

Zheng Xing* and Heng-Bo Yin

Crystal structure of $(1,4\text{-diazepane})_4\text{Cu}^{\text{II}}_2(\mu\text{-Cl})_{10}\text{Cu}^{\text{I}}_6, \text{C}_{20}\text{H}_{48}\text{Cl}_{10}\text{Cu}_8\text{N}_8$

<https://doi.org/10.1515/ncks-2018-0185>

Received June 7, 2018; accepted October 4, 2018; available online January 12, 2019

Abstract

$\text{C}_{20}\text{H}_{48}\text{Cl}_{10}\text{Cu}_8\text{N}_8$, orthorhombic, $Cmce$ (no. 64), $a = 16.477(10)$ Å, $b = 10.008(6)$ Å, $c = 24.201(15)$ Å, $V = 3991(4)$ Å³, $Z = 4$, $R_{\text{gt}}(F) = 0.0364$, $wR_{\text{ref}}(F^2) = 0.0798$, $T = 296(2)$ K.

CCDC no.: 1533505

The molecular crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound is easily available by a literature known synthesis [5]. The mixtures of CuCl (1 mmol, 0.1 g), 1,4-diazepane (0.5 mmol, 0.05 g), ethanol (1 mL) and water (0.2 mL) were placed in a thick Pyrex tube (*ca* 20 cm in length). The Pyrex tube was frozen with liquid N₂, evacuated under vacuum and sealed with a torch. The tube was heated at 70 °C for 3 days. After being cooled slowly to room temperature, purple block crystals of the title compound were obtained.

*Corresponding author: Zheng Xing, Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, e-mail: 3110819@qq.com

Heng-Bo Yin: Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

Table 1: Crystal collection and handling.

Crystal:	Block, purple
Size:	0.20 × 0.18 × 0.16 mm
Wavelength:	Mo K α radiation ($\lambda = 0.71073$ Å)
μ :	4.87 mm ⁻¹
Diffractometer, scan mode:	APEX2, Φ and ω -scans
θ_{max} , completeness:	27.5°, 97%
$N(hk\bar{l})_{\text{measured}}$, $N(hk\bar{l})_{\text{unique}}$, R_{int} :	8599, 2291, 0.0355
Criterion for I_{obs} , $N(hk\bar{l})_{\text{gt}}$:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 1691
$N(\text{param})_{\text{refined}}$:	111
Programs:	Bruker programs [1], SHELX [2], OLEX2 [3], DIAMOND [4]

Experimental details

Hydrogen atoms were positioned using the standard options of the SHELX system.

Discussion

Heterocyclic N atoms can bind metal centers and halogen anions may coordinate in a bridging mode, forming different MOFs with novel stereostructures and useful properties [6]. Two new 3-D MOFs $[\text{Cu}_4\text{I}_4(\text{h}(\text{p}i\text{p}))_2]$ and $[\text{Cu}_4\text{I}_4(\text{b}(\text{p}p))_2]$ were prepared from two new organic bridging-type ligands homopiperazine (h_{ipip}) and 1,3-bis(4-piperidyl)propane (b_{pp}) which are extended into different topologies based on the cubane Cu_4I_4 clusters as the connecting nodes [7]. Based on homopiperazine, a series of new lipophilic platinum(II) complexes of $[\text{Pt}(\text{h}(\text{p}i\text{p}))_2]$ and $[\text{Pt}(\text{h}(\text{p}i\text{p}))_2]$ were synthesized and characterized. Single crystal X-ray diffraction showed that the h_{ipip} molecule was in a boat conformation and formed five- and six-member chelating rings with platinum [8].

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2).

Atom	<i>x</i>	<i>y</i>	<i>z</i>	$U_{\text{iso}}^*/U_{\text{eq}}$
Cu1	1.0000	0.07143(6)	0.34162(2)	0.02823(15)
Cu2	1.0000	0.07820(8)	0.17281(3)	0.0519(2)
Cu3	0.90466(3)	0.11646(5)	0.05148(2)	0.05576(18)
Cl1	1.0000	-0.06713(14)	0.24680(5)	0.0416(3)
Cl2	0.87703(6)	0.13308(11)	0.14429(4)	0.0449(2)
Cl3	1.0000	0.25828(15)	0.02218(6)	0.0500(4)
Cl4	0.82003(9)	0.0000	0.0000	0.0576(4)
N1	0.90729(17)	0.1978(3)	0.32823(13)	0.0391(8)
H1	0.9246	0.2686	0.3028	0.047
N2	0.90424(16)	-0.0313(3)	0.37094(11)	0.0335(7)
H2	0.9190	-0.1254	0.3760	0.040
C1	0.8818(2)	0.2583(4)	0.38174(17)	0.0456(10)
H1A	0.8462	0.3335	0.3745	0.055
H1B	0.9293	0.2918	0.4009	0.055
C2	0.8425(2)	0.1188(4)	0.30237(16)	0.0476(11)
H2A	0.8529	0.1101	0.2631	0.057
H2B	0.7908	0.1636	0.3072	0.057
C3	0.8394(2)	-0.0197(4)	0.32905(16)	0.0457(10)
H3A	0.7869	-0.0331	0.3463	0.055
H3B	0.8465	-0.0879	0.3010	0.055
C4	0.8791(2)	0.0274(4)	0.42477(15)	0.0405(9)
H4A	0.9266	0.0378	0.4481	0.049
H4B	0.8422	-0.0336	0.4431	0.049
C5	0.8385(2)	0.1601(4)	0.41824(16)	0.0423(9)
H5A	0.8323	0.1998	0.4546	0.051
H5B	0.7846	0.1455	0.4034	0.051

It is notable that delocalized mixed-valence Cu_2 center play an important part in metallo protein systems because they involve long-distances electron, and the $\text{Cu}-\text{Cu}$ bond of the Cu_2 core represents the first –metal-metal bond in biology. Hydroxylation of bpy and phen ligands in two delocalized mixed-valence $\text{Cu}(\text{I})/\text{Cu}(\text{II})$ represents a new route to the stable mixed-valence dicopper complexes [9–14].

For the title compound, X-ray single crystal structure determination reveals that copper atoms have two different coordination environments in its crystal structure, presenting a mixed-valence $\text{Cu}(\text{I}/\text{II})$ complex. Cu1(II) is coordinated in distorted tetrahedral geometry, which is defined by four N atoms from two homopiperazine ligand. $\text{Cu}_2(\text{I})$ and $\text{Cu}_3(\text{I})$ are linked with three Cl atoms separately. At the same time, each Cl atom acts as linker to bridge two Cu atoms, presenting six-member cycle configuration [15]. The $\text{Cu}-\text{Cl}$ bond lengths in the complex range from 2.204(1) \AA to 2.681(1) \AA . The $\text{Cu}-\text{N}$ bond lengths are 2.010(1) \AA and 2.013(1) \AA for $\text{Cu1}-\text{N1}$ and $\text{Cu1}-\text{N2}$, respectively. The structure of the compound extends into two-dimensional framework through hydrogen bonds.

Acknowledgements: This work was supported by Funds of Zhenjiang College scientific research team (zjckytd2017011).

References

1. Bruker. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA (2008).
2. Sheldrick, G. M.: Crystal structure refinement with SHELXL. *Acta Crystallogr. C* **71** (2015) 3–8.
3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **42** (2009) 339–341.
4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany (2012).
5. Shi, Q. Z.; Xing, Z.; Cao, Y. N.; Ma, S. B.; Chen, L. Z.: Synthesis, structure and dielectric properties of a Cd coordination polymer based on homopiperazine. *J. Mol. Struct.* **1130** (2017) 363–367.
6. Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.; Eddaoudi, M. J.: Supermolecular building blocks (SBBs) for the design and synthesis of high-lyorousmetal-organic frameworks. *J. Am. Chem. Soc.* **130** (2008) 1833–1835.
7. Hou, Q.; Jia, M. J.; Zhao, J. J.; Jin, J.; Yu, J. H.; Xu, J. Q.: New BPTH-bridged chained Cd(II) coordination polymer based on Cd_2O_2 clusters: synthesis and crystal structure of $[\text{Cd}(\text{BPTH})(\text{phen})]_3\cdot 7.5\text{H}_2\text{O}$. *Inorg. Chim. Acta* **23** (2012) 287–295.
8. Ali, M. S.; Powers, C. A.; Whitmire, K. H.; Guzman, J. I.; Khokhar, A. R.: Synthesis, characterization, and representative crystal structure of lipophilic platinum (homopiperazine) carboxylate complexes. *J. Coord. Chem.* **52** (2001) 273–287.
9. Zhang, X. M.; Tong, M. L.; Chen, X. M.: Hydroxylation of N-heterocycle ligands observed in two unusual mixed-valence Cu/CuII Complexes. *Angew. Chem.* **114** (2002) 1071–1073.
10. Lo, S. M. F.; Chui, S. S. Y.; Shek, L. Y.; Lin, Z. Y.; Zhang, X. X.; Wen, G. H.; Williams, I. D.: Solvothermal synthesis of a stable coordination polymer with copper-I-copper-II dimer units: $[\text{Cu}_4\{1,4-\text{C}_6\text{H}_4(\text{COO})_2\}_3(4,4'\text{-bipy})_2]_n$. *J. Am. Chem. Soc.* **122** (2000) 6293–6294.
11. Harding, C.; McKee, V.; Nelson, J.: Highly delocalized $\text{Cu}(\text{I})/\text{Cu}(\text{II})$: a copper-copper bond. *J. Am. Chem. Soc.* **113** (1991) 9684–9685.
12. Barr, M. E.; Smith, P. H.; Antholine, W. E.; Spencer, B.: Crystallographic, spectroscopic and theoretical studies of an electron-delocalized Cu(1.5)-Cu(1.5) Complex. *Chem. Commun.* **0** (1993) 1649–1652.
13. Houser, R. P.; Young, V. G.; Tolman, W. B.: A thiolate-bridged, fully delocalized mixed-valence dicopper(I,II) complex that models the CuA biologicalelectron-transfer site. *J. Am. Chem. Soc.* **118** (1996) 2101–2102.
14. Neese, F.; Zumft, W. G.; Antholine, W. E.; Kroneck, P. M. H.: The purple mixed-valence CuA center in nitrous-oxide reductase: EPR of the Copper-63-, Copper-65-, and both Copper-65- and [^{15}N]histidine-enriched enzyme and a molecular orbital interpretation. *J. Am. Chem. Soc.* **118** (1996) 8692–8699.
15. Asplund, M.; Jagner, S.; Nilsson, M.: The crystal structure of bis(tetrabutylammonium)di- μ -iodo-diiodidodicuprate(I). *Acta Chim. Scand.* **A36** (1981) 751–753.