
റി

Daniela Vitzthum and Hubert Huppertz*

The crystal structure of In_{1,2}B₃O_{5,6}(OH)_{1,4}

https://doi.org/10.1515/ncrs-2018-0083 Received February 26, 2018; accepted March 27, 2018; available online April 12, 2018

Abstract

 $In_{1.4}B_3O_{5.6}(OH)_{1.4}$, tetragonal, $P\bar{4}2_1m$ (no. 113), a = 6.6969(9) Å, $c = 4.4865(9) \text{ Å}, \quad V = 201.21(7) \text{ Å}^3, \quad Z = 2, \quad R_{gt}(F) = 0.0117,$ $wR_{ref}(F^2) = 0.0297$, T = 293(2) K.

CCDC no.: 434219

Source of material

In₂O₃ (99.9%, ChemPUR, Karlsruhe, Germany) and H₃BO₃ (99.5%, Carl Roth, Karlsruhe, Germany) were weighed in to an In:B ratio of approximately 1:2, then ground and enwrapped in molybdenum foil. Subsequently, the sample was prepared for a typical high-pressure multi-anvil experiment [5–7]. As soon as the maximum pressure of about 12.2 GPa was attained, the heating process started. 1500 °C was reached in 8 min, held for 6 min, then the heating was slowly downreg-

Daniela Vitzthum: Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria, Europe

Table 1: Crystal collection and handling.

Crystal:	Prism, colorless		
Size:	$0.138\times0.110\times0.040~\text{mm}^3$		
Wavelength:	Mo K_{α} radiation ($\lambda = 0.71073 \text{ Å}$)		
μ:	$6.962 \; cm^{-1}$		
Diffractometer, scan mode:	Bruker D8 Quest Kappa, $oldsymbol{\phi}$ and		
	ω -scans		
$2\theta_{max}$, completeness:	37.9°, >99%		
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	12876, 595, 0.0372		
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{ m obs}>2\sigma(I_{ m obs})$, 595		
$N(param)_{refined}$:	39		
Programs:	SHELX [1, 2], WinGX [3],		
	Diamond [4]		

ulated to 1100 °C in 40 min. After the following decompression, the sample was freed from its surroundings revealing colorless crystals.

Experimental details

For the refinement, the acentric, achiral, tetragonal space group P421m was chosen (Flack-Parsons parameter = 0.056(7) based on 235 quotients [2]). The hydrogen atom H1 was positioned via DFIX option of the SHELX system. A refinement with a higher occupancy factor for H1 up to 0.5 and a corresponding reduction of the In ratio to 0.5 leading to the sum formula InB₂O₅(OH)₂ is possible but results in higher R values, GOOF and residual electron density.

Comment

By means of high-pressure synthesis, it was possible to obtain another borate compound that adopts the melilite structure. Melilite denominates a group of sorosilicates with the sum formula (Ca,Na)₂(Mg,Al)₁(Si,Al)₂O₇ [8] although a variety of different minerals and synthetic compounds with the general constitution $X_2ZT_2A_7$ (X = large cations, T and Z = smaller, tetrahedrally coordinated cations, A = anions) are counted among the melilite-family. As in the recently published first ternary melilite-type borate $Sc_{1.67}B_3O_7$ [9], in $In_{1.2}B_3O_{5.6}(OH)_{1.4}$ the Z and T positions are both occupied by boron atoms, which thus center Q^3 as well as Q^4 tetrahedra. In the ab plane, two Q⁴ and three Q³ tetrahedra are corner-linked to five-membered rings resulting in a flat borate layer. Between these parallel layers in the center of the five-membered rings, the square antiprismatically coordinated indium atoms are located. Due to charge neutrality reasons, the atom sites of

^{*}Corresponding author: Hubert Huppertz, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria, Europe, e-mail: hubert.huppertz@uibk.ac.at

Table 2: Wyckoff positions, site occupancy factors (S.O.F.), fractional atomic coordinates, and isotropic U_{iso} or equivalent isotropic U_{eq} displacement parameters (\mathring{A}^2) for In_{1.2}B₃O_{5.6}(OH)_{1.4}.

Atom	Wyckoff	S.O.F.	х	у	Z	U _{eq} (U _{iso} for H1)
ln1	4 <i>e</i>	0.6	0.66070(2)	0.16070(2)	-0.01085(4)	0.00787(7)
B1	2 <i>b</i>	1	0	0	1/2	0.0053(3)
B2	4 <i>e</i>	1	0.8570(2)	0.3570(2)	0.5398(4)	0.0056(2)
01	4 <i>e</i>	1	0.8566(2)	0.3566(2)	0.2226(3)	0.0056(2)
02	2 <i>c</i>	1	0	1/2	0.6732(4)	0.0077(3)
03	8 <i>f</i>	1	0.9150(2)	0.1619(2)	0.6857(2)	0.0063(2)
H1	8 <i>f</i>	0.35	0.89(2)	0.12(2)	-0.13(3)	0.05(4)

the formally 3+ charged indium atoms cannot be fully occupied. Empty antiprisms give space to the hydrogen atoms in $In_{1.2}B_3O_{5.6}(OH)_{1.4}$, which were determined with a site occupancy factor of 0.35.

Acknowledgements: We thank Dr. Gunter Heymann and Dr. Klaus Wurst for the recording of and the support with the single-crystal data.

References

- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.

- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- 4. Brandenburg, K.: DIAMOND Ver. 3.2k. Crystal Impact GbR, Bonn, Germany (2012).
- Huppertz, H.: Multianvil high-pressure/high-temperature synthesis in solid state chemistry. Z. Kristallogr. CM 219 (2004) 330–338.
- Walker, D.; Carpenter, M. A.; Hitch, C. M.: Some simplifications to multianvil devices for high pressure experiments. Am. Mineral. 75 (1990) 1020–1028.
- Walker, D.: Lubrication, gasketing, and precision in multianvil experiments. Am. Mineral. 76 (1991) 1092–1100.
- 8. Warren, B. E.: The structure of melilite (Ca, Na)₂(Mg, Al)₁ (Si, Al)₂O₇. Z. Kristallogr. CM **74** (1930) 131–138.
- Schmitt, M. K.; Ploner, K.; Hejny, C.; Huppertz, H.: High-pressure synthesis of the first ternary melilite-type compound Sc_{1.67}B₃O₇.
 Anorg. Allg. Chem. 643 (2017) 1844–11848.