Bruker D8 Venture, ω (0.3°)

9

Malose J. Mphahlele*

Crystal structure of 1-(5-bromo-2-(4-methoxy-phenyl)-1H-indol-7-yl)ethanone oxime, $C_{17}H_{15}BrN_2O_2$

https://doi.org/10.1515/ncrs-2018-0081 Received April 11, 2018; accepted June 18, 2018; available online July 17, 2018

Abstract

 $C_{17}H_{15}BrN_2O_2$, monoclinic, $P2_1/c$, a = 14.4197(9) Å, b = 7.5423(5) Å, c = 14.9602(9) Å, $\beta = 114.665(2)^\circ$, V = 1478.59(16) Å³, Z = 4, $R_{gt}(F) = 0.0196$, $wR_{ref}(F^2) = 0.0526$, T = 173(2) K.

CCDC no.: 1822505

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

A stirred mixture of 1-[5-bromo-2-(4-methoxyphenyl)-1*H*-indol-7-yl]ethanone (0.30 g, 0.87 mmol), hydroxylamine hydrochloride (0.09 g, 1.31 mmol) and pyridine (0.10 g, 1.31 mmol) in ethanol (20 mL) was heated at 80° C for 5 h. The mixture was cooled to room temperature and quenched with an ice-cold water. The product was extracted into chloroform and the combined organic phases were washed with water and dried over anhydrous MgSO₄. The salt was filtered

Table 1: Data collection and handling.

Crystal: Colourless prism
Size: $0.53 \times 0.23 \times 0.20 \text{ mm}$ Wavelength: Mo $K\alpha$ radiation (0.71073 Å)

 μ : 2.79 mm⁻¹

 θ_{max} , completeness: 28.0°, >99% $N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} : 63347, 3547, 0.026 Criterion for I_{obs} , $N(hkl)_{\text{gt}}$: $I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 3375

 $N(param)_{refined}$: 201

Diffractometer, scan mode:

Programs: Bruker [1], WinGX [2], SHELX [3]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	X	y	Z	$m{U}_{iso}$ * $/m{U}_{eq}$
Br1	0.63095(2)	0.33782(2)	0.04747(2)	0.02122(5)
01	0.43536(7)	0.67988(15)	0.41273(7)	0.0259(2)
H1	0.453902	0.718149	0.470352	0.039*
02	1.03667(7)	0.39664(15)	0.92571(7)	0.0244(2)
N1	0.71264(8)	0.46782(14)	0.46882(7)	0.0157(2)
H1A	0.676786	0.510402	0.499261	0.019*
N2	0.52037(8)	0.61063(16)	0.40112(8)	0.0199(2)
C1	0.65295(10)	0.38653(17)	0.17989(9)	0.0168(2)
C2	0.57369(9)	0.46502(16)	0.19660(9)	0.0163(2)
H2	0.511898	0.495549	0.142315	0.02*
C3	0.58440(9)	0.49900(16)	0.29225(9)	0.0146(2)
C4	0.67880(9)	0.45241(16)	0.36876(9)	0.0149(2)
C5	0.75886(9)	0.37437(16)	0.35071(9)	0.0160(2)
C6	0.74481(10)	0.33807(16)	0.25409(10)	0.0172(2)
H6	0.796511	0.282346	0.240357	0.021*
C7	0.84197(10)	0.34631(16)	0.44407(9)	0.0176(2)
H7	0.90623	0.295647	0.45537	0.021*
C8	0.81195(9)	0.40599(17)	0.51449(9)	0.0164(2)
C9	0.86974(9)	0.41048(16)	0.62170(9)	0.0161(2)
C10	0.97385(9)	0.44912(18)	0.66198(9)	0.0187(2)
H10	1.005761	0.476387	0.619479	0.022*
C11	1.03174(9)	0.44848(18)	0.76307(9)	0.0191(2)
H11	1.102378	0.476524	0.789342	0.023*
C12	0.98582(10)	0.40667(17)	0.82537(9)	0.0182(2)
C13	0.88175(10)	0.3686(2)	0.78648(10)	0.0236(3)
H13	0.850207	0.34054	0.829191	0.028*
C14	0.82429(10)	0.37175(19)	0.68566(10)	0.0216(3)
H14	0.753234	0.347294	0.659716	0.026*
C15	1.13840(10)	0.4667(2)	0.96883(10)	0.0248(3)

^{*}Corresponding author: Malose J. Mphahlele, Department of Chemistry, College of Science Engineering and Technology, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa, e-mail: mphahmj@unisa.ac.za

Table 2 (continued)

Atom	X	у	z	$U_{iso}*/U_{eq}$
H15A	1.182127	0.397577	0.946295	0.037*
H15B	1.165116	0.459658	1.040654	0.037*
H15C	1.137466	0.590764	0.948986	0.037*
C16	0.49967(9)	0.57594(16)	0.31074(9)	0.0155(2)
C17	0.39748(10)	0.6101(2)	0.22759(10)	0.0247(3)
$H17A^a$	0.399186	0.57355	0.165425	0.037*
$H17B^a$	0.345006	0.542113	0.238182	0.037*
H17C ^a	0.381554	0.736808	0.224892	0.037*
$H17D^a$	0.351311	0.66143	0.253574	0.037*
H17Ea	0.405492	0.692868	0.180817	0.037*
H17F ^a	0.368943	0.498173	0.194107	0.037*

^aOccupancy: 0.5.

off and the solvent was evaporated under reduced pressure. The residue recrystallized from ethanol to the title compound as a white solid (0.25 g, 80%), m.p. 202–204° C; **IR**: v_{max} (ATR) 521, 585, 612, 653, 671, 755, 796, 826, 984, 1017, 1172, 1185, 1246, 1323, 1372, 1439, 1460, 1497, 3372, 3518 cm $^{-1}$; 1 **H-NMR** (DMSO- d_6) 2.30 (3H, s, CH $_3$), 3.80 (3H, s, OCH $_3$), 6.80 (1H, s, 3-H), 7.04 (2H, d, J = 8.7 Hz, 3′,5′-H), 7.42 (1H, d, J = 1.2 Hz, 6-H), 7.70 (3H, m, 4-H and 2′,6′-H), 10.84 (1H, s, NH), 11.57 (1H, s, OH); 13 **C-NMR** (DMSO- d_6) 11.3, 55.7, 98.0, 112.3, 115.0, 121.4, 122.9, 123.4, 124.2, 126.9, 131.6, 132.2, 139.4, 154.2, 159.8; m/z 359 (100, M + H); **HRMS** (ES): found 359.0293. $C_{17}H_{16}N_2O_2^{79}Br^+$ requires 359.0395.

Experimental details

Data reduction was carried out using *SAINT+* and *SADABS* [1]. The crystal structure was solved by Direct Methods using *SHELXTL*. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms. Hydrogen atoms involved in hydrogen bonding were refined freely [2–4]. Diagrams and publication material were generated using *SHELXTL* and *PLATON* [4].

Comment

The indole nucleus is an important scaffold in numerous natural and synthetic alkaloids and indole have a wide range of application in medicine and materials [5]. Oximes represent important building blocks in the synthesis of amides *via* the Beckmann rearrangement. The oximes derived from the 1-(2,5-diaryl-1*H*-indol-7-yl)ethanones, for example, were previously found to undergo trifluoroacetic acid-mediated Beckmann rearrangement to afford the *N*-(2,5-diaryl-1*H*-indol-7-yl)-acetamides [6]. The *O*-mesyl or tosyl-oximes derived from indole derivatives, on the other hand, have been found to react with liquid ammonia at low temperature to afford

diaziridines [7]. Recourse to the literature revealed that a bromine atom on the fused benzo ring of an indole framework imparts significant antitumour activity in both the synthetic [8] and the naturally occurring indole derivatives [9]. This knowledge encouraged us to incorporate an acetamide group on 2-aryl-7-acetyl-5-bromoindoles *via* initial oximation and subsequent Beckmann rearrangement. During this transformation, we were able to obtain crystals of the title compound.

The title crystal structure shows intermolecular $\{N(1)-H(1)\cdots N(2)\}$ and intermolecular $\{O(2)-H(2)\cdots O(1)\}$ hydrogen bonding with no π -stacking of the indole. There is coplanarity between the aromatic rings of the indole. The oxime group is also co-planar with the indole with torsion angle C(4)-C(3)-C(16)-N(2) value of 5°. The hydroxyl group is trans to the indole framework to avoid steric interaction. The methyl group of the 4-methoxy of the molecule, on the other hand, is rotated towards the C11 with the C(15)-O(1) bond length of 1.44 Å, which is typical for a methoxy group attached to an aromatic ring. The geometry of the oxime moiety reveal that the C3 atom is significantly asymmetrically positioned off the six membered ring.

Acknowledgements: The author is grateful to the University of South Africa and the National Research Foundation for financial assistance. Special thanks to Marole M. Maluleka for technical assistance. Prof. A. Lemmerer of the University of the Witwatersrand is acknowledged for X-ray data acquisition using a diffractometer acquired through the NRF National Equipment Programme (UID: 78572).

References

- Bruker. SAINT+, version 6.02 (Includes XPREP and SADABS).
 Bruker AXS Inc., Madison, WI, USA (2004).
- Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 3 (2012) 837–838.
- 3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.
- Sharma, V.; Kumar, P.; Pathak, D.: Biological importance of the indole nucleus in recent years: a comprehensive review.
 J. Heterocycl. Chem. 47 (2010) 491–502.
- Mphahlele, M. J.; Mmonwa, M. M.; Choong, Y. S.: Synthesis and evaluation of N-(3-trifluoroacetyl-indol-7-yl) acetamides for potential in vitro antiplasmodial properties. Molecules 22 (2017) 1099–1115.
- Protasova, I.; Bular, B.; Jung, N.; Bräse, S.: Synthesis of diaziridines and diazirines via resin-bound sulfonyl oximes. Org. Lett. 19 (2017) 34–37.
- 8. Cooper, L. C.; Chicchi, G. G.; Dinnell, K.; Elliott, J. M.; Hollingworth, G. J.; Kurtz, M. M.; Locker, K. L.; Morrison, D.;

Shaw, D. E.; Tsao, K.-L.; Watt, A. P.; Williams, A. R.; Swain, C. J.: 2-Aryl indole NK1 receptor antagonists: optimisation of indole substitution. Bioorg. Med. Chem. Lett. **11** (2001) 1233–1236.

9. Sisa, M.; Pla, D.; Altuna, M.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M.: Total synthesis and antiproliferative activity screening of (+-)-aplicyanins A, B and E and related analogues. J. Med. Chem. **52** (2009) 6217–6223.