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Abstract
C18H15N3O6 · C2H6OS, P21/c (no. 14), a= 15.762(9) Å,
v= 6.013(4) Å, c= 22.264(11) Å, β= 103.522(19)°,
V = 2052(2) Å3, Z = 4, Rgt(F)=0.0484, wRref(F2)=0.1348,
T = 296(2) K.

CCDC no.: 1865971

The asymmeric unit of the title crystal structure is shown in
the figure. Tables 1 and 2 contain details on crystal structure
andmeasurement conditions and a list of the atoms including
atomic coordinates and displacement parameters.
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Table 1: Data collection and handling.

Crystal: Yellow plate
Size: 0.16×0.13×0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
µ: 0.21 mm−1

Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 25.6°, >99%
N(hkl)measured, N(hkl)unique, Rint: 24106, 3810, 0.082
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2387
N(param)refined: 283
Programs: Bruker [1], SHELX [2]

Source of material
(Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)
terephthalic acid was synthesized by aqueous diazotization
of 2-aminoterephthalic acid with subsequent coupling with
3-oxo-N-phenylbutanamide [3, 4].

Diazotization: A 10 mmol portion of 2-aminoterephthalic
acid was dissolved in 50 mL of water upon addition of 0.80 g
of Solid NaOH. The solution was cooled in an ice bath to 0 °C
and 10 mmol of NaNO2 were added with subsequent addition
of 2 mL 33% HCl in portions of 0.4 mL for 1 h, under vigor-
ous stirring. During the reaction, the temperature of the mix-
turemust not exceed+5 °C. The obtained diazonium salt was
used for the next stage (see below).

Azocoupling: 10 mmol of NaOH were added to a mixture
of 10 mmol of 3-oxo-N-phenylbutanamide in 50 mL ethanol.
The solution was cooled in an ice bath, and a suspension
of the diazonium salt (prepared according to the procedure
described above) was added in two equal portions under
rigorous stirring for 1 h. The formed yellow precipitate of (Z)-
2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)
terephthalic acid was filtered off, recrystallized from a mix-
ture methanol-dimethylsulfoxide (50:1, v/v) and dried in air.
Yield 84% (based on 3-oxo-N-phenylbutanamide), yellow
powder, soluble in DMSO, ethanol and dimethylformamide
and insoluble in non-polar solvents. The formed yellow pre-
cipitate of the title was filtered off, recrystallized from a
mixture methanol-dimethylsulfoxide (50:1, v/v) and dried
in air. Anal. Calcd. for C20H21N3O7S (M= 447.46): C, 53.69; H,
4.73; N, 9.39. Found: C, 53.58; H, 4.70; N, 9.36%. IR (KBr): 3441
(br.) ν(H2O), 2498 ν(NH), 1664 ν(C=O), 1600 ν(C=N) cm−1.
MS (ESI) (positive ion mode): m/z: 370.10 [M–DMSO+H]+
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Table 2: Fractional atomic coordinates and isotropic or equivalent
isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq

S1 0.16958(6) 0.59889(12) 0.58433(3) 0.0497(2)
O1 0.17080(15) 0.1222(3) 0.51448(9) 0.0564(6)
H1O 0.171057 0.025021 0.542264 0.085*
O2 0.07960(16) −0.1156(4) 0.45720(10) 0.0678(7)
O3 0.12752(13) 0.4501(3) 0.19721(8) 0.0500(5)
H3O 0.131810 0.537652 0.168089 0.075*
O4 0.14698(15) 0.7723(3) 0.24669(8) 0.0537(6)
O5 0.28494(13) 1.0473(3) 0.32101(9) 0.0474(5)
O6 0.41696(16) 1.1628(4) 0.50389(9) 0.0717(7)
O7 0.17262(15) 0.8413(3) 0.60476(8) 0.0574(6)
N1 0.22718(14) 0.7114(3) 0.36826(9) 0.0356(5)
H1N 0.228421 0.795282 0.334998 0.043*
N2 0.27689(14) 0.7683(3) 0.42174(9) 0.0360(5)
N3 0.38148(15) 1.2718(4) 0.38409(10) 0.0437(6)
H3N 0.406549 1.284842 0.424617 0.052*
C1 0.17745(16) 0.5170(4) 0.36289(11) 0.0330(6)
C2 0.13361(16) 0.4438(4) 0.30374(11) 0.0350(6)
C3 0.08753(17) 0.2463(4) 0.29796(13) 0.0406(7)
H3A 0.058976 0.196253 0.258949 0.049*
C4 0.08340(18) 0.1229(4) 0.34923(12) 0.0400(7)
H4A 0.051529 −0.008685 0.344740 0.048*
C5 0.12660(17) 0.1942(4) 0.40753(12) 0.0358(6)
C6 0.17394(17) 0.3903(4) 0.41447(12) 0.0363(6)
H6A 0.203356 0.437210 0.453606 0.044*
C7 0.32522(16) 0.9480(4) 0.42659(12) 0.0364(6)
C8 0.32830(17) 1.0927(4) 0.37279(12) 0.0367(6)
C9 0.39780(17) 1.4298(4) 0.34107(12) 0.0394(6)
C10 0.45815(19) 1.5942(5) 0.36409(14) 0.0486(7)
H10A 0.485977 1.596794 0.405813 0.058*
C11 0.4766(2) 1.7534(5) 0.32477(16) 0.0566(8)
H11A 0.517846 1.862167 0.340206 0.068*
C12 0.4356(2) 1.7556(5) 0.26347(16) 0.0564(8)
H12A 0.448534 1.865053 0.237473 0.068*
C13 0.3753(2) 1.5947(5) 0.24091(14) 0.0507(8)
H13A 0.346666 1.595906 0.199342 0.061*
C14 0.35629(19) 1.4303(5) 0.27910(13) 0.0457(7)
H14A 0.315751 1.320378 0.263166 0.055*
C15 0.13728(17) 0.5748(5) 0.24744(12) 0.0382(6)
C16 0.12196(19) 0.0521(5) 0.46152(13) 0.0432(7)
C17 0.37487(19) 0.9915(5) 0.49014(13) 0.0498(8)
C18 0.3744(2) 0.8217(6) 0.53924(14) 0.0684(10)
H18A 0.424802 0.842014 0.572581 0.103*
H18B 0.375495 0.675354 0.522229 0.103*
H18C 0.322531 0.838962 0.554404 0.103*
C19 0.0702(2) 0.4970(6) 0.59526(18) 0.0715(10)
H19A 0.022907 0.569861 0.567148 0.107*
H19B 0.066321 0.525533 0.636956 0.107*
H19C 0.066943 0.339705 0.587675 0.107*
C20 0.2413(2) 0.4575(5) 0.64531(15) 0.0623(9)
H20A 0.299885 0.508223 0.648365 0.093*
H20B 0.238091 0.300484 0.637250 0.093*
H20C 0.224803 0.486924 0.683410 0.093*

and 79.10 [DMSO+H]+. 1H NMR (DMSO-d6): δ 2.44 (s, 3H,
CH3), 2.50 (s, 6H, 2CH3 signals of DMSO overlapped with the
solvent peak), 7.25–8.40 (8H, Ar—H), 12.85 and 13.11 (s, 2H,

OH), 16.00 (s, 1H, NH). 13C{1H} (DMSO-d6): δ 26.33 (CH3),
39.52 (signals of DMSO overlapped with the solvent peak),
115.69 (Ar—H), 116.44 (Ar—H), 120.73 (2Ar—H), 124.13 (Ar—H),
124.94 (Ar—H), 129.41 (2Ar—H), 131.15 (Ar—COOH), 131.79 (Ar—
COOH), 135.23 (C=N), 137.89 (Ar—CNH), 143.93 (Ar—NH—N),
161.18 and 166.44 (—COOH), 168.89 and 199.47 (C=O).

Experimental details
H atoms were located in the difference Fourier map, but
refined with fixed individual displacement parameters, using
riding models with C—H distances of 0.93 Å (for aromatic
rings), N—H distances of 0.90 Å; O—H distances of 0.85 Å
and C—H distances 0.96 for methyl group with U(H) values
of 1.2 Ueq (C,N,O) and 1.5 Ueq(C) (for CH3).

Comment
No covalent interactions have been extensively used as a syn-
thetic tool in the synthesis, catalysis and design of materi-
als [5–14]. “σ-hole” directed bonding interactions, such as
halogen bonding, chalcogen bonding, pnicogen bonding and
tetrel bonding, plays a crucial role in controlling the molec-
ular arrangement and further properties of crystal materials
due to its moderate strength, directionality and tunability
[10, 11, 14–21].

In the title structure, the organic hydrazine molecule is
essentially planar, (r.m.s. deviation=0.174 Å) with a max-
imum deviation of 0.646(2) and −0.491(2) Å for the O3
and O4 atoms. All carbonyl groups O atoms are involved
in intramolecular hydrogen bond interactions to hydrogen
atoms of amino and phenyl groups, giving a S(6) motif
in each case (cf. the figure) [22]. Both hydroxyl groups H
atoms are involved in intermolecular hydrogen bond inter-
actions to O atoms of dimethyl sulfoxide molecules linking
themolecules into chains with graph-set notation C(13) along
the [001] direction [22]. The bond lengths and angles are in the
expected ranges.
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