
9

Miao Bao-Xi, Sun Hao and Ni Zhong-Hai\*

# Crystal structure of 1,1-di(4-cyanophenyl)-2, 2-diphenylethene, $C_{28}H_{18}N_2$



https://doi.org/10.1515/ncrs-2018-0076 Received March 13, 2018; accepted April 30, 2018; available online May 22, 2018

## Abstract

 $C_{28}H_{18}N_2$ , orthorhombic, Pccn (no. 56), a = 9.8955(6) Å, b = 11.0163(6) Å, c = 19.9752(14) Å, V = 2177.5(2) Å<sup>3</sup>, Z = 4,  $R_{gt}(F) = 0.0402$ ,  $wR_{ref}(F^2) = 0.1012$ , T = 123(2) K.

**CCDC no.:** 1840632

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

# Source of materials

1,1-Di(4-bromophenyl)-2,2-diphenylethene was synthesized according to the literature [4]. All other chemicals were purchased and used as received. A mixture of 1,1-di(4-bromophenyl)-2,2-diphenylethene (1.471 g, 3 mmol) and CuCN (0.717 g, 8 mmol) in dry DMF (45 mL) was heated at

Miao Bao-Xi and Sun Hao: School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People's Republic of China

Table 1: Crystal collection and handling.

| Crystal:                                                             | block, yellow                                               |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| size:                                                                | $0.16\times0.10\times0.06~\text{mm}$                        |  |  |
| Wavelength:                                                          | Mo $K_{\alpha}$ radiation ( $\lambda = 0.71073 \text{ Å}$ ) |  |  |
| μ:                                                                   | $0.068 \; \mathrm{mm}^{-1}$                                 |  |  |
| Diffractometer, scan mode:                                           | Bruker APEX II, $oldsymbol{\phi}$ and $\omega$ -scans       |  |  |
| $\theta_{\sf max}$ , completeness:                                   | 26.4°, >99%                                                 |  |  |
| $N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$ : | 20003, 2229, 0.0446                                         |  |  |
| Criterion for $I_{obs}$ , $N(hkl)_{gt}$ :                            | $I_{\rm obs} > 2\sigma(I_{\rm obs})$ , 1949                 |  |  |
| N(param) <sub>refined</sub> :                                        | 137                                                         |  |  |
| Programs:                                                            | Bruker programs [1], SHELX [2], PLATON [3]                  |  |  |

**Table 2:** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\mathring{A}^2$ ).

| Atom | х           | у            | z          | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|--------------|------------|------------------------------------|
| N1   | 0.55161(13) | 0.76255(11)  | 0.50231(6) | 0.0376(3)                          |
| C1   | 0.57888(14) | 0.67316(12)  | 0.47676(7) | 0.0274(3)                          |
| C2   | 0.61666(13) | 0.56147(11)  | 0.44331(6) | 0.0228(3)                          |
| C3   | 0.73620(13) | 0.50308(11)  | 0.46132(6) | 0.0249(3)                          |
| Н3   | 0.7888      | 0.5332       | 0.4962     | 0.030                              |
| C4   | 0.77618(12) | 0.39994(11)  | 0.42703(6) | 0.0224(3)                          |
| H4   | 0.8548      | 0.3598       | 0.4398     | 0.027                              |
| C5   | 0.69997(12) | 0.35547(10)  | 0.37361(6) | 0.0189(3)                          |
| C6   | 0.57695(12) | 0.41189(11)  | 0.35840(6) | 0.0216(3)                          |
| H6   | 0.5227      | 0.3802       | 0.3246     | 0.026                              |
| C7   | 0.53510(12) | 0.51390(11)  | 0.39279(6) | 0.0234(3)                          |
| H7   | 0.4531      | 0.5506       | 0.3823     | 0.028                              |
| C8   | 0.7500      | 0.2500       | 0.33368(8) | 0.0191(3)                          |
| C9   | 0.7500      | 0.2500       | 0.26570(9) | 0.0206(4)                          |
| C10  | 0.78197(13) | 0.13901(11)  | 0.22566(6) | 0.0224(3)                          |
| C11  | 0.72256(13) | 0.02739(11)  | 0.24041(7) | 0.0260(3)                          |
| H11  | 0.6598      | 0.0218       | 0.2749     | 0.031                              |
| C12  | 0.75656(15) | -0.07574(12) | 0.20389(7) | 0.0333(3)                          |
| H12  | 0.7172      | -0.1499      | 0.2146     | 0.040                              |
| C13  | 0.84816(16) | -0.06912(13) | 0.15191(8) | 0.0377(4)                          |
| H13  | 0.8714      | -0.1386      | 0.1281     | 0.045                              |
| C14  | 0.90509(17) | 0.04175(14)  | 0.13558(7) | 0.0380(4)                          |
| H14  | 0.9656      | 0.0471       | 0.1001     | 0.046                              |
| C15  | 0.87219(15) | 0.14520(13)  | 0.17196(7) | 0.0303(3)                          |
| H15  | 0.9107      | 0.2193       | 0.1604     | 0.036                              |
|      |             |              |            |                                    |

reflux under nitrogen for three days. A mixture of ethylenediamine (10 mL) and water (15 mL) was added after the mixture had cooled to 90 °C. The resulting mixture was stirred at 90 °C for 3 h and then cooled to room temperature. The

<sup>\*</sup>Corresponding author: Ni Zhong-Hai, School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou 221116, Jiangsu Province, People's Republic of China, e-mail: nizhonghai@cumt.edu.cn

product was extracted with dichloromethane three times and the organic layer dried over magnesium sulfate, filtered, and evaporated. A quantity of 0.802 g (70% yield) of C<sub>28</sub>H<sub>18</sub>N<sub>2</sub> was isolated as yellow crystals. <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.71 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 7.9 Hz, 3H), 7.08 (d, J = 8.0 Hz, 2H), 7.04···6.96 (m, 2H). **MALDI-TOF MS**: m/z calculated for  $C_{28}H_{18}N_2$  382.4560, found 382.4321 [M]<sup>+</sup>. **Elemental analysis** calculated for C<sub>28</sub>H<sub>18</sub>N<sub>2</sub>: C, 87.93; H, 4.74; N, 7.33%; found: C, 87.80, H, 4.63; N, 7.27%.

Yellow block crystals were obtained by slow evaporation of methanol/methylene dichloride solution.

# **Experimental details**

All H atoms bond to C atoms were introduced using the HFIX command in the SHELXL program [2]. All H atoms were treated as riding atoms with  $U_{iso}(H) = 1.2 U_{eq}(C)$  for hydrogen atoms. The structure was checked using PLATON [3]. There is a void in the unit cell, which has a volume of 32  $Å^3$ .

### Comment

Aggregation-induced emission (AIE) phenomenon of fluorescent solid materials have attracted significant attention because of their wide applications such as organic lightemitting diodes (OLEDs), solar cells, bioimaging, optoelectronic, optomechanical switching and storage devices [5–10]. As an iconic AIE molecule, tetraphenylethylene (TPE) and derivatives have been used to develop new fluorescent materials, such as highly solid fluorescence quantum yield owing to their rich electrochemical and excited state properties [11-13]. It is well known that the electronic structures and optoelectronic properties of TPE can be facilely modulated through tuning the electron donor and acceptor groups. Amongst various strong electron acceptor groups, the cyano group is the special one: solid fluorescence quantum vield of TPE derivatives with cyano group has increased rather than decreased. TPE derivatives with cyano groups show special characteristic such as highly solid fluorescence quantum yield, intriguing TADF properties, multicolor mechanochromism, and so on [14-16]. Up to now, a few TPE derivatives directly connected cyano group were obtained because of its symmetrical structure and active positions [17].

The crystal structure analysis agrees with expected structure of the title compound. The molecular structure has almost axial symmetry. The cyano groups are at the expected sites. The C-N bond length is 1.1414(18) Å, which is the typical bond distance. The molecular structure displays twisted paddle-like conformation. As expected, there are no intermolecular  $\pi$ - $\pi$  interactions. However, there exist weak intermolecular  $C-H\cdots\pi$  and  $C-H\cdots N$  interactions. C-H··· N interactions link molecules into a ladder-like

one-dimensional structure. These are linked by  $C-H\cdots\pi$ interactions, giving a three-dimensional structure.

Acknowledgements: This work was supported by the Fundamental Research Funds for the Central Universities (2017BSCXA05).

### References

- 1. Bruker, SAINT, APEX2, Bruker Inc., Madison, Wisconsin, USA (2016).
- 2. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- 3. Spek, A. L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36 (2003) 7-13.
- Zhou, X.; Li, H. Y.; Chi, Z. G.; Zhang, X. Q.; Zhang, J. Y.; Xu, B. J.; Zhang, Y.; Liu, S. W.; Xu, J. R.: Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole. New J. Chem. 36 (2012) 685-693.
- 5. Zhang, Z. M.; Han, H. H.; Zhang, R.; Li, N.; Ni, Z. H.: Design, syntheses and aggregation-induced emission properties of two new enlarged tetraarylethene-based luminogens. Tetrahedron Lett. 57 (2016) 1917-1920.
- 6. Zhao, Z. J.; Chen, S. M.; Lam, J. W. Y.; Lu, P.; Zhong, Y. C.; Wong, K. S.; Kwok, H. S.; Tang, B. Z.: Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem. Commun. 46 (2010) 2221-2223.
- 7. Li, Y. L.; Li, Z. P.; Ablekim, T.; Ren, T. H.; Dong, W. J.: Rational design of tetraphenylethylene-based luminescent downshifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units. Phys. Chem. Chem. Phys. 16, (2014) 26193-26202.
- 8. Vyas, V. S.; Rathore, R.: Preparation of a tetraphenylethylenebased emitter: Synthesis, structure and optoelectronic properties of tetrakis(pentaphenylphenyl)ethylene. Chem. Commun. 46 (2010) 1065-1067.
- 9. Wang, Y. F.; Liu, W. H.; Qu, Z. M.; Tan, H.; Liu, Y.; Xie, G. H.; Zhu, W. G.: Spirotriphenylamine based star-shaped D-A molecules meeting AIE chromophore for both efficient solutionprocessed doped and nondoped blue organic light-emitting diodes. Dyes Pigm. 143 (2017) 173-182.
- 10. Zhang, Z. M.; Zhao, Y.; Zhang, R.; Zhang, L. F.; Cheng, W. Q.; Ni, Z. H.: Design and synthesis of a new series of tetra(polycyclic aryl)ethenes: achieving aggregation-induced emission and efficient solid-state photoluminescence. Dyes Pigm. 118 (2015) 95-101.
- 11. Yuan, W. Z.; Gong, Y. Y.; Chen, S. M.; Shen, X. Y.; Lam, J. W. Y.; Lu, P.; Lu, Y. W.; Wang, Z. M.; Hu, R. R.; Xie, N.; Kwok, H. S.; Zhang, Y. M.; Sun, J. Z.; Tang, B. Z.: Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chem. Mater. 24 (2012) 1518-1528.
- 12. Meng, X.; Chen, C. Q.; Qi, G. Y.; Li, X.; Wang, K.; Zou, B.; Ma, Y. G.: From two, to three, to multi-color switches: developing AlEgen-based mechanochromic materials. ChemNanoMat 3 (2017) 569-574.

**DE GRUYTER** 

- 13. Zhang, X. M.; Wang, H. F.; Wang, S.; Shen, Y. T.; Yang, Y. L.; Deng, K.; Zhao, K. Q.; Zeng, Q. D.; Wang, C.: Triphenylene substituted pyrene derivative: synthesis and single molecule investigation. J. Phys. Chem. C 117 (2013) 307–312.
- Ekbote, A.; Jadhav, T.; Misra, R.:T-shaped donoracceptor-donor type tetraphenylethylene substituted quinoxaline derivatives: aggregation-induced emission and mechanochromism. New J. Chem. 41 (2017) 9346–9353.
- 15. Gong, Y. Y.; Zhang, Y. R.; Yuan, W. Z.; Sun, J. Z.; Zhang, Y. M.: D-A solid emitter with crowded and remarkably twisted
- conformations exhibiting multifunctionality and multicolor mechanochromism. J. Phys. Chem. C **118** (2014) 10998–11005.
- Tasso, T. T.; Furuyama, T.; Kobayashi, N.: Dinitriles bearing AIE-active moieties: synthesis, E/Z isomerization, and fluorescence properties. Chem. Eur. J. 21 (2015) 4817–4824.
- 17. Shustova, N. B.; Mccarthy, B. D.; Dinca, M.: Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 18 (1988) 2207–2209.