

Xia Li, Shangjun Liu*, Weihong Yan, Mingle Shen and Chaohui Xue

Crystal structure of (*E*)-2-(2-chloro-6-hydroxybenzylidene)hydrazine-1-carbothioamide, $C_8H_8ClN_3O_4S$

Table 1: Data collection and handling.

Crystal:	Yellow block
Size:	$0.26 \times 0.23 \times 0.20$ mm
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)
μ :	0.57 mm $^{-1}$
Diffractometer, scan mode:	Bruker APEX-II, φ and ω
θ_{\max} , completeness:	25.0° , >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	4752, 1745, 0.021
Criterion for I_{obs} , $N(hkl)_{\text{gt}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1494
$N(\text{param})_{\text{refined}}$:	128
Programs:	Bruker [1], SHELX [2]

<https://doi.org/10.1515/ncrs-2019-0410>

Received June 14, 2019; accepted August 6, 2019; available online August 23, 2019

Abstract

$C_8H_8ClN_3O_4S$, monoclinic, $P2_1/c$ (no. 14), $a = 12.662(2)$ Å, $b = 5.2782(8)$ Å, $c = 14.841(2)$ Å, $\beta = 94.103(3)^\circ$, $V = 989.3(3)$ Å 3 , $Z = 4$, $R_{\text{gt}}(F) = 0.0317$, $wR_{\text{ref}}(F^2) = 0.1232$, $T = 293(2)$ K.

CCDC no.: 1945382

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was synthesized via the reaction of hydrazinecarbothioamide (1 mmol, 91.1 mg) with 2-chloro-6-hydroxybenzaldehyde (1 mmol, 156.6 mg) in ethanol solution containing a few drops glacial acetic acid under refluxing. When cooled to room temperature, the solution was filtered and left at room temperature. After six days, light yellow crystals were obtained.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^* / U_{\text{eq}}$
C1	0.43980(15)	-0.6564(4)	0.90319(13)	0.0247(5)
C2	0.29145(16)	-0.1416(4)	0.81694(14)	0.0287(5)
H2	0.324296	-0.131957	0.762968	0.034*
C3	0.20683(15)	0.0370(4)	0.83323(14)	0.0289(5)
C4	0.15535(17)	0.0383(4)	0.91431(15)	0.0347(5)
C5	0.07628(19)	0.2148(5)	0.92830(19)	0.0452(6)
H5	0.043123	0.214548	0.982236	0.054*
C6	0.0474(2)	0.3888(5)	0.8624(2)	0.0502(7)
H6	-0.005719	0.505110	0.872205	0.060*
C7	0.0955(2)	0.3949(5)	0.7818(2)	0.0466(7)
H7	0.075263	0.513492	0.737565	0.056*
C8	0.17444(17)	0.2209(4)	0.76843(16)	0.0341(5)
Cl1	0.23532(6)	0.24002(15)	0.66736(5)	0.0590(3)
N1	0.39513(14)	-0.6967(3)	0.97940(12)	0.0326(4)
H1A	0.344512	-0.600273	0.994368	0.039*
H1B	0.416592	-0.819409	1.014172	0.039*
N2	0.40402(13)	-0.4624(3)	0.85054(11)	0.0294(4)
H2A	0.432918	-0.432309	0.800937	0.035*
N3	0.32168(13)	-0.3110(3)	0.87481(12)	0.0280(4)
O1	0.18019(14)	-0.1282(3)	0.98182(12)	0.0487(5)
H1	0.230677	-0.214944	0.968897	0.073*
S1	0.54036(4)	-0.83831(11)	0.86945(4)	0.0349(2)

*Corresponding author: Shangjun Liu, School of Biological and Chemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, P.R. China, e-mail: shangjunliu66@163.com
Xia Li, Weihong Yan, Mingle Shen and Chaohui Xue: School of Biological and Chemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, P.R. China

Experimental details

All hydrogen atoms were placed in calculated positions (C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å) and refined as riding atoms. The U_{iso} values were constrained to be $1.5U_{\text{eq}}$

of the carrier atom for oxygen H atoms and $1.2U_{eq}$ for the remaining H atoms.

Comment

Thiosemicarbazones are a class of important Schiff-bases and have received considerable attention for many years because of their biological activities and coordination chemistry properties [3–14]. In order to search for new thiosemicarbazones, the title compound was synthesized and its crystal structure was determined.

The asymmetric unit of the title compound consists of one formula unit (*cf.* the figure). The title compound has an *E* configuration with the sulfur atom *trans* to the iminic nitrogen. In the crystal structure of title compound, the short distance $d(N3-C2) = 1.279(3)$ Å has a value of a typical C=N double bond. Because of the consequence of repulsion between the nitrogen lone pairs and the adjacent N bonds, the C=N–N angle of $115.11(17)^\circ$ (C2=N3–N2) is much smaller than the ideal value of 120° expected for sp^2 N atoms. The C1=S1 bond distance in the molecule is 1.698(2) Å, which is between the typical C=S double-bond (1.56 Å) and the typical C=S single-bond (1.82 Å), thus showing a double bond character. In the crystal structure, a hydrogen bonded dimeric structure is formed by two classical N–H \cdots S hydrogen bonds. The adjacent dimers are further linked into three-dimensional frameworks by weak C–H \cdots S hydrogen bonds. In addition, intramolecular O–H \cdots N hydrogen bonds further consolidate the crystal packing. A database search gave the result that the structure of the parent compound (without the chloro substituent) [3] and another very closely related structure is known [4].

Acknowledgements: This work was financially supported by Nanyang Institute of Technology.

References

1. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA (2008).
2. Sheldrick, G. M.: A short history of SHELX. *Acta Crystallogr.* **A64** (2008) 112–122.
3. Chattopadhyay, D.; Mazumdar, S. K.; Banerjee, T.; Ghosh, S.; Mak, T. C. W.: Structure of salicylaldehyde thiosemicarbazone. *Acta Crystallogr.* **C44** (1988) 1025–1028.
4. Liu, C.: Crystal structure of (*E*)-2-((4-chlorophenyl)(phenyl)methylene)hydrazinecarbothioamide, $C_{14}H_{12}ClN_3S$. *Z. Kristallogr. NCS* **234** (2019) 517–518.
5. Zhong, Q.: Crystal structure of (*E*)-2-((adamantan-1-ylmino)methyl)-5-methoxyphenol, $C_{18}H_{23}NO_2$. *Z. Kristallogr. NCS* **234** (2019) 313–314.
6. Haribabu, J.; Subhashree, G. R.; Saranya, S.; Gomathi, K.; Karvembu, R.; Gayathri, D.: Isatin based thiosemicarbazone derivatives as potential bioactive agents: anti-oxidant and molecular docking studies. *J. Mol. Struct.* **1110** (2016) 185–195.
7. Idemudia, O. G.; Sadimenko, A. P.; Hosten, E. C.: Crystal structure of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone, $C_{15}H_{19}N_5OS$. *Z. Kristallogr. NCS* **230** (2015) 81–82.
8. Liu, C.: Crystal structure of (*E*)-2-(anthracen-9-ylmethylene)hydrazinecarbothioamide, $C_{16}H_{13}N_3S$. *Z. Kristallogr. NCS* **233** (2018) 315–316.
9. Pelosi, G.: Thiosemicarbazone metal complexes: from structure to activity. *Open Crystallogr. J.* **3** (2010) 16–28.
10. Bautista, J. L.; Flores-Alamo, M.; Tiburcio, J.; Vieto, R.; Torrens, H.: Synthesis and structural characterization of fluorinated thiosemicarbazones. *Molecules* **18** (2013) 13111–13123.
11. Pape, V. F. S.; Tóth, S.; Füredi, A.; Szébényi, K.; Lovrics, A.; Szabó, P.; Wiese, M.; Szakács, G.: Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. *Eur. J. Med. Chem.* **117** (2016) 335–354.
12. King, A. P.; Gellineau, H. A.; Ahn, J. E.; MacMillan, S. N.; Wilson, J. J.: Bis(thiosemicarbazone) complexes of cobalt(III). synthesis, characterization, and anticancer potential. *Inorg. Chem.* **56** (2017) 6609–6623.
13. Gatti, A.; Habtemariam, A.; Romero-Canelón, I.; Song, J. I.; Heer, B.; Clarkson, G. J.; Rogolino, M.; Sadler, P. J.; Carcelli, M.: Half-sandwich arene ruthenium(II) and osmium(II) thiosemicarbazone complexes: solution behavior and antiproliferative activity. *Organometallics* **37** (2018) 891–899.
14. Marchetti, F.; Pettinari, C.; Pettinari, R.: Acylpyrazolone ligands: synthesis, structures, metal coordination chemistry and applications. *Coord. Chem. Rev.* **249** (2005) 2909–2945.