
റി

Fu Lei Gao*, Ying Lei Wang, Bing Chen, Wei Xiao Liu and Ya Jing Liu

Crystal structure of 1,4-bis(2-azidoethyl) piperazine-1,4-diium dichloride, C₈H₁₈N₈Cl₂

https://doi.org/10.1515/ncrs-2018-0139 Received May 10, 2018; accepted May 23, 2018; available online June 18, 2018

Abstract

 $C_8H_{18}N_8Cl_2$, monoclinic, $P2_1/n$ (no. 14), a = 6.5246(3) Å, b = 7.7090(4) Åc = 13.9243(6) Å $\beta = 101.240(3)^{\circ}$ $V = 686.93(6) \text{ Å}^3$, Z = 2, $R_{gt}(F) = 0.0320$, $wR_{ref}(F^2) = 0.0878$, T = 302(2) K.

CCDC no.: 1822003

The crystal structure is shown in the figure. The non-hydrogen atoms of the asymmetric unit are labelled. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

1-Azido-5-chloro-3-azo-pentane (50 mmol) was dissolved in distilled water (50 mL) and heated to the temperature of 40 °C. Perchloric acid (15 mmol) was added to the agueous solution dropwise slowly in 20 min, then the mixture was stirred for 5 h at 40 °C. After the removal of the solvent, the residue was poured into 10 mL cold water, the white solid was filter and washed with cold water. Crystals were obtained by slow evaporation from the aqueous solution at room temperature.

Ying Lei Wang, Bing Chen, Wei Xiao Liu and Ya Jing Liu: Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China

Table 1: Crystal collection and handling.

Crystal:	Block, colourless	
Size:	$0.130\times0.140\times0.150~\text{mm}$	
Wavelength:	Mo K_{α} radiation ($\lambda=0.71073$ Å)	
μ:	0.471 mm ⁻¹	
Diffractometer, scan mode:	Bruker APEX-II CCD, $oldsymbol{\phi}$ and	
	ω-scans	
$2 heta_{ exttt{max}}$, completeness:	28.4°, >99%	
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	7168, 1725, 0.0288	
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2\sigma(I_{\rm obs}), 1358$	
$N(param)_{refined}$:	87	
Programs:	Bruker programs [1], ShelX [2, 3]	

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Atom	х	у	z	U _{iso} */U _{eq}
<u>C1</u>	0.9038(2)	0.20754(19)	0.67112(11)	0.0326(3)
H1A	0.8031	0.2265	0.7129	0.039
H1B	0.9586	0.0907	0.6823	0.039
C2	0.7997(2)	0.22910(18)	0.56512(11)	0.0310(3)
H2A	0.9052	0.2232	0.5249	0.037
H2B	0.7032	0.1338	0.5464	0.037
С3	0.4870(2)	0.40154(18)	0.58663(10)	0.0276(3)
НЗА	0.5227	0.3867	0.6571	0.033
H3B	0.3969	0.3062	0.5597	0.033
C4	0.3724(2)	0.57071(18)	0.56301(9)	0.0276(3)
H4A	0.2455	0.5692	0.5895	0.033
H4B	0.4592	0.6651	0.5940	0.033
Cl1	0.88140(5)	0.74563(4)	0.62576(2)	0.03553(14)
N1	1.1073(3)	0.4964(2)	0.84005(12)	0.0563(4)
N2	1.0842(2)	0.41570(16)	0.77156(10)	0.0371(3)
N3	1.0760(2)	0.33517(18)	0.69452(10)	0.0398(3)
N4	0.68245(17)	0.39803(14)	0.54507(8)	0.0241(3)
H4	0.761(2)	0.487(2)	0.5706(11)	0.031(4)

Experimental details

In the crystal structure, all hydrogen atoms were positioned geometrically and refined using a riding model.

Comment

Amine azides are low molecular weight organic amine compounds containing at least one tertiary nitrogen and one functional group that can be used as the fuel composition

^{*}Corresponding author: Fu Lei Gao, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China, e-mail: gfl198510@163.com

Open Access. © 2018 Fu Lei Gao et al., published by De Gruyter. © BY-NC-ND This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

in hypergolic fuel propulsion systems or gelled propellants [4]. Such compounds are preferred to replace hydrazines due to the advantages of synthesized and evaluated as potentional hypergolic fuel compounds, such as dimethylaminoethylazide (DMAZ), pyrollidiylethylazide (PYAZ) and bis(ethylazide)methylamine (BAZ) [5–8]. DMAZ appears to be one of the better candidates for hydrazine compounds. But DMAZ systems can not meet higher performance standards set by monomethylhydrazine systems. In order to obtain a higher energy density fuel, an amine azide containing piperazine ring was synthesized [9]. As shown in the figure, the title structure contains one piperazine and two 2-azidoethanamine groups and has a higher energy density. Bonds lengths and angles of all moieties are in their normal ranges and excellently fit with those of related compounds [10].

Acknowledgements: We acknowledge the funding support received from the National Natural Science Foundation of China (No. 21473130).

References

1. Bruker, APEX2, SAINT and SADABS, Brucker AXS Inc., Madison, WI, USA (2014).

- 2. Sheldrick, G. M.: Crystal structure refinement with SHELX. Acta Crystallogr. C71 (2015) 3-8.
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 4. McQuaid, M. J.; McNesby, K. L.; Rice, B. M.; Chabalowski, C. F.: Density functional theory characterization of the structure and gas-phase, mid-infrared absorption spectrum of 2-azido-N.N-dimethylethanamine (DMAZ). Theochem 587 (2002) 199-218.
- 5. Kokan, T. S.; Olds, J. R.; Seitzman, J. M.; Ludovice, P. J.: Characterizing high energy density propellants for space propulsion applications. Acta Astronaut. 65 (2009) 967-986.
- Ghanbari, S.; Vaferi, B.: Experimental and theoretical investigation of water removal from DMAZ liquid fuel by an adsorption process. Acta Astronautica. 112 (2015) 19-28.
- 7. Reddy, G.; Song, J.; Mecchi, M. S.; Johnson, M. S.: Genotoxicity assessment of two hypergolic energetic propellant compounds. Mutat. Res-Gen. Tox. En. 700 (2010) 26-31.
- Greene, B.; McClure, M. B.; Johnson, H. T.: Destruction or decomposition of hypergolic chemicals in a liquid propellant testing laboratory. Chem. Health Saf. 11 (2004) 6-13.
- 9. Pundlik, S. M.; Purandare, G. N.; Mukundan, T.: Influence of 1,4-dinitriopiperazine(DNP) on the pressure index of RDX containing extruded based propellants. J. Energ. Mater. 18 (2000)
- 10. Chen, H.; Jia, H.-X.; Xu, Q.-T.: Crystal structure of 1-(4-((benzo [d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C₂₆H₂₈Cl₂N₂O₃. Z. Kristallogr. NCS 233 (2018) 107-109.