9

Nyameka Diko, Sizwe J. Zamisa*, Holger B. Friedrich and Mzamo L. Shozi

Crystal structure of (E)-4-bromo-N-(pyridin-2-ylmethylene)aniline, $C_{12}H_9BrN_2$

https://doi.org/10.1515/ncrs-2019-0264 Received April 10, 2019; accepted July 12, 2019; available online July 27, 2019

Abstract

C₁₂H₉BrN₂, monoclinic, $P2_1/c$ (no. 14), a = 19.2197(12) Å, b = 4.8579(3) Å, c = 11.4679(9) Å, $\beta = 106.880(4)^{\circ}$, V = 1024.60(12) Å³, Z = 4, $R_{\rm gt}(F) = 0.0449$, $wR_{\rm ref}(F^2) = 0.1257$, T = 100(2) K.

CCDC no.: 1939854

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

An ethanolic solution of 2-pyridinecarboxaldehyde (1.07 g, 10 mmol) was added to a solution of 4-bromoaniline (1.72 g, 10 mmol) in ethanol and the solution was refluxed for 6 hours. The reaction mixture was then cooled to room temperature and MgSO₄ was added to remove excess water.

Nyameka Diko, Holger B. Friedrich and Mzamo L. Shozi: University of KwaZulu-Natal, School of Chemistry and Physics, Private Bag X54001, Westville Campus, Durban 4000, South Africa

Table 1: Data collection and handling.

Crystal:	Colourless block		
Size:	$0.29 \times 0.21 \times 0.14~\text{mm}$		
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)		
μ:	3.98 mm ⁻¹		
Diffractometer, scan mode:	Bruker SMART APEX-II, $oldsymbol{arphi}$ and $oldsymbol{\omega}$		
$\theta_{\sf max}$, completeness:	28.5°, 98%		
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	25389, 2527, 0.066		
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 2166		
$N(param)_{refined}$:	136		
Programs:	Bruker [1], SHELX [2, 3],		
	Mercury [4]		

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Br1	0.04566(2)	1.42267(7)	0.35506(3)	0.01610(14)
N1	0.38153(17)	0.0788(7)	0.6529(3)	0.0209(7)
N2	0.25245(17)	0.5885(6)	0.6725(3)	0.0184(6)
C1	0.3501(2)	0.2097(8)	0.8336(3)	0.0227(7)
H1	0.322357	0.323049	0.870810	0.027*
C2	0.3990(2)	0.0194(10)	0.9019(3)	0.0263(8)
H2	0.405417	0.000766	0.986784	0.032*
С3	0.4387(2)	-0.1440(9)	0.8442(3)	0.0240(8)
Н3	0.471805	-0.279112	0.888065	0.029*
C4	0.4281(2)	-0.1026(8)	0.7204(3)	0.0223(8)
H4	0.455978	-0.210746	0.681273	0.027*
C5	0.34250(18)	0.2314(8)	0.7095(3)	0.0179(7)
C6	0.29112(19)	0.4255(7)	0.6300(3)	0.0173(7)
Н6	0.286731	0.429397	0.545340	0.021*
C7	0.20549(18)	0.7756(7)	0.5917(3)	0.0163(6)
C8	0.1497(2)	0.8906(8)	0.6324(3)	0.0176(7)
Н8	0.145246	0.839072	0.709781	0.021*
C9	0.10111(19)	1.0775(7)	0.5619(3)	0.0166(7)
H9	0.062235	1.147986	0.588680	0.020*
C10	0.11014(18)	1.1601(8)	0.4516(3)	0.0161(6)
C11	0.1658(2)	1.0554(7)	0.4098(3)	0.0163(7)
H11	0.171249	1.113686	0.333830	0.020*
C12	0.21327(19)	0.8651(8)	0.4805(3)	0.0183(7)
H12	0.251765	0.794142	0.452846	0.022*

The MgSO $_4$ was filtered off and the filtrate was dried overnight under reduced pressure. This gave an off-white powder (1.92 g, 73%). Mp: 69–69.4 °C. Crystals were grown through a slow evaporation of an ethanol solution at 25 °C.

^{*}Corresponding author: Sizwe J. Zamisa, University of KwaZulu-Natal, School of Chemistry and Physics, Private Bag X54001, Westville Campus, Durban 4000, South Africa, e-mail: zamisas@ukzn.ac.za, sizwejzamisa@gmail.com. https:// orcid.org/0000-0003-1968-381X

Experimental details

The structure was solved by the direct method using the SHELXS [2] program and refined. The visual crystal structure information was performed using Mercury [4] system software. All hydrogen atoms were placed in idealized positions and refined in riding models with $U_{\rm iso}$ assigned the values of 1.2 times those of their parent atoms and the distances of C-H were constrained to 0.95 Å for all the aromatic H atoms.

Comment

Schiff bases were described by Hugo Schiff in 1864 as a condensation reaction of imines and aldehydes. Their ease of synthesis, ability to coordinate to various metals with different oxidation states and influence the way a metal reacts in various catalytic transformations has led to remarkable use of these N,N'- bidentate ligands. Ligand design has enabled chemists to explore the steric and electronic properties of these ligands on various catalytic platforms [5-7]. Metal complexes of these pyridyl imine ligands have been found to perform various catalytic transformations such as alcohol oxidation [8] and transfer hydrogenation of ketones [9].

The asymmetric unit has one molecular unit of the title compound (cf. the figure). The compound exhibits an E conformation around the N2=C6 bond which is comparable to related compounds in literature [10-14]. The analogous compound with a methyl group instead of the bromo substituent forms an isotypic structure [15]. The dihedral angle between the phenyl and pyridyl moieties was measured to be 19.2°, whilst all bond parameters appear normal. The crystal packing contains intermolecular C10-Br1 \cdots Cg_{phenyl}ⁱ interactions crystal packing with Br1···Cg_{phenyl}i distance of 3.601(2) Å and C10-Br1 \cdots Cg_{phenyl} angle of 89.97(1)° (symmetry code: (i) = x, 1 + y, z). Short Br1···Br1^{ii,iii} contacts (symmetry codes: (ii) = -x, -1/2 + y, 1/2 - z; (iii) = -x, 1/2 + y, 1/2 - z) with distances of 3.5115(6) Å were also observed. The two types of intermolecular interactions observed in the crystal packing link together neighboring molecules to form a one dimensional supramolecular structure which propagates along the crystallographic b axis.

Acknowledgements: We would like to thank the DST-National Research Foundation Centre of Excellence in Catalysis C* change for financial support.

References

- 1. Bruker. APEXII. Bruker AXS Inc, Madison, WI, USA (2009).
- 2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.

- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41 (2008) 466-470.
- 5. Pioquinto-Mendoza, J. R.; Rosas-Ortiz, J. A.; Reyes-Martínez, R.; Conelly-Espinosa, P.; Toscano, R. A.; Germán-Acacio, J. M.; Avila-Sorrosa, A.; Baldovino-Pantaleón, O.; Morales-Morales, D.: Synthesis, characterization and molecular structures of Ni(II) complexes derived from Schiff base pyridylimine ligands. Inorg. Chim. Acta 438 (2015) 146-152.
- 6. Kadwa, E.; Bala, M. D.; Friedrich, H. B.: Base metal Schiff base complexes applied as catalysts for the oxidation of *n*-octane. Inorg. Chim. Acta 463 (2017) 112-117.
- 7. Mondal, J.; Mukherjee, A.; Patra, G. K.: CuX (X=I, Br and Cl) based coordination polymers of azino-pyridyl ligand and PPh3: structural, spectral, electro-chemical, and DFT studies. Inorg. Chim. Acta 463 (2017) 44-53.
- Gichumbi, J. M.; Friedrich, H. B.; Omondi, B.: Synthesis and characterization of some new half-sandwich ruthenium(II) complexes with bidentate N, N'-ligands and their application in alcohol oxidation. Inorg. Chim. Acta 456 (2017) 55-63.
- 9. Gichumbi, J.; Friedrich, H.; Omondi, B.: Synthesis and characterization of half-sandwich ruthenium(II) complexes with N-alkyl pyridyl-imine ligands and their application in transfer hydrogenation of ketones. Transition Met. Chem. 41 (2016) 867-877.
- 10. Saphu, W.; Chainok, K.: Crystal structure of 4-nitro-N-[(pyridin-2-yl)methylidene]aniline. Acta Crystallogr. E71 (2015) 0760.
- 11. Marjani, K.; Mousavi, M.; Namazian, F.: Crystal structure of N-(2-pyridylmethylene)benzene-1,4-diamine. J. Chem. Crystallogr. 41 (2011) 1451-1455.
- 12. Zheng, Z. N.; Lee, S. W.: (E)-2-{4-[(Pyridin-2-yl) methylideneamino]phenyl}acetic acid. Acta Crystallogr. E68 (2012) o774.
- 13. Biewer, C.; Hamacher, C.; Kaiser, A.; Vogt, N.; Sandleben, A.; Chin, M. T.; Yu, S.; Vicic, D. A.; Klein, A.: Unsymmetrical N-aryl-1-(pyridin-2-yl)methanimine ligands in organonickel(II) complexes: more than a blend of 2,2'-bipyridine and N,N-diaryl-α-diimines?. Inorg. Chem. 55 (2016) 12716-12727.
- 14. Tzimopoulos, D.; Czapik, A.; Gdaniec, M.; Bakas, T.; Isab, A. A.; Varvogli, A.-C.; Akrivos, P. D.: Synthesis and study of triorganostannyl esters of 3-,4-and 3,5-pyridinylimino substituted aminobenzoic acids: crystal structures of dimorphs of aqua-trimethyltin 3-pyridinyliminobenzoate. J. Mol. Struct. 965 (2010)56-64.
- 15. Yu-Wei Dong, Y.-W.; Fan, R.-Q.; Wang, X.-M.; Wang, P.; Zhang, H.-J.; Wei, L.-G.; Song, Y.; Du, X.; Chen, W.; Yang, Y.-L.: Topological evolution in mercury(II) Schiff base complexes tuned through alkyl substitution - synthesis, solid-state structures, and aggregation-induced emission properties. Eur. J. Inorg. Chem. 2016 (2016) 3598-3610.