
9

Zhenyu Zuo, Hao Yan, Xiao Song*, XiaoMei Song* and Dongyan Guo

The crystal structure of N,N'-(6-(thiophen-2-yl)-1,3,5-triazine-2,4-diyl)bis(2-methylpropane-2-sulfonamide) – ethyl acetate(2/1), $C_{34}H_{54}N_{10}O_6S_6$

https://doi.org/10.1515/ncrs-2018-0414 Received October 6, 2018; accepted October 17, 2018; available online November 9, 2018

Abstract

 $C_{34}H_{54}N_{10}O_6S_6$, monoclinic, $P2_1$ (no. 4), a = 11.8434(5) Å, b = 11.2298(6) Å, c = 17.0706(8) Å, $\beta = 94.661(2)^\circ$,

Zhenyu Zuo: College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China; and Shaanxi Key Laboratory of Basic and New Herbal Medicament Research, Xi'an, Shaanxi, 712046, China

Hao Yan and Dongyan Guo: College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China

 $V = 2262.86(19) \text{ Å}^3$, Z = 4, $R_{gt}(F) = 0.0287$, $wR_{ref}(F^2) = 0.0809$, T = 150(2) K.

CCDC no.: 1574824

Table 1: Data collection and handling.

Crystal: Stripe, colorless Size: $0.13 \times 0.05 \times 0.04$ mm Wavelength: Cu $K\alpha$ radiation (1.54184 Å)

i: 3.22 mm⁻¹

Diffractometer, scan mode: Bruker SMART, φ and ω -scans

 $\theta_{\rm max}$, completeness: 63.8°, >97% $N(hkl)_{\rm measured}$, $N(hkl)_{\rm unique}$, $R_{\rm int}$: 17958, 6789, 0.027 Criterion for $I_{\rm obs}$, $N(hkl)_{\rm gt}$: $I_{\rm obs}$ > 2 $\sigma(I_{\rm obs})$, 6602

 $N(param)_{refined}$: 539

Programs: Bruker programs [1], SHELX [2]

The asymmetric unit of the title crystal structure is shown in the figure (The disorder of the thiophen-2-yl moiety is omitted for clarity). Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

Under the protection of N_2 , Mg (4.80 g, 0.20 mol) and I_2 (1.02 g, 0.004 mol) were added to the solution of tetrahydrofuran (150 mL). After 10 min 2-bromothiophene (32.60 g, 0.20 mol) was added to the suspension mixture dropwisely. When Mg disappeared, the reaction mixture was cooled to -15 °C. A solution of 2,4,6-trichloro-1,3,5-triazine (36.88 g, 0.20 mol) in tetrahydrofuran was added to the above solution of thiophen-2-yl magnesium bromide within 5 min. After 5 h, the mixture was filtered and the filtrate was evaporated to get a yellow solid, which was purified by chromatography on silica gel to get 2,4-dichloro-6-(thiophen-2-yl)-1,3,5-triazine (26.0 g, yield 56%) as a yellow solid. To a suspension of NaH (1.92 g, 0.08 mol) in 60 mL of tetrahydrofuran was added tert-butanesulfinamide (9.70 g, 0.08 mol). The mixture was stirred at room temperature for 30 min. Then a solution of 2,4dichloro-6-(thiophen-2-yl)-1,3,5-triazine (4.64 g, 0.02 mol) in 20 mL of tetrahydrofuran was added slowly (about in 5 min). After stirring at reflux for 12 h, the reaction was quenched with 2 mL of MeOH and evaporated to get a yellow solid

^{*}Corresponding authors: Xiao Song and XiaoMei Song, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China, e-mail: 245291004@qq.com (X. Song); 2534200837@qq.com (XM. Song)

H14B

-0.7471

-1.2600

-0.3101

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) .

Table 2 (continued)

isonop	ic displacement	parameters (A	<i>)</i> •		Atom	х	у	Z	U _{iso} */U _{eq}
Atom	х	у	z	U _{iso} */U _{eq}	H14C	-0.8660	-1.1937	-0.3278	0.066*
01	-0.1052(2)	-1.5389(2)	-0.42997(13)	0.0337(5)	C15	-0.7941(3)	-0.9660(4)	-0.3109(3)	0.0489(10)
02	-0.61088(19)	` ,	-0.18856(13)	0.0319(5)	H15A	-0.8694	-0.9676	-0.3393	0.073*
03	-0.35966(17)		-0.31603(13)	0.0300(5)	H15B	-0.7517	-0.8971	-0.3281	0.073*
04	-0.8434(2)		-0.06375(16)	0.0438(6)	H15C	-0.8019	-0.9601	-0.2543	0.073*
05	-0.2122(2)		-0.16304(16)	0.0453(7)	C16	-0.5190(3)	-0.7508(4)	-0.4478(2)	0.0404(9)
06	-0.1972(4)	0.0745(4)	-0.1535(3)	0.0902(14)	H16A	-0.5350	-0.8203	-0.4158	0.061*
S1		-1.44643(7)	-0.36826(4)		H16B	-0.4377	-0.7476	-0.4549	0.061*
S 2		-1.04271(9)	-0.44628(5)	0.0376(2)	H16C	-0.5618	-0.7570	-0.4993	0.061*
S 3		-1.05917(7)	-0.27347(4)		C17	-0.5539(3)	-0.6381(3)	-0.40671(18)	0.0276(7)
S 4		-0.64982(7)	-0.30672(4)		C18	-0.5149(3)	-0.5273(3)	-0.4475(2)	0.0338(8)
S5		-0.23224(8)	-0.02997(5)		H18A	-0.5444	-0.5284	-0.5028	0.051*
S6B ^a	-0.7619(4)	-0.8060(4)	-0.1217(3)	0.0329(10)	H18B	-0.4319	-0.5254	-0.4442	0.051*
S6A ^b	-0.8900(3)		-0.04373(16)	0.0299(7)	H18C	-0.5430	-0.4565	-0.4218	0.051*
N1	-0.2257(2)		-0.33706(17)	0.0294(6)	C19	-0.6796(3)	-0.6360(4)	-0.3966(2)	0.0419(9)
H1	-0.2613	-1.4884	-0.3182	0.035*	H19A	-0.6998	-0.5597	-0.3736	0.063*
N2	-0.2199(2)		-0.36863(15)	0.0265(6)	H19B	-0.6985	-0.7011	-0.3618	0.063*
N3	-0.3769(2)	-1.1035(3)	-0.34428(16)	0.0257(6)	H19C	-0.7219	-0.6459	-0.4480	0.063*
N4	-0.5319(2)		-0.29274(17)	0.0276(6)	C20	-0.5907(3)	-0.5012(3)	-0.21180(18)	0.0236(6)
H4	-0.5710	-1.2578	-0.2862	0.033*	C21	-0.6680(3)	-0.3749(3)	-0.12933(18)	0.0244(6)
N5	-0.3813(2)	-1.3116(3)	-0.31532(15)	0.0243(6)	C23	-0.5845(4)	-0.2591(4)	0.0738(2)	0.0463(10)
N6	-0.5204(2)	-0.5172(3)	-0.27089(16)	0.0284(6)	H23A	-0.6290	-0.3243	0.0939	0.069*
Н6	-0.4926	-0.4530	-0.2918	0.034*	H23B	-0.5328	-0.2274	0.1165	0.069*
N7	-0.6018(2)	-0.3882(3)	-0.18881(15)	0.0238(5)	H23C	-0.5407	-0.2889	0.0317	0.069*
N8	-0.6758(2)	-0.2640(3)	-0.09939(15)	0.0289(6)	C24	-0.6636(3)	-0.1613(4)	0.04210(19)	0.0354(8)
Н8	-0.6329	-0.2069	-0.1162	0.035*	C25	-0.6014(3)	-0.0582(4)	0.0067(2)	0.0394(8)
N9	-0.7260(2)	-0.4629(3)	-0.09735(15)	0.0258(6)	H25A	-0.5486	-0.0894	-0.0296	0.059*
N10	-0.6434(2)	-0.5971(3)	-0.18516(15)	0.0245(6)	H25B	-0.5591	-0.0134	0.0488	0.059*
C1	0.0955(3)	-1.5356(4)	-0.3028(3)	0.0453(10)	H25C	-0.6563	-0.0054	-0.0218	0.059*
H1A	0.0941	-1.5903	-0.3476	0.068*	C26	-0.7379(4)	-0.1168(5)	0.1052(2)	0.0559(12)
H1B	0.1419	-1.5698	-0.2582	0.068*	H26A	-0.7883	-0.0539	0.0833	0.084*
H1C	0.1279	-1.4592	-0.3173	0.068*	H26B	-0.6897	-0.0851	0.1498	0.084*
C36	-0.2725(2)	-1.1229(3)	-0.36833(17)	0.0240(6)	H26C	-0.7832	-0.1830	0.1231	0.084*
C2	-0.0251(3)	-1.5162(3)	-0.2798(2)	0.0320(8)	C27	-0.9234(3)	-0.7734(4)	-0.0364(3)	0.0473(10)
C3	-0.0282(4)	-1.4259(5)	-0.2133(2)	0.0507(11)	$H27A^b$	-0.9838	-0.7981	-0.0068	0.057*
H3A	-0.0104	-1.3466	-0.2327	0.076*	H27 ^a	-0.9875	-0.7900	-0.0082	0.057*
H3B	0.0278	-1.4481	-0.1703	0.076*	C28	-0.8621(4)	-0.8522(4)	-0.0738(3)	0.0481(10)
H3C	-0.1039	-1.4252	-0.1941	0.076*	$H28^b$	-0.8786	-0.9349	-0.0716	0.058*
C4	-0.0782(3)	-1.6351(4)	-0.2619(2)	0.0371(8)	H28Aa	-0.8705	-0.9363	-0.0745	0.058*
H4A	-0.1573	-1.6228	-0.2508	0.056*	C29Ba	-0.8705(16)	-0.6535(17)	-0.0478(12)	0.040(6)
H4B	-0.0364	-1.6711	-0.2159	0.056*	H29B ^a	-0.8929	-0.5812	-0.0248	0.048*
H4C	-0.0753	-1.6882	-0.3072	0.056*	$C29A^b$	-0.7815(11)	-0.7838(14)	-0.1124(9)	0.046(4)
C5	-0.2768(3)	-1.3183(3)	-0.34064(19)	0.0255(7)	$H29A^b$	-0.7310	-0.8200	-0.1458	0.055*
C7	-0.4252(2)	-1.2020(3)	-0.31812(17)	0.0236(7)	C31	-0.3151(3)	-0.1191(5)	-0.1233(2)	0.0471(10)
C8	-0.2132(3)	-1.0207(3)	-0.39833(19)	0.0259(7)	H31A	-0.3764	-0.0810	-0.1574	0.057*
C9	-0.2482(3)	-0.8959(3)	-0.39191(19)	0.0269(7)	H31B	-0.3029	-0.0725	-0.0741	0.057*
Н9	-0.3114	-0.8659	-0.3673	0.032*	C32	-0.1605(4)	-0.0196(4)	-0.1728(2)	0.0460(10)
C10	-0.1638(3)	-0.8276(4)	-0.4320(2)	0.0382(8)	C33	-0.0528(3)	-0.0354(5)	-0.2107(3)	0.0536(11)
H10A	-0.1668	-0.7433	-0.4367	0.046*	H33A	0.0061	-0.0645	-0.1717	0.080*
C11	-0.0803(3)	-0.8949(4)	-0.4621(2)	0.0382(8)	H33B	-0.0294	0.0411	-0.2317	0.080*
H11	-0.0211	-0.8613	-0.4893	0.046*	H33C	-0.0643	-0.0932	-0.2536	0.080*
C12	-0.7077(4)	-1.0887(5)	-0.4143(2)	0.0581(13)	C34	-0.7123(2)	-0.5695(3)	-0.12818(17)	0.0235(6)
H12A	-0.6710	-1.1649	-0.4242	0.087*	C35	-0.7806(3)	-0.6656(3)	-0.09926(19)	0.0271(7)
H12B	-0.6580	-1.0232	-0.4275	0.087*	C37	-0.3462(4)	-0.2460(5)	-0.1054(3)	0.0557(12)
H12C	-0.7795	-1.0833	-0.4469	0.087*	H37A	-0.3566	-0.2913	-0.1545	0.084*
C13	-0.7302(3)	-1.0807(3)		0.0297(7)	H37B	-0.4167	-0.2468	-0.0791	0.084*
C14	-0.7906(3)	-1.1882(4)	-0.2998(3)	0.0438(9)	H37C	-0.2853	-0.2821	-0.0709	0.084*
H14A	-0.7981	-1.1812	-0.2433	0.066*	_		h .		
∐1 /₁ D	0.7471	1 2600	0 2101	0.066*	$0.5 \times 10^{-3} = 0.417(6)^{-5} = 0.592(6)$				

0.066* Occupancies: $^a = 0.417(6)$, $^b = 0.583(6)$.

which was dissolved in the mixture of CH_2Cl_2 and water. The organic layer was separated, washed with water, dried by anhydrous Na_2SO_4 and then filtered. The filtrate was evaporated to get a yellow solid, which was purified by chromatography on silica gel (PE:EA = 6:1) to afford 2,4-bis(*R*-tertbutylsulfonamido)-6-(thiophen-2-yl)-1,3,5-triazine (3.05 g, yield 38%). ¹H NMR: (400 MHz, chloroform-*d*) δ 9.99 (s, 2H), 8.13 (s, 1H), 7.60 (d, J = 8 Hz, 1H), 7.17 (t, J = 3.4 Hz, 1H), 1.37 (s, 18*H*). Crystals were obtained by recrystallization with ethyl acetate at room temperature.

Experimental details

The data were scaled and corrected for absorption using SADABS-2016/2 (Bruker, APEX-II). The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. The structure was refined as an inversion twin giving a Flack parameter of 0.024(14). The disorder of the thiophen-2yl moiety is handled with an aproximately 1/1 ratio.

Discussion

As an important aromatic unit, thiophene ring was widely used in constructing many novel heterocyclic compounds. Due to its unique pharmacological activity [3, 4], high catalytic activity [5] and good photoelectric property [6] thiophene derivatives were widely used in the areas of pharmacy, chemical industry, agriculture [7] and organic semiconductor materials [8, 9]. Developing novel chiral compounds containing thiophene rings and studying its properties have drawn more and more attentions of researchers in recent years. In this paper, 2,4-bis(*R*-tertbutylsulfonamido)-6-(thiophen-2-yl)-1,3,5- triazine was synthesized using 1,3,5-triazine as starting material. Its structure was characterized by ¹H NMR and X-ray diffraction.

There are two cystallographically independent molecules $(2(C_{15}H_{23}N_5O_2S_3))$ and one solvent molecule $(C_4H_8O_2)$ in the asymmetric unit, in which all bond lengths are in normal ranges [10]. In one of independent molecule ($C_{15}H_{23}N_5 O_2 S_3$), the typical bond length of S1-N1, S1-O1, N1-C5 and S2-C8 are 1.690(3) Å, 1.477(3) Å, 1.364(5) Å, 1.720(3) Å respectively. The angle of C11–S2–C8 is 91.23(18)°, which is smaller than that of C11-C10-C9 is 115.0(4)°. The torsion angle of C9-C8-C36-N3 is 11.318°, which demonstrated that thiophene ring and the 1,3,5-triazine ring were not coplanar. In molecular packing, classical (i) and non-classical (ii) hydrogen bonds were observed as following: (i) N1—H1···O3′ hydrogen bond $(d(H1\cdots O3') = 2.04 \text{ Å})$, N4—H4···N7' hydrogen bond $(d(H4\cdots N7') = 2.27 \text{ Å}),$ N6−H6···N5" hydrogen bond $(d(H6 \cdots N5'') = 2.12 \text{ Å}),$ N8−H8···O2″ hydrogen bond

 $(d(H8\cdots O2'')=2.07 \text{ Å});$ (ii) C4—H4A···O3' hydrogen bond $(d(H4A\cdot··O3')=2.56 \text{ Å}),$ C10—H10A···O1" hydrogen bond $(d(H10A\cdot··O1'')=2.41 \text{ Å}),$ C12—H12C···O1"' hydrogen bond $(d(H12C\cdot··O1''')=2.46 \text{ Å}),$ C28—H28A···O4' hydrogen bond $(d(H28A\cdot··O4')=2.30 \text{ Å}),$ ('=x, y-1, z; "=x, y+1, z; "'=-x-1, y+0.5, -z-1).

Acknowledgements: We acknowledge the supports by Key project of Shaanxi Provincial Education Department (17JS029), Natural Science Basic Research Program of Shaanxi (2017JM8070). China Postdoctoral Science Foundation funded project (2016M602994).

References

- 1. Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Zhou, J.; Klaβ, T.; Zhang, A.; Johnson, K. M.; Wang, C. Z.; Ye, Y.; Kozikowski, A. P.: Synthesis and pharmacological evaluation of (Z)-9-(heteroarylmethylene)-7-azatricyclo[4.3.1.0^{3,7}] decanes: ThiopheneAnalogues as potent norepinephrine transporter inhibitors. Bioorg. Med. Chem. Lett. 13 (2003) 3565–3569.
- Pillai, A. D.; Rathod, P. D.; Xavier, F. P.; Vasu, K. K.; Padh, H.; Sudarsanam, V.: Design, synthesis, and pharmacological evaluation of some2-[4-morpholino]-3-aryl-5-substituted thiophenes as novel anti-inflammatory agents: generation of a novel anti-inflammatory pharmacophore. Bioorg. Med. Chem. 12 (2004) 4667–4671.
- Gao, M. Z.; Kong, D.; Clearfield, A.; Zingaro, R. A.: Novel structure-defined chiral bis(oxazolinyl)thiophenes for Rucatalyzed asymmetric cyclopropanation. Tetrahedron. Lett. 45 (2004) 5649–5652.
- Han, J.; Yin, H.; Liu, C.; Wang, J.; Jian, X.: Construction of donoracceptor polymers containing thiophenephthalazinonemoiety via classic Ullmann C—N couplingpolymerization and their optical-electrical properties. Polymer 101 (2016) 241–256.
- Luo, Z.; Liu, Z.; Yang, Z.: The synthesis and photoactivated cytotoxicity of novel5-phenyl-3-(2,2?:5?,2?-terthien-5-yl)-4,5-dihydro-1*H*-pyrazolines. Chinese. Chem. Lett. 25 (2014) 333-336.
- Qian, X.; Lan, X.; Yan, R.; He, Y.; Huang, J.; Hou, L.: T-shaped (D)2-A-p-A type sensitizers incorporating indoloquinoxaline and triphenylamine for organic dye-sensitized solar cells. Electrochim. Acta. 232 (2017) 377-386.
- Taniguchi, T.; Fukui, K.; Asahi, R.; Urabe, Y.; Ikemoto, A.; Nakamoto, J.; Inada, Y.; Yamao, T.; Hotta, S.: Enhanced performance of organic solar cells based on thiophene/phenylenecooligomers. Synthetic. Met. 227 (2017) 156—162.
- 10. Zuo, Z.; Lei, F.; Dai, Y.; Wang, L.: The crystal structure of 2-phenyl-4,6-bis(*R-tert*-butylsulfonamido)-1,3,5-triazine ethyl acetate (2/1), C₃₈H₅₈N₁₀O₆S₄. Z. Kristallogr. NCS **233** (2018) 555–557.