
9

See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of dibromidobis(4-bromobenzyl) tin(IV), $C_{14}H_{12}Br_4Sn$

https://doi.org/10.1515/ncrs-2019-0162 Received March 3, 2019; accepted March 25, 2019; available online June 19, 2019

Abstract

 $C_{14}H_{12}Br_4Sn$, monoclinic, I2/a (no. 15), a = 12.6379(2) Å, b = 4.9674(1) Å, c = 26.1845(4) Å, $\beta = 94.507(1)^\circ$, V = 1638.71(5) Å³, Z = 4, $R_{gt}(F) = 0.0142$, $wR_{ref}(F^2) = 0.0358$, T = 100 K.

CCDC no.: 1905383

The molecular structure of the title complex is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The melting point (uncorrected) was measured on an Mel-Temp II melting point apparatus. 1H and $^{13}\{^1H\}C$ NMR spectra were recorded in DMSO-d₆ solution on a Bruker Ascend 400 MHz NMR (Billerica, MA, USA) spectrometer.

Di(4-bromobenzyl)tin dibromide was prepared from the direct reaction of 4-bromobenzyl bromide (Merck, 0.50 g, 2.0 mmol) and metallic tin powder (Sigma-Aldrich, 0.12 g, 1.0 mmol) in toluene according to a literature procedure [5]. After refluxing for 5 h, fine white powders were observed in

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 1: Data collection and handling.

Colourless prism
$0.07 \times 0.03 \times 0.02~\text{mm}$
Cu Κα radiation (1.54184 Å)
$23.7 \ \text{mm}^{-1}$
XtaLAB Synergy, ω
67.0°, >99%
10027, 1450, 0.031
$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1418
87
CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Sn	0.250000	-0.00473(4)	0.500000	0.01254(7)
Br1	0.39552(2)	0.32357(5)	0.52646(2)	0.01689(7)
Br2	0.41779(2)	0.70829(5)	0.27602(2)	0.02498(8)
C1	0.29003(19)	-0.1656(5)	0.42709(7)	0.0202(5)
H1A	0.350663	-0.291059	0.432852	0.024*
H1B	0.228858	-0.268688	0.411326	0.024*
C2	0.31845(18)	0.0518(5)	0.39113(8)	0.0163(4)
С3	0.42172(17)	0.1525(5)	0.39318(7)	0.0188(5)
Н3	0.473217	0.086032	0.418448	0.023*
C4	0.45068(18)	0.3473(5)	0.35910(8)	0.0193(5)
H4	0.521338	0.413915	0.360804	0.023*
C5	0.37503(19)	0.4434(5)	0.32252(8)	0.0179(4)
C6	0.27165(18)	0.3493(5)	0.31938(8)	0.0195(5)
Н6	0.220605	0.416788	0.294006	0.023*
C7	0.24382(18)	0.1548(5)	0.35391(7)	0.0189(5)
H7	0.172856	0.090381	0.352247	0.023*

the mixture and the contents of the reaction vessel became grey. The obtained slurry was filtered after cooling and the residue was extracted with acetone/toluene. Colourless crystals suitable for crystallographic studies were obtained from the slow evaporation of the filtrate. Yield: 0.32 g (52%). M. pt: 453–455 K. 1 H NMR (DMSO-d₆, p.p.m.): δ 7.19–7.21 (d, 4H, PhH, 3 J = 8.32 Hz), 7.38–7.40 (d, 4H, PhH, 3 J = 8.32 Hz), 3.10 (s, 4H, Ph—CH₂). 13 C{ 1 H} NMR (DMSO-d₆, p.p.m.): δ 50.8 (–CH₂), 118.1, 139.9, 132.1, 139.4 (Ph—C).

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my, Edward.Tiekink@gmail.com. https://orcid.org/0000-0003-1401-1520

Experimental details

The C-bound H placed atoms were geometrically (C-H = 0.95 - 0.99 Å)refined and as riding with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C}).$

Comment

Interest in diorganotin dihalido molecules similar to the title compound [6, 7] relate to the ability of the diorganotin centre to increase its coordination number via intra- and intermolecular Sn··· X secondary [8] interactions. Besides structural consequences, the formation of intramolecular $Sn \cdots X$ interactions has implications for the stability and function of organotin species investigated as potential anti-tumour agents [9].

The molecule is illustrated in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) 1/2 - x, y, 1 - z). The title complex has crystallographic two-fold symmetry with the tin atom lying on the two-fold axis. The tin atom is tetrahedrally coordinated by two bromido atoms [Sn-Br1 = 2.5143(2) Å]and two methylene-carbon ligands [2.166(2) Å] derived from the 4-bromobenzyl substituents. The resulting Br₂C₂ donor set exhibits significant deviations from the regular tetrahedral geometry with the angles correlating with steric effects. Thus, the narrowest angle of 99.125(12)° is subtended by the bromido atoms and the widest angle of 136.70(12)° by the methylene-carbon atoms. From symmetry, the phenyl rings are orientated towards the same side of the molecule but, are splayed as seen in the dihedral angle between them of 88.7(5)°.

In the molecular packing, a three-dimensional architecture is sustained by a combination of side-on $C-Br \cdots \pi$, secondary Sn··· Br interactions and Br··· Br halogen bonding. Globally, molecules assemble into columns parallel to the b-axis, with connections between them being of the type $C-Br \cdots \pi$ $[C5-Br2 \cdots Cg(C2-C7)^{ii}: Br2 \cdots Cg(C2-C7)^{ii}]$ $(C7)^{ii} = 3.5754(10) \text{ Å}$ with angle at $Br2 = 92.65(7)^{\circ}$ for symmetry operation (ii) x, 1+y, z] and $Sn \cdots Br$ $[Sn \cdots Br^{ii} = 3.8464(3) \text{ Å}]$. Interactions between columns to form layers in the ab-plane involve the coordinated bromido ligands $[Br1 \cdots Br1^{iii} = 3.5414(4) \text{ Å for (iii): } 1 - x, 1 - y, 1 - z].$

The layers are connected along the c-axis by bromo··· bromo interactions [Br2···Br2^{iv} = 3.5761(4) Å for (iv): 1 - x, -1/2 + y,

The crystal structure of the isostructural all-chloro derivative of the title compound is known [10]. The Cl-Sn-Cl and C-Sn-C angles in the literature known compound are 98.68(3) and 136.15(12)°, respectively, both marginally smaller than in the present structure.

Acknowledgements: Sunway University is thanked for supporting studies in organotin chemistry.

References

- 1. Agilent Technologies. CrysAlisPRO. Agilent Technologies, Santa Clara, CA, U.S.A. (2017).
- 2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849-854.
- 5. Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. di- and tribenzyltin chlorides. J. Am. Chem. Soc. **83** (1961) 538-541.
- Buntine, M. A.; Kosovel, F. J.; Tiekink, E. R. T.: Supramolecular Sn··· Cl associations in diorganotin dichlorides and their influence on molecular geometry as studied by ab initio molecular orbital calculations. CrystEngComm 5 (2003) 331-336.
- 7. Vargas-Pineda, D. G.; Guardado, T.; Cervantes-Lee, F.; Metta-Magana, A. J.; Pannell, K. H.: Intramolecular chalcogen-tin interactions in $[(o-MeEC_6H_4)CH_2]_2SnPh_{2-n}Cl_n (E = S, O, CH_2;$ n = 0, 1, 2) and intermolecular chlorine-tin interactions in the meta- and para-methoxy isomers. Inorg. Chem. 49 (2010) 960-968.
- 8. Tiekink, E. R. T.: Supramolecular assembly based on emerging intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 209-228.
- 9. Holloway, L. N.; Pannell, K. H.; Whalen, M. M.: Effects of a series of triorganotins on ATP levels in human natural killer cells. Environ. Toxicol. Pharmacol. 25 (2008) 43-50.
- 10. Kuang, D.-Z.; Feng, Y.-L.: Synthesis and crystal structure of bis(p-chlorobenzyl)tin dichloride. Chin. J. Inorg. Chem. 16 (2000) 603-606.