.16424(4)  | 1.10258(10) | 0.86372(4) | 0.03323(17)                        |
| H2   | 0.800(2)    | 1.128(5)    | 0.5742(14) | 0.050*                             |
| Н3   | 0.8759(13)  | 0.642(6)    | 0.485(4)   | 0.050*                             |

temperature and MgSO<sub>4</sub> was added to remove some water. The MgSO<sub>4</sub> was filtered off and the filtrate was dried overnight under reduced pressure. Crystals were grown through a slow evaporation of an ethanol solution at 298 K.

<sup>\*</sup>Corresponding author: Xiaxia Man, The Department of

## **Experimental details**

The  $U_{\rm iso}$  values of the C-bound hydrogen atoms were set to  $1.2U_{\rm eq}(C)$ . Hydrogen atoms of water molecules were located from electron density map. The absolute structure was established by refinement of the Flack parameter (-0.009(11)) from 1458 selected quotients) using Parsons' method [4]. A Flack parameter of 0.012(15) was obtained.

### Comment

The research of coordination polymers (CPs) are significant and unparalleled for their diversified, designable and tailorable structures as well as unique chemical and physical properties [5–7]. Thus the design and synthesise of organic ligands is of great significance. Sulfur-rich compounds have been explored in various ways as ligands in coordination chemistry [8]. When the sulfo-groups are introduced to the system, they can coordinate with some metal ions directly in intriguing ways [9, 10]. Thus, it would be valuable to explore novel sulfo-based ligands.

The asymmetric unit contains one molecular unit of the title compound (see the figure). The bond distances and bond angles are in normal ranges. The N1-C5-C6-S1 torsion angle is  $-74.9(3)^{\circ}$ . The bond lengths of C-C, C-N and C-O are in the range of 1.505(4)-1.518(4) Å, 1.500(3)-1.511(3) Å and 1.401(4)–1.414(4) Å, respectively. The bond length of C–S is 1.776(3) Å. In addition, there exist two  $O-H\cdots O$  intermolecular hydrogen bonds between sulfo and hydroxyl groups:  $O1-H2\cdots O4^{e_1}$  [H2···O4 = 1.880(17) Å,  $O1\cdots O4 = 2.780(3)$  Å with angle at  $H2 = 168^{\circ}$  for symmetry code: (¢;) = -0.5 + x, 0.5 - y, -0.5 + z] and  $02 - H3 \cdot \cdot \cdot \cdot O5^{\text{cc}}$  [H3 · · · O5 = 1.89(2) Å,  $02 \cdot \cdot \cdot 05 = 2.775(3)$  Å with angle at H3 = 172° for symmetry code: (\$\$) = -0.5 + x, -1.5 + y, -0.5 + z]. In the crystal, the O-H···O hydrogen bonds link together neighboring molecules to form two-dimensional network. Furthermore, there are two intramolecular NH···O hydrogen bonds (N1···O1: 2.759(3) Å and N1···O3: 2.876(3) Å; see the figure).

**Acknowledgements:** This work is supported by the project development plan of science and technology of Jilin Province.

### References

- 1. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA (2009).
- 2. Sheldrick, G. M.: SHELXT integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3-8.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- 4. Parsons, S.; Flack, H. D.; Wagner, T.: Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B69 (2013) 249-259.
- 5. Huang, X.; Zhang, S.; Liu, L.; Yu, L.; Chen, G.; Xu, W.; Zhu, D.: Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure. Angew. Chem. Int. Ed. 57 (2018) 146-150.
- Shang, K.-X.; Sun, J.; Hu, D.-C.; Yao, X.-Q.; Zhi, L.-H.; Si, C.-D.; Liu, J.-C.: Six Ln (III) coordination polymers with a semirigid tetracarboxylic acid ligand: bifunctional luminescence sensing, NIR-luminescent emission, and magnetic properties. Cryst. Growth Des. 18 (2018) 2112-2120.
- 7. Yang, Y.; Wang, K.-Z.; Yan, D.: Smart luminescent coordination polymers toward multimode logic gates: timeresolved, tribochromic and excitation-dependent fluorescence/phosphorescence emission. ACS Appl. Mater. Interfaces 9 (2017) 17399-17407.
- 8. He, J.; Zha, M.; Cui, J.; Zeller, M.; Hunter, A. D.; Yiu, S.-M.; Lee, S.-T.; Xu, Z.: Convenient detection of Pd(II) by a metal-organic framework with sulfur and olefin functions. J. Am. Chem. Soc. 135 (2013) 7807-7810.
- 9. Yang, E.-C.; Zhang, Y.-Y.; Liu, Z.-Y.; Zhao, X.-J.: Diverse selfassembly from predesigned conformationally flexible pentanuclear clusters observed in a ternary copper(II)triazolate-sulfoisophthalate system: synthesis, structure, and magnetism. Inorg. Chem. 53 (2014) 327-335.
- 10. Ramaswamy, P.; Matsuda, R.; Kosaka, W.; Akiyama, G.; Jeon, H. J.; Kitagawa, S.: Highly proton conductive nanoporous coordination polymers with sulfonic acid groups on the pore surface. Chem. Commun. 50 (2014) 1144-1146.